Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Synthesis and molecular docking simulations of novel azepines based on quinazolinone moiety as prospective antimicrobial and antitumor hedgehog signaling inhibitors.

  • Ahmed A Noser‎ et al.
  • Scientific reports‎
  • 2024‎

A series of novel azepine derivatives based on quinazolinone moiety was synthesized through the reaction of quinazolinone chalcones (2a-d) either with 2-amino aniline in acidic medium to give diazepines (3a-d) or with 2-aminophenol to offer oxazepine (4a-d). The structure of the synthesized compounds was confirmed via melting points, elemental analyses, and different spectroscopic techniques. Moreover, these newly compounds mode of action was investigated in-silico using molecular docking against the outer membrane protein A (OMPA), exo-1,3-beta-glucanase for their antimicrobial activity, and against Smoothened (SMO), transcription factor glioma-associated homology (SUFU/GLI-1), the main proteins of Hedgehog signaling pathway to inspect their anticancer potential. Our results showed that, diazepine (3a) and oxazepine (4a) offered the highest binding energy against the target OMPA/ exo-1,3-beta-glucanase proteins and exhibited the potent antimicrobial activities against E. coli, P. aeruginosa, S. aureus, B. subtilis, C. Albicans and A. flavus. As well, diazepine (3a) and oxazepine (4a) achieved the best results among the other compounds, in their binding energy against the target SMO, SUFU/GLI-1 proteins. The in-vitro cytotoxic study was done for them on panel of cancer cell lines HCT-116, HepG2, and MCF-7 and normal cell line WI-38. Conclusively, it was revealed that molecular docking in-silico simulations and the in-vitro experiments were agreed. As a result, our findings elucidated that diazepine (3a) and oxazepine (4a), have the potential to be used as antimicrobial agents and as possible cancer treatment medications.


Design and synthesis of novel rigid dibenzo[b,f]azepines through ring closure technique as promising anticancer candidates against leukaemia and acting as selective topoisomerase II inhibitors and DNA intercalators.

  • Mohammed Farrag El-Behairy‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2023‎

In this research, two novel series of dibenzo[b,f]azepines (14 candidates) were designed and synthesised based on the rigidification principle and following the reported doxorubicin's pharmacophoric features. The anti-proliferative activity was evaluated at the NCI against a panel of 60 cancer cell lines. Further, the promising candidates (5a-g) were evaluated for their ability to inhibit topoisomerase II, where 5e was noticed to be the most active congener. Moreover, its cytotoxicity was evaluated against leukaemia SR cells. Also, 5e arrested the cell cycle at the G1 phase and increased the apoptosis ratio by 37.34%. Furthermore, in vivo studies of 5e showed the inhibition of tumour proliferation and the decrease in its volume. Histopathology and liver enzymes were examined as well. Besides, molecular docking, physicochemical, and pharmacokinetic properties were carried out. Finally, a SAR study was discussed to open the gate for further optimisation of the most promising candidate (5e).HighlightsTwo novel series of dibenzo[b,f]azepines were designed and synthesised based on the rigidification principle in drug design.The anti-proliferative activity was evaluated at the NCI against a panel of 60 cancer cell lines.5e was the most active anti-topo II congener (IC50 = 6.36 ± 0.36 µM).5e was evaluated against leukaemia SR cells and its cytotoxic effect was confirmed (IC50 = 13.05 ± 0.62 µM).In vivo studies of 5e significantly inhibited tumour proliferation by 62.7% and decreased tumour volume to 30.1 mm3 compared to doxorubicin treatment.


Synthesis and Neurotropic Activity of New Heterocyclic Systems: Pyridofuro[3,2-d]pyrrolo[1,2-a]pyrimidines, Pyridofuro[3,2-d]pyrido[1,2-a]pyrimidines and Pyridofuro[3',2':4,5]pyrimido[1,2-a]azepines.

  • Samvel N Sirakanyan‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Neurotic disturbances, anxiety, neurosis-like disorders, and stress situations are widespread. Benzodiazepine tranquillizers have been found to be among the most effective antianxiety drugs. The pharmacological action of benzodiazepines is due to their interaction with the supra-molecular membrane GABA-a-benzodiazepine receptor complex, linked to the Cl-ionophore. Benzodiazepines enhance GABA-ergic transmission and this has led to a study of the role of GABA in anxiety. The search for anxiolytics and anticonvulsive agents has involved glutamate-ergic, 5HT-ergic substances and neuropeptides. However, each of these well-known anxiolytics, anticonvulsants and cognition enhancers (nootropics) has repeatedly been reported to have many adverse side effects, therefore there is an urgent need to search for new drugs able to restore damaged cognitive functions without causing significant adverse reactions.


Synthesis of pyrido-annelated [1,2,4,5]tetrazines, [1,2,4]triazepine, and [1,2,4,5]tetrazepines for anticancer, DFT, and molecular docking studies.

  • Aisha Y Hassan‎ et al.
  • Scientific reports‎
  • 2023‎

In this strategy, we attempt to design various novel nitrogen-rich heterocycles in one molecule. Green, simple, and efficient aza-annulations of an active, versatile building block, 1-amino-4-methyl-2-oxo-6-phenyl-1,2-dihydropyridine-3-carbonitrile (1), with different bifunctional reagents were developed under solvent-free conditions, resulting in the bridgehead tetrazines and azepines (triazepine and tetrazepines). Pyrido[1,2,4,5]tetrazines have been synthesized through two pathways; [3 + 3]- and [5 + 1]-annulations. In addition, pyrido-azepines have been developed by applying [4 + 3]-and [5 + 2]-annulations. This protocol establishes an efficient technique for synthesizing essential biological derivatives of 1,2,4,5-tetrazines, 1,2,4-triazepines, and 1,2,4,5-tetrazepine, tolerating a diverse variety of functionalities without the need for catalysis and fast reaction rates in high yields. The National Cancer Institute (NCI, Bethesda, USA) examined twelve compounds produced at a single high dosage (10-5 M). Compounds 4, 8, and 9 were discovered to have potent anticancer action against certain cancer cell types. To explain NCI results, the density of states was calculated to conduct a better description of the FMOs. The molecular electrostatic potential maps were created to explain a molecule's chemical reactivity. In silico ADME experiments were performed to better understand their pharmacokinetic characteristics. Finally, the molecular docking investigations on Janus Kinase-2 (PDB ID: 4P7E) were carried out to study the binding mechanism, binding affinity, and non-bonding contacts.


Predicted Reversal in N-Methylazepine/N-Methyl-7-azanorcaradiene Equilibrium Upon Formation of Their N-Oxides.

  • René Fournier‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Density functional calculations and up to five different basis sets have been applied to the exploration of the structural, enthalpy and free energy changes upon conversion of the azepine to the corresponding N-oxide. Although it is well known that azepines are typically much more stable than their 7-azanorcaradiene valence isomers, the stabilities are reversed for the corresponding N-oxides. Structural, thermochemical as well as nucleus-independent chemical shift (NICS) criteria are employed to probe the potential aromaticity, antiaromaticity and nonaromaticity of N-methylazepine, its 7-azanorcaradiene valence isomer. For the sake of comparison, analogous studies are performed on N-methylpyrrole and its N-oxide.


The Reactions of 6-(Hydroxymethyl)-2,2-dimethyl-1-azaspiro[4.4]nonanes with Methanesulfonyl Chloride or PPh3-CBr4.

  • Yulia V Khoroshunova‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Activation of a hydroxyl group towards nucleophilic substitution via reaction with methanesulfonyl chloride or PPh3-CBr4 system is a commonly used pathway to various functional derivatives. The reactions of (5R(S),6R(S))-1-X-6-(hydroxymethyl)-2,2-dimethyl- 1-azaspiro[4.4]nonanes 1a-d (X = O·; H; OBn, OBz) with MsCl/NR3 or PPh3-CBr4 were studied. Depending on substituent X, the reaction afforded hexahydro-1H,6H-cyclopenta[c]pyrrolo[1,2-b]isoxazole (2) (for X = O), a mixture of 2 and octahydrocyclopenta[c]azepines (4-6) (for X = OBn, OBz), or perhydro-cyclopenta[2,3]azeto[1,2-a]pyrrol (3) (for X = H) derivatives. Alkylation of the latter with MeI with subsequent Hofmann elimination afforded 2,3,3-trimethyl-1,2,3,4,5,7,8,8a-octahydrocyclopenta[c]azepine with 56% yield.


Microwave-Assisted N-Allylation/Homoallylation-RCM Approach: Access to Pyrrole-, Pyridine-, or Azepine-Appended (Het)aryl Aminoamides.

  • Motakatla Novanna‎ et al.
  • ACS omega‎
  • 2020‎

A facile and diversity-oriented approach has been developed for the synthesis of pyrrole-, pyridine-, or azepine-appended (het)aryl aminoamides via the N-allylation/homoallylation-ring-closing metathesis (RCM) strategy. Microwave condition was efficiently utilized for N-allylation of (het)aryl aminoamides to synthesize di-, tri-, and tetra-allyl/homoallylated RCM substrates in good yields. All of the RCM substrates were successfully converted to respective pyrroles 6a-h, 13a,b, 15a,b, pyridines 11a-d, 13c, and azepines 7a,b via RCM. All of the five-, six-, and seven-membered N-heterocycles were synthesized in shorter reaction times with excellent yields without isomerization products. A one-pot reaction to synthesize compounds 6a and 6b without isolating corresponding RCM substrates was achieved successfully. The synthetic utility of the compound 6b has been demonstrated by synthesizing biaryl derivatives 17a,b under the microwave Suzuki coupling reaction condition.


Synthesis, Antibacterial and Antifungal Activity of New 3-Aryl-5H-pyrrolo[1,2-a]imidazole and 5H-Imidazo[1,2-a]azepine Quaternary Salts.

  • Sergii Demchenko‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

A series of novel 3-aryl-5H-pyrrolo[1,2-a]imidazole and 5H-imidazo[1,2-a]azepine quaternary salts were synthesized in 58-85% yields via the reaction of 3-aryl-6, 7-dihydro-5H-pyrrolo[1,2-a]imidazoles or 3-aryl-6,7,8,9-tetrahydro-5H-imidazo[1,2-a]azepines and various alkylating reagents. All compounds were characterized by 1H NMR, 13C NMR, and LC-MS. The conducted screening studies of the in vitro antimicrobial activity of the new quaternary salts derivatives established that 15 of the 18 newly synthesized compounds show antibacterial and antifungal activity. Synthesized 3-(3,4-dichlorohenyl)-1-[(4-phenoxyphenylcarbamoyl)-methyl]-6,7-dihydro-5H-pyrrolo[1,2-a]imidazol-1-ium chloride 6c possessed a broad activity spectrum towards Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Cryptococcus neoformans, with a high hemolytic activity against human red blood cells and cytotoxicity against HEK-293. However, compound 6c is characterized by a low in vivo toxicity in mice (LD50 > 2000 mg/kg).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: