Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,741 papers

Systematic identification of autophagy-related proteins in Aedes albopictus.

  • Yu Wang‎ et al.
  • PloS one‎
  • 2021‎

Autophagy is a conserved cellular process playing a role in maintenance of cellular homeostasis and response to changing nutrient conditions via degradation and recirculation of cellular redundant components. Autophagy-related proteins (Atg) play important function in autophagy pathway. Aedes albopictus mosquito is an effective vector transmitting multiple viruses which cause serious human diseases. Moreover, Aedes albopictus mosquito is becoming a serious threat to human health due to its widening distribution in recent years and thus worth of more research attention. It was reported that autophagy might play a role in viral infection in Aedes mosquito. To better understand the interaction between autophagy and arbovirus infection in mosquito system, it is necessary to identify autophagy pathway in the system. However, autophagy in Aedes albopictus mosquito is still poorly understood so far. We recently identified AaAtg8, the first Atg protein reported in Aedes albopictus mosquito. This work further identified twelve atg genes in Aedes albopictus mosquito. Sequence and phylogenetic analysis of the twelve atg genes were performed. Expression profiles of all the twelve Aaatg genes in different developmental stages and genders of Aedes albopictus mosquito were conducted. Effects of chemicals inhibiting or inducing autophagy on the levels of eight identified AaAtg proteins were examined. The function of two identified AaAtg proteins AaAtg6 and AaAtg16 and their response to arbovirus SINV infection were studied preliminarily. Taken together, this work systematically identified Aedes albopictus atg genes and provided basic information which might help to elucidate the autophagy pathway and the role of autophagy in arbovirus infection in Aedes mosquito system.


Hrr25 triggers selective autophagy-related pathways by phosphorylating receptor proteins.

  • Chikara Tanaka‎ et al.
  • The Journal of cell biology‎
  • 2014‎

In selective autophagy, degradation targets are specifically recognized, sequestered by the autophagosome, and transported into the lysosome or vacuole. Previous studies delineated the molecular basis by which the autophagy machinery recognizes those targets, but the regulation of this process is still poorly understood. In this paper, we find that the highly conserved multifunctional kinase Hrr25 regulates two distinct selective autophagy-related pathways in Saccharomyces cerevisiae. Hrr25 is responsible for the phosphorylation of two receptor proteins: Atg19, which recognizes the assembly of vacuolar enzymes in the cytoplasm-to-vacuole targeting pathway, and Atg36, which recognizes superfluous peroxisomes in pexophagy. Hrr25-mediated phosphorylation enhances the interactions of these receptors with the common adaptor Atg11, which recruits the core autophagy-related proteins that mediate the formation of the autophagosomal membrane. Thus, this study introduces regulation of selective autophagy as a new role of Hrr25 and, together with other recent studies, reveals that different selective autophagy-related pathways are regulated by a uniform mechanism: phosphoregulation of the receptor-adaptor interaction.


Prognostic Value of Autophagy-related Proteins in Human Gastric Cancer.

  • Minmin Wu‎ et al.
  • Cancer management and research‎
  • 2020‎

Autophagy-related proteins (ATG) play a crucial role in autophagy. Recently, the functions of autophagy in cancer have been gathering attention. However, the prognostic value of ATGs in gastric cancer (GC) has not been explored.


Expression of Autophagy-Related Proteins in Different Types of Thyroid Cancer.

  • Hye Min Kim‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

Thyroid cancer is common type of malignant tumor in humans, and the autophagy status of such tumors may vary according to subtype. This study aimed to investigate the expression and implications of the major autophagy-related molecules light chain (LC) 3A, LC3B, p62, and BNIP-3 in human thyroid carcinoma. Tissue microarrays were constructed from 555 thyroid cancers (papillary thyroid carcinoma (PTC): 342; follicular carcinoma (FC): 112; medullary carcinoma (MC): 70; poorly differentiated carcinoma (PDC): 23; and anaplastic carcinoma (AC): 8) and 152 follicular adenomas (FAs). Expression of autophagy-related molecules (LC3A, LC3B, p62, and BNIP-3) was detected immunohistochemically, and the results were analyzed via comparison with clinicopathologic parameters. Tumoral LC3A and LC3B expressions were the highest in MC (p < 0.001), whereas stromal LC3A expression was higher in AC and PTC (p < 0.001). BNIP-3 expression was absent in MC and AC (p = 0.013). Tumoral LC3A, LC3B, and p62 expressions were higher in conventional type PTC, compared with those in the follicular variant. PTC with the BRAF V600E mutation exhibited higher expression of all autophagy-related proteins relative to PTC without this mutation (p < 0.05). BNIP-3 negativity was associated with capsular invasion in FC (p = 0.001), and p62 negativity was associated with lymph node metastasis in MC (p = 0.006). In a univariate analysis, LC3B negativity was associated with shorter disease-free survival in PTC with the BRAF V600E mutation (p = 0.024). We conclude that the expression of autophagy-related proteins differs according to thyroid cancer subtype.


Autophagy-related Proteins as a Prognostic Factor of Patients With Colorectal Cancer.

  • Evangelos Koustas‎ et al.
  • American journal of clinical oncology‎
  • 2019‎

Autophagy plays a dual role in tumorigenesis. In the initial stages, it promotes cell survival and suppresses carcinogenesis, whereas in cancer development, it induces cancer cell survival. In this study, we investigate the role of autophagy as a protective or tumor suppressor mechanism in colorectal cancer (CRC) cell lines and evaluate its role as a potential biomarker in human tumor samples.


Machine learning with autophagy-related proteins for discriminating renal cell carcinoma subtypes.

  • Zhaoyue He‎ et al.
  • Scientific reports‎
  • 2020‎

Machine learning techniques have been previously applied for classification of tumors based largely on morphological features of tumor cells recognized in H&E images. Here, we tested the possibility of using numeric data acquired from software-based quantification of certain marker proteins, i.e. key autophagy proteins (ATGs), obtained from immunohistochemical (IHC) images of renal cell carcinomas (RCC). Using IHC staining and automated image quantification with a tissue microarray (TMA) of RCC, we found ATG1, ATG5 and microtubule-associated proteins 1A/1B light chain 3B (LC3B) were significantly reduced, suggesting a reduction in the basal level of autophagy with RCC. Notably, the levels of the ATG proteins expressed did not correspond to the mRNA levels expressed in these tissues. Applying a supervised machine learning algorithm, the K-Nearest Neighbor (KNN), to our quantified numeric data revealed that LC3B provided a strong measure for discriminating clear cell RCC (ccRCC). ATG5 and sequestosome-1 (SQSTM1/p62) could be used for classification of chromophobe RCC (crRCC). The quantitation of particular combinations of ATG1, ATG16L1, ATG5, LC3B and p62, all of which measure the basal level of autophagy, were able to discriminate among normal tissue, crRCC and ccRCC, suggesting that the basal level of autophagy would be a potentially useful parameter for RCC discrimination. In addition to our observation that the basal level of autophagy is reduced in RCC, our workflow from quantitative IHC analysis to machine learning could be considered as a potential complementary tool for the classification of RCC subtypes and also for other types of tumors for which precision medicine requires a characterization.


Leptin stimulates autophagy/lysosome-related degradation of long-lived proteins in adipocytes.

  • Nir Goldstein‎ et al.
  • Adipocyte‎
  • 2019‎

Obesity, a condition most commonly associated with hyper-leptinemia, is also characterized by increased expression of autophagy genes and likely autophagic activity in human adipose tissue (AT). Indeed, circulating leptin levels were previously shown to positively associate with the expression levels of autophagy genes such as Autophagy related gene-5 (ATG5). Here we hypothesized that leptin acts in an autocrine-paracrine manner to increase autophagy in two major AT cell populations, adipocytes and macrophages. We followed the dynamics of autophagosomes following acute leptin administration with or without a leptin receptor antagonist (SMLA) using high-throughput live-cell imaging in murine epididymal adipocyte and macrophage (RAW264.7) cell-lines. In macrophages leptin exerted only a mild effect on autophagy dynamics, tending to attenuate autophagosomes growth rate. In contrast, leptin-treated adipocytes exhibited a moderate, ~20% increase in the rate of autophagosome growth, an effect that was blocked by SMLA. This finding corresponded to mild increases in mRNA and protein expression of key autophagy genes. Interestingly, a long-lived proteins degradation assay uncovered a robust, >2-fold leptin-mediated stimulation of the autophagy/lysosome-related (bafilomycin-inhibited) activity, which was entirely blocked by SMLA. Collectively, leptin regulates autophagy in a cell-type specific manner. In adipocytes, autophagosome dynamics is moderately enhanced, but even more pronounced stimulation is seen in autophagy-related long-lived protein degradation. These findings suggest a causal link between obesity-associated hyperleptinemia and elevated adipocyte and AT autophagy-related processes.


Biological functions of the autophagy-related proteins Atg4 and Atg8 in Cryptococcus neoformans.

  • Thiago Nunes Roberto‎ et al.
  • PloS one‎
  • 2020‎

Autophagy is a mechanism responsible for intracellular degradation and recycling of macromolecules and organelles, essential for cell survival in adverse conditions. More than 40 autophagy-related (ATG) genes have been identified and characterized in fungi, among them ATG4 and ATG8. ATG4 encodes a cysteine protease (Atg4) that plays an important role in autophagy by initially processing Atg8 at its C-terminus region. Atg8 is a ubiquitin-like protein essential for the synthesis of the double-layer membrane that constitutes the autophagosome vesicle, responsible for delivering the cargo from the cytoplasm to the vacuole lumen. The contributions of Atg-related proteins in the pathogenic yeast in the genus Cryptococcus remain to be explored, to elucidate the molecular basis of the autophagy pathway. In this context, we aimed to investigate the role of autophagy-related proteins 4 and 8 (Atg4 and Atg8) during autophagy induction and their contribution with non-autophagic events in C. neoformans. We found that Atg4 and Atg8 are conserved proteins and that they interact physically with each other. ATG gene deletions resulted in cells sensitive to nitrogen starvation. ATG4 gene disruption affects Atg8 degradation and its translocation to the vacuole lumen, after autophagy induction. Both atg4 and atg8 mutants are more resistant to oxidative stress, have an impaired growth in the presence of the cell wall-perturbing agent Congo Red, and are sensitive to the proteasome inhibitor bortezomib (BTZ). By that, we conclude that in C. neoformans the autophagy-related proteins Atg4 and Atg8 play an important role in the autophagy pathway; which are required for autophagy regulation, maintenance of amino acid levels and cell adaptation to stressful conditions.


Autophagy-Related Proteins Target Ubiquitin-Free Mycobacterial Compartment to Promote Killing in Macrophages.

  • Aïcha Bah‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2016‎

Autophagy is a lysosomal degradative process that plays essential functions in innate immunity, particularly, in the clearance of intracellular bacteria such as Mycobacterium tuberculosis. The molecular mechanisms involved in autophagy activation and targeting of mycobacteria, in innate immune responses of macrophages, are only partially characterized. Autophagy targets pathogenic M. tuberculosis via a cytosolic DNA recognition- and an ubiquitin-dependent pathway. In this report, we show that non-pathogenic M. smegmatis induces a robust autophagic response in THP-1 macrophages with an up regulation of several autophagy-related genes. Autophagy activation relies in part on recognition of mycobacteria by Toll-like receptor 2 (TLR2). Notably, LC3 targeting of M. smegmatis does not rely on membrane damage, ubiquitination, or autophagy receptor recruitment. Lastly, M. smegmatis promotes recruitment of several autophagy proteins, which are required for mycobacterial killing. In conclusion, our study uncovered an alternative autophagic pathway triggered by mycobacteria which involves cell surface recognition but not bacterial ubiquitination.


An ALS-associated variant of the autophagy receptor SQSTM1/p62 reprograms binding selectivity toward the autophagy-related hATG8 proteins.

  • Andrew Brennan‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Recognition of human autophagy-related 8 (hATG8) proteins by autophagy receptors represents a critical step within this cellular quality control system. Autophagy impairment is known to be a pathogenic mechanism in the motor neuron disorder amyotrophic lateral sclerosis (ALS). Overlapping but specific roles of hATG8 proteins belonging to the LC3 and GABARAP subfamilies are incompletely understood, and binding selectivity is typically overlooked. We previously showed that an ALS-associated variant of the SQSTM1/p62 (p62) autophagy receptor bearing an L341V mutation within its ATG8-interacting motif (AIM) impairs recognition of LC3B in vitro, yielding an autophagy-deficient phenotype. Improvements in understanding of hATG8 recognition by AIMs now distinguish LC3-interaction and GABARAP-interaction motifs and predict the effects of L341V substitution may extend beyond loss of function to biasing AIM binding preference. Through biophysical analyses, we confirm impaired binding of the L341V-AIM mutant to LC3A, LC3B, GABARAP, and GABARAPL1. In contrast, p62 AIM interactions with LC3C and GABARAPL2 are unaffected by this mutation. Isothermal titration calorimetry and NMR investigations provided insights into the entropy-driven GABARAPL2/p62 interaction and how the L341V mutation may be tolerated. Competition binding demonstrated reduced association of the L341V-AIM with one hATG8 manifests as a relative increase in association with alternate hATG8s, indicating effective reprogramming of hATG8 selectivity. These data highlight how a single AIM peptide might compete for binding with different hATG8s and suggest that the L341V-AIM mutation may be neomorphic, representative of a disease mechanism that likely extends into other human disorders.


The role of autophagy-related proteins in the pathogenesis of neuromyelitis optica spectrum disorders.

  • Hong-Liang Guo‎ et al.
  • Bioengineered‎
  • 2022‎

This study aimed to investigate the expression of autophagy-related proteins in a mouse model of neuromyelitis optica (NMO). Mice were assigned to one of four groups: an animal experimental model group (NMO-EAE group, given with exogenous IL-17A), Interleukin-17 monoclonal antibody intervention group (NMO-EAE_0IL17inb), No exogenous interleukin-17 enhanced immune intervention group (NMO-EAE_0IL17), and a control group. Behavioral scores were assessed in each group, and the protein expressions of sequestosome 1 (P62), Beclin-1, the mammalian target of rapamycin (mTOR), phosphoinositide 3-kinase (PI3K-I), and LC3II/LC3I were detected using Western blotting. In the NMO-EAE_0IL17 group, the expression of Beclin-1 decreased, the LC3II/LC3I ratio was lower, and the expressions of P62, mTOR, and PI3K-I increased; after administration of IL-17A inhibitor into the brain tissue, however, the expression of Beclin-1 increased significantly, along with the LC3II/LC3I ratio, while the expressions of P62, mTOR and PI3K-I protein decreased significantly. In terms of behavioral scores, the scores of optic neuritis and myelitis were more serious, onset occurred earlier and the progress was faster, after the administration of IL-17A. In the mechanism of NMO animal model, IL-17A may regulate autophagy and affect the disease process through the activation of the PI3K-mTOR signaling pathway.


Effects of Exercise Training on the Autophagy-Related Muscular Proteins Expression in Ovariectomized Rats.

  • Weiquan Zhong‎ et al.
  • Frontiers in physiology‎
  • 2019‎

Ovariectomy disrupts estrogen production and homeostasis. However, whether exercise training (ET) could counteract the ovariectomy-induced effect on muscular autophagy has remained elusive. This study examined muscular autophagy in ovariectomized (OVX) rats following 8 weeks of swimming ET. Here, 40 6-month-old female Sprague-Dawley rats were randomly divided into five groups: sham-operated control (Sham), OVX control (OVX), OVX with 60-min ET (OVX-60ET), 90-min ET (OVX-90ET), and 120-min ET (OVX-120ET) for 6 days/week. According to the results of Western blotting, the expression levels of autophagy-related proteins in the OVX gastrocnemius muscle, including mammalian target of rapamycin, uncoordinated 51-like kinase 1, Beclin-1, autophagy-related gene (Atg-7), and microtubule-associated protein light chains 3 were significantly decreased (all P < 0.05), while there was an elevation on the p62 level. ET appreciably mitigated the OVX-induced negative effects on muscle quality and the autophagy pathway, which seemed to be dependent on ET volume. The most optimal outcomes were observed in the OVX-90ET group. The OVX-120 group had an adversely augmented catabolic process associated with gastrocnemius muscle atrophy. In conclusion, the expression levels of autophagy proteins are decreased in OVX rats, which can be appreciably mitigated following 8 weeks of swimming ET.


Propolis Reduces the Expression of Autophagy-Related Proteins in Chondrocytes under Interleukin-1β Stimulus.

  • Consuelo Arias‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Osteoarthritis (OA) is a progressive and multifactorial disease that is associated with aging. A number of changes occur in aged cartilage, such as increased oxidative stress, decreased markers of healthy cartilage, and alterations in the autophagy pathway. Propolis extracts contain a mixture of polyphenols and it has been proved that they have high antioxidant capacity and could regulate the autophagic pathway. Our objective was to evaluate the effect of ethanolic extract of propolis (EEP) on chondrocytes that were stimulated with IL-1β.


Hydrogen Sulfide Protects Human Cardiac Fibroblasts Against H2O2-induced Injury Through Regulating Autophagy-Related Proteins.

  • Ao Feng‎ et al.
  • Cell transplantation‎
  • 2018‎

Autophagy, an intracellular bulk degradation process of proteins and organelles, can be induced by myocardial ischemia in the heart. However, the causative role of autophagy in the survival of human cardiac fibroblasts and the underlying mechanisms are incompletely understood. Oxidative stress can induce autophagy in cultured cells upon hydrogen peroxide (H2O2) exposure. Because hydrogen sulfide (H2S) regulates reactive oxygen species (ROS) and apoptosis, we hypothesize that H2S may have a cardioprotective function. To examine our hypothesis, we investigated the regulation of autophagy by the H2S donor sodium hydrosulfide (NaHS), using a cell model of human cardiac fibroblasts from adult ventricles (HCF-av) that suffered from endoplasmic reticulum (ER) stress by H2O2. In the present study, we found that the apoptosis and autophagy were induced along with ER stress by H2O2 in the primary cultured HCF-av cells. In contrast, H2S suppressed HCF-av cell apoptosis and autophagic flux, in part directly by inhibiting ROS production and preserving mitochondrial functions.


Induction of Reactive Intermediates and Autophagy-Related Proteins upon Infection of Macrophages with Rhodococcus equi.

  • Prashanth Chandramani-Shivalingappa‎ et al.
  • Scientifica‎
  • 2017‎

Rhodococcus equi (R. equi) is an intracellular macrophage-tropic pathogen with potential for causing fatal pyogranulomatous pneumonia in foals between 1 and 6 months of age. In this study, we sought to determine whether infection of macrophages with R. equi could lead to the induction of autophagy. Murine bone marrow derived macrophages (BMDM) were infected with R. equi for various time intervals and analyzed for upregulation of autophagy proteins and accumulation of autophagosomes relative to uninfected controls. Western blot analysis showed a progressive increase in LC3-II and Beclin1 levels in a time-dependent manner. The functional accumulation of autophagosomes detected with monodansylcadaverine further supported the enhanced induction of autophagy in BMDM infected with R. equi. In addition, infection of BMDM with R. equi induced generation of reactive oxygen species (ROS) in a time-dependent manner. These data are consistent with reports documenting the role of ROS in induction of autophagy and indicate that the infection of macrophages by R. equi elicits innate host defense mechanisms.


Autophagy-Related Proteins Are Differentially Expressed in Adrenal Cortical Tumor/Pheochromocytoma and Associated with Patient Prognosis.

  • Hye Min Kim‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The aim of this research was to evaluate the expression and concomitant implications of LC3A, LC3B, beclin-1, and p62, which are key components of autophagy in human adrenal gland tumors. Tissue microarray was made for 321 cases of adrenal gland tumor (adrenal cortical adenoma (ACA): 115, adrenal cortical carcinoma (ACC): 17, and pheochromocytoma (PCC): 189). Immunohistochemical staining was performed for beclin-1, p62, LC3A, and LC3B, and the results were compared with the patients' clinicopathologic parameters. LC3A, LC3B, beclin-1, and LC3B isolated single positive cells (ISPC) positivity rates were higher in PCC than in adrenal cortical tumor (ACT), whereas p62 positivity was lower in PCC than in ACT. The proportion of positive LC3B (ISPC) was higher in ACC than in ACA. In addition, the proportion of cells positive for p62 and LC3B (ISPC) was significantly higher in PCCs with a GAPP score of ≥3. In univariate Cox analysis, p62 positivity (p = 0.014) and the presence of p62 (ISPC) (p = 0.001) were associated with shorter disease-free survival in PCC. Moreover, p62 positivity was predictive of shorter overall survival (OS) in patients with PCC by multivariate analysis (relative risk, 6.240; 95% CI, 1.434-27.15; p = 0.015). Differences were found in the expression of autophagy-related proteins according to adrenal gland tumor types. Compared to ACT, the proportion of LC3A, LC3B, beclin-1, and LC3B (ISPC) positivity was higher in PCC, whereas p62 positivity was lower. Similarly, p62 positivity in PCC was associated with patient prognosis of OS.


Cerebrospinal Fluid Levels of Autophagy-related Proteins Represent Potentially Novel Biomarkers of Early-Stage Parkinson's Disease.

  • Jinyoung Youn‎ et al.
  • Scientific reports‎
  • 2018‎

The roles of autophagy-related proteins as diagnostic or monitoring biomarkers in Parkinson's disease (PD) have not been clearly elucidated. We recruited 32 patients with early-stage PD and 28 control subjects, and evaluated parkinsonian motor symptoms and dopamine transporter imaging data. Cerebrospinal fluid (CSF) levels of LC3B, Beclin1, and LAMP-2 were estimated using ELISAs, and CSF levels of ATG5, ATG7, and p62 were examined by immunoblotting. Additionally, we also assessed the levels of α-synuclein, total tau, and phosphorylated tau in CSF using ELISAs. Significant differences in the levels of LC3B, LAMP-2, and Beclin1 were observed between the PD and control groups. Using 29.8 pg/mL as the cut-off value for a diagnostic biomarker of PD, CSF LC3B levels exhibited high sensitivity (96.9%) and specificity (89.3%) with an area under the curve of 0.982. Furthermore, LC3B was significantly correlated with the asymmetry index in the caudate and putamen, as estimated by a semi-quantitative analysis of [18F] N-(3-fluoropropyl)-2β-carbon ethoxy-3β-(4-iodophenyl) nortropane (FP-CIT) positron emission tomography (PET). CSF levels of LC3B represented a potential diagnostic and prognostic biomarker of early-stage PD in patients. Based on our findings, molecular biological changes in PD are associated with dysregulation of the lysosomal autophagy pathway.


Common Neurodegeneration-Associated Proteins Are Physiologically Expressed by Human B Lymphocytes and Are Interconnected via the Inflammation/Autophagy-Related Proteins TRAF6 and SQSTM1.

  • Serge Nataf‎ et al.
  • Frontiers in immunology‎
  • 2019‎

There is circumstantial evidence that, under neurodegenerative conditions, peptides deriving from aggregated or misfolded specific proteins elicit adaptive immune responses. On another hand, several genes involved in familial forms of neurodegenerative diseases exert key innate immune functions. However, whether or not such observations are causally linked remains unknown. To start addressing this issue, we followed a systems biology strategy based on the mining of large proteomics and immunopeptidomics databases. First, we retrieved the expression patterns of common neurodegeneration-associated proteins in two professional antigen-presenting cells, namely B lymphocytes and dendritic cells. Surprisingly, we found that under physiological conditions, numerous neurodegeneration-associated proteins are abundantly expressed by human B lymphocytes. A survey of the human proteome allowed us to map a unique protein-protein interaction network linking common neurodegeneration-associated proteins and their first shell interactors in human B lymphocytes. Interestingly, network connectivity analysis identified two major hubs that both relate with inflammation and autophagy, namely TRAF6 (TNF Receptor Associated Factor 6) and SQSTM1 (Sequestosome-1). Moreover, the mapped network in B lymphocytes comprised two additional hub proteins involved in both inflammation and autoimmunity: HSPA8 (Heat Shock Protein Family A Member 8 also known as HSC70) and HSP90AA1 (Heat Shock Protein 90 Alpha Family Class A Member 1). Based on these results, we then explored the Immune Epitope Database "IEDB-AR" and actually found that a large share of neurodegeneration-associated proteins were previously reported to provide endogenous MHC class II-binding peptides in human B lymphocytes. Of note, peptides deriving from amyloid beta A4 protein, sequestosome-1 or profilin-1 were reported to bind multiple allele-specific MHC class II molecules. In contrast, peptides deriving from microtubule-associated protein tau, presenilin 2 and serine/threonine-protein kinase TBK1 were exclusively reported to bind MHC molecules encoded by the HLA-DRB1 1501 allele, a recently-identified susceptibility gene for late onset Alzheimer's disease. Finally, we observed that the whole list of proteins reported to provide endogenous MHC class II-binding peptides in human B lymphocytes is specifically enriched in neurodegeneration-associated proteins. Overall, our work indicates that immunization against neurodegeneration-associated proteins might be a physiological process which is shaped, at least in part, by B lymphocytes.


The autophagy-related proteins FvAtg4 and FvAtg8 are involved in virulence and fumonisin biosynthesis in Fusarium verticillioides.

  • Yujie Wang‎ et al.
  • Virulence‎
  • 2022‎

Autophagy is the main intracellular degradation system by which cytoplasmic materials are transported to and degraded in the vacuole/lysosome of eukaryotic cells, and it also controls cellular differentiation and virulence in a variety of filamentous fungi. However, the contribution of the autophagic pathway to fungal development and pathogenicity in the important maize pathogen and mycotoxigenic fungus Fusarium verticillioides is still unknown. In this study, we characterized two autophagy-related proteins, FvAtg4 and FvAtg8. The F. verticillioides deletion mutants ΔFvAtg4 and ΔFvAtg8 were impaired in autophagosome formation, aerial hyphal formation, sexual growth, lipid turnover, pigmentation and fungal virulence. Interestingly, ΔFvAtg4 and ΔFvAtg8 were defective in fumonisin B1 (FB1) synthesis, which may have resulted from decreased intracellular levels of alanine in the mutants. Our results indicate that FvAtg4 and FvAtg8 contribute to F. verticillioides pathogenicity by regulating the autophagic pathway to control lipid turnover, fumonisin biosynthesis, and pigmentation during its infectious cycle.


Autophagy-Related Proteins GABARAP and LC3B Label Structures of Similar Size but Different Shape in Super-Resolution Imaging.

  • Iman Abdollahzadeh‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Subcellular structures containing autophagy-related proteins of the Atg8 protein family have been investigated with conventional wide-field fluorescence and single molecule localisation microscopy. Fusion proteins of GABARAP and LC3B, respectively, with EYFP were overexpressed in HEK293 cells. While size distributions of structures labelled by the two proteins were found to be similar, shape distributions appeared quite disparate, with EYFP-GABARAP favouring circular structures and elliptical structures being dominant for EYFP-LC3B. The latter also featured a nearly doubled fraction of U-shape structures. The experimental results point towards highly differential localisation of the two proteins, which appear to label structures representing distinct stages or even specific channels of vesicular trafficking pathways. Our data also demonstrate that the application of super-resolution techniques expands the possibilities of fluorescence-based methods in autophagy studies and in some cases can rectify conclusions obtained from conventional fluorescence microscopy with diffraction-limited resolution.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: