Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 596 papers

High prevalence of autoantibodies against phosphoglycerate mutase 1 in patients with autoimmune central nervous system diseases.

  • A Kimura‎ et al.
  • Journal of neuroimmunology‎
  • 2010‎

We identified the autoantibody against phosphoglycerate mutase 1 (PGAM1), which is a glycolytic enzyme, in sera from multiple sclerosis (MS) patients by proteomics-based analysis. We further searched this autoantibody in sera from patients with other neurological diseases. The prevalence of the anti-PGAM1 antibody is much higher in patients with MS and neuromyelitis optica (NMO) than in those with other neurological diseases and in healthy controls. It was reported that the anti-PGAM1 antibody is frequently detected in patients with autoimmune hepatitis (AIH). Results of our study suggest that the anti-PGAM1 antibody is not only a marker of AIH but also a nonspecific marker of central nervous system autoimmune diseases.


The immunomodulatory roles of the gut microbiome in autoimmune diseases of the central nervous system: Multiple sclerosis as a model.

  • Kristina Hoffman‎ et al.
  • Journal of autoimmunity‎
  • 2022‎

The gut-associated lymphoid tissue is a primary activation site for immune responses to infection and immunomodulation. Experimental evidence using animal disease models suggests that specific gut microbes significantly regulate inflammation and immunoregulatory pathways. Furthermore, recent clinical findings indicate that gut microbes' composition, collectively named gut microbiota, is altered under disease state. This review focuses on the functional mechanisms by which gut microbes promote immunomodulatory responses that could be relevant in balancing inflammation associated with autoimmunity in the central nervous system. We also propose therapeutic interventions that target the composition of the gut microbiota as immunomodulatory mechanisms to control neuroinflammation.


Increased numbers of IL-7 receptor molecules on CD4+CD25-CD107a+ T-cells in patients with autoimmune diseases affecting the central nervous system.

  • Nalini Kumar Vudattu‎ et al.
  • PloS one‎
  • 2009‎

High content immune profiling in peripheral blood may reflect immune aberrations associated with inflammation in multiple sclerosis (MS) and other autoimmune diseases affecting the central nervous system.


The retrospective data analysis on the pedigree of nervous system diseases in children.

  • Xiaohui Liu‎ et al.
  • Scientific reports‎
  • 2023‎

Nowadays, the development of diagnosis and treatment technology is constantly changing the pedigree and classification of nervous system diseases. Analyzing changes in earlier disease pedigrees can help us understand the changes involved in disease diagnosis from a macro perspective, as well as predict changes in later disease pedigrees and the direction of diagnosis and treatment. The inpatients of the neurology department from January 2012 to December 2020 in Hunan Children's Hospital were retrospectively analyzed. There were 36,777 patients enrolled in this study. The next analysis was based on factors like age, gender, length of stay (LoS), number of patients per month and per year (MNoP and ANoP, respectively), and average daily hospital cost (ADHE). To evaluate the characteristics of neurological diseases, we applied a series of statistical tools such as numerical characteristics, boxplots, density charts, one-way ANOVA, Kruskal-Wallis tests, time-series plots, and seasonally adjusted indices. The statistical analysis of neurological diseases led to the following conclusions: First, children having neurological illnesses are most likely to develop them between the ages of 4 and 8 years. Benign intracranial hypertension was the youngest mean age of onset among the various neurologic diseases, and most patients with bacterial intracranial infection were young children. Some diseases have a similar mean age of onset, such as seizures (gastroenteritis/diarrhea) and febrile convulsions. Second, women made up most patients with autoimmune diseases of the central nervous system. Treatment options for inherited metabolic encephalopathy and epilepsy are similar, but they differ significantly for viral intracranial infection. Some neurologic diseases were found to have seasonal variations; for example, infectious diseases of the central nervous system were shown to occur more commonly in the warm season, whereas, autoimmune diseases primarily appeared in the autumn and winter months. Additionally, the number of patients admitted to hospitals with intracranial infections and encephalopathy has dramatically dropped recently, but the number of patients with autoimmune diseases of the central nervous system and hereditary metabolic encephalopathy has been rising year over year. Finally, we discovered apparent polycentric distributions in various illnesses' density distributions. The study offered an epidemiological basis for common nervous system diseases, including evidence from age of onset, number of cases, and so on. The pedigree of nervous system diseases has significantly changed. The proportion of patients with neuroimmune diseases and genetic metabolic diseases is rising while the number of patients with infection-related diseases and uncertain diagnoses is decreasing. The existence of a disease multimodal model suggests that there is still a lack of understanding of many diseases' diagnosis and treatment, which needs to be improved further because accurate diagnosis aids in the formulation of individualized treatment plans and the allocation of medical resources; additionally, there is still a lack of effective treatment for most genetic diseases. The seasonal characteristics of nervous system diseases suggest the need for the improvement of sanitation, living conditions, and awareness of daily health care.


Inhibition of the TNF Family Cytokine RANKL Prevents Autoimmune Inflammation in the Central Nervous System.

  • Matteo M Guerrini‎ et al.
  • Immunity‎
  • 2015‎

The central nervous system (CNS) is an immunologically privileged site protected from uncontrolled access of T cells by the blood-brain barrier (BBB), which is breached upon autoimmune inflammation. Here we have shown that receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) on T cells regulates C-C type chemokine ligand 20 (CCL20) production by astrocytes and T cell localization in the CNS. Importantly, mice specifically lacking RANKL in T cells were resistant to experimental autoimmune encephalomyelitis (EAE) due to altered T cell trafficking. Pharmacological inhibition of RANKL prevented the development of EAE without affecting the peripheral immune response, indicating that RANKL is a potential therapeutic target for treating autoimmune diseases in the CNS.


Differentiation of viral and autoimmune central nervous system inflammation by kynurenine pathway.

  • Yi Luo‎ et al.
  • Annals of clinical and translational neurology‎
  • 2021‎

To determine whether the metabolites of Kynurenine pathway (KP) could serve as biomarkers for distinguishing between viral CNS infections and autoimmune neuroinflammatory diseases, especially anti-N-methyl-D-aspartate receptor encephalitis (NMDARE) and herpes virus encephalitis (HSE).


Localization of near-infrared labeled antibodies to the central nervous system in experimental autoimmune encephalomyelitis.

  • Sangmin Lee‎ et al.
  • PloS one‎
  • 2019‎

Antibodies, including antibodies to the RNA binding protein heterogeneous nuclear ribonucleoprotein A1, have been shown to contribute to the pathogenesis of multiple sclerosis, thus it is important to assess their biological activity using animal models of disease. Near-infrared optical imaging of fluorescently labeled antibodies and matrix metalloproteinase activity were measured and quantified in an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis. We successfully labeled, imaged and quantified the fluorescence signal of antibodies that localized to the central nervous system of mice with experimental autoimmune encephalomyelitis. Fluorescently labeled anti-heterogeneous nuclear ribonucleoprotein A1 antibodies persisted in the central nervous system of mice with experimental autoimmune encephalomyelitis, colocalized with matrix metalloproteinase activity, correlated with clinical disease and shifted rostrally within the spinal cord, consistent with experimental autoimmune encephalomyelitis being an ascending paralysis. The fluorescent antibody signal also colocalized with matrix metalloproteinase activity in brain. Previous imaging studies in experimental autoimmune encephalomyelitis analyzed inflammatory markers such as cellular immune responses, dendritic cell activity, blood brain barrier integrity and myelination, but none assessed fluorescently labeled antibodies within the central nervous system. This data suggests a strong association between autoantibody localization and disease. This system can be used to detect other antibodies that might contribute to the pathogenesis of autoimmune diseases of the central nervous system including multiple sclerosis.


The Th17-ELR+ CXC chemokine pathway is essential for the development of central nervous system autoimmune disease.

  • Thaddeus Carlson‎ et al.
  • The Journal of experimental medicine‎
  • 2008‎

The ELR(+) CXC chemokines CXCL1 and CXCL2 are up-regulated in the central nervous system (CNS) during multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). However, their functional significance and the pathways regulating their expression are largely unknown. We show that transfer of encephalitogenic CD4(+) Th17 cells is sufficient to induce CXCL1 and CXCL2 transcription in the spinal cords of naive, syngeneic recipients. Blockade or genetic silencing of CXCR2, a major receptor for these chemokines in mice, abrogates blood-brain barrier (BBB) breakdown, CNS infiltration by leukocytes, and the development of clinical deficits during the presentation as well as relapses of EAE. Depletion of circulating polymorphonuclear leukocytes (PMN) had a similar therapeutic effect. Furthermore, injection of CXCR2(+) PMN into CXCR2(-/-) mice was sufficient to restore susceptibility to EAE. Our findings reveal that a Th17-ELR(+) CXC chemokine pathway is critical for granulocyte mobilization, BBB compromise, and the clinical manifestation of autoimmune demyelination in myelin peptide-sensitized mice, and suggest new therapeutic targets for diseases such as MS.


Midkine: a promising molecule for drug development to treat diseases of the central nervous system.

  • Takashi Muramatsu‎
  • Current pharmaceutical design‎
  • 2011‎

Midkine (MK) is a heparin-binding cytokine, and promotes growth, survival, migration and other activities of target cells. After describing the general properties of MK, this review focuses on MK and MK inhibitors as therapeutics for diseases in the central nervous system. MK is strongly expressed during embryogenesis especially at the midgestation period, but is expressed only at restricted sites in adults. MK expression is induced upon tissue injury such as ischemic brain damage. Since exogenously administered MK or the gene transfer of MK suppresses neuronal cell death in experimental systems, MK has the potential to treat cerebral infarction. MK might become important also in the treatment of neurodegenerative diseases such as Alzheimer's disease. MK is involved in inflammatory diseases by enhancing migration of leukocytes, inducing chemokine production and suppressing regulatory T cells. Since an aptamer to MK suppresses experimental autoimmune encephalitis, MK inhibitors are promising for the treatment of multiple sclerosis. MK is overexpressed in most malignant tumors including glioblastoma, and is involved in tumor invasion. MK inhibitors may be of value in the treatment of glioblastoma. Furthermore, an oncolytic adenovirus, whose replication is under the control of the MK promoter, inhibits the growth of glioblastoma xenografts. MK inhibitors under development include antibodies, aptamers, glycosaminoglycans, peptides and low molecular weight compounds. siRNA and antisense oligoDNA have proved effective against malignant tumors and inflammatory diseases in experimental systems. Practical information concerning the development of MK and MK inhibitors as therapeutics is described in the final part of the review.


Targeting central nervous system extracellular vesicles enhanced triiodothyronine remyelination effect on experimental autoimmune encephalomyelitis.

  • Yun Xiao‎ et al.
  • Bioactive materials‎
  • 2022‎

The lack of targeted and high-efficiency drug delivery to the central nervous system (CNS) nidus is the main problem in the treatment of demyelinating disease. Extracellular vesicles (EVs) possess great promise as a drug delivery vector given their advanced features. However, clinical applications are limited because of their inadequate targeting ability and the "dilution effects" after systemic administration. Neural stem cells (NSCs) supply a plentiful source of EVs on account of their extraordinary capacity for self-renewal. Here, we have developed a novel therapeutic system using EVs from modified NSCs with high expressed ligand PDGF-A (EVPs) and achieve local delivery. It has been demonstrated that EVPs greatly enhance the target capability on oligodendrocyte lineage. Moreover, EVPs are used for embedding triiodothyronine (T3), a thyroid hormone that is critical for oligodendrocyte development but has serious side effects when systemically administered. Our results demonstrated that systemic injection of EVPs + T3, versus EVPs or T3 administration individually, markedly alleviated disease development, enhanced oligodendrocyte survival, inhibited myelin damage, and promoted myelin regeneration in the lesions of experimental autoimmune encephalomyelitis mice. Taken together, our findings showed that engineered EVPs possess a remarkable CNS lesion targeting potential that offers a potent therapeutic strategy for CNS demyelinating diseases as well as neuroinflammation.


Diazepam treatment reduces inflammatory cells and mediators in the central nervous system of rats with experimental autoimmune encephalomyelitis.

  • Nicolás Fernández Hurst‎ et al.
  • Journal of neuroimmunology‎
  • 2017‎

Benzodiazepines are psychoactive drugs and some of them also affect immune cells. We here characterized the inflammatory and infiltrating immune cells in the central nervous system (CNS) during the acute phase of experimental autoimmune encephalomyelitis (EAE) in animals treated with Diazepam. Also, we evaluated the expression of Translocator Protein (18kDa) (TSPO), which is a biomarker of neuroinflammatory diseases. The results indicate that Diazepam exerts protective effects on EAE development, decreasing the incidence of the disease and reducing the number of inflammatory cells in CNS, with a concomitant decrease of TSPO levels in brain tissue and CNS inflammatory CD11b+ cells.


The fibrin-derived gamma377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease.

  • Ryan A Adams‎ et al.
  • The Journal of experimental medicine‎
  • 2007‎

Perivascular microglia activation is a hallmark of inflammatory demyelination in multiple sclerosis (MS), but the mechanisms underlying microglia activation and specific strategies to attenuate their activation remain elusive. Here, we identify fibrinogen as a novel regulator of microglia activation and show that targeting of the interaction of fibrinogen with the microglia integrin receptor Mac-1 (alpha(M)beta(2), CD11b/CD18) is sufficient to suppress experimental autoimmune encephalomyelitis in mice that retain full coagulation function. We show that fibrinogen, which is deposited perivascularly in MS plaques, signals through Mac-1 and induces the differentiation of microglia to phagocytes via activation of Akt and Rho. Genetic disruption of fibrinogen-Mac-1 interaction in fibrinogen-gamma(390-396A) knock-in mice or pharmacologically impeding fibrinogen-Mac-1 interaction through intranasal delivery of a fibrinogen-derived inhibitory peptide (gamma(377-395)) attenuates microglia activation and suppresses relapsing paralysis. Because blocking fibrinogen-Mac-1 interactions affects the proinflammatory but not the procoagulant properties of fibrinogen, targeting the gamma(377-395) fibrinogen epitope could represent a potential therapeutic strategy for MS and other neuroinflammatory diseases associated with blood-brain barrier disruption and microglia activation.


Central Nervous System-Endogenous TLR7 and TLR9 Induce Different Immune Responses and Effects on Experimental Autoimmune Encephalomyelitis.

  • Ruthe Storgaard Dieu‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

Innate receptors, including Toll like receptors (TLRs), are implicated in pathogenesis of CNS inflammatory diseases such as multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). TLR response to pathogens or endogenous signals includes production of immunoregulatory mediators. One of these, interferon (IFN)β, a Type I IFN, plays a protective role in MS and EAE. We have previously shown that intrathecal administration of selected TLR ligands induced IFNβ and infiltration of blood-derived myeloid cells into the central nervous system (CNS), and suppressed EAE in mice. We have now extended these studies to evaluate a potential therapeutic role for CNS-endogenous TLR7 and TLR9. Intrathecal application of Imiquimod (TLR7 ligand) or CpG oligonucleotide (TLR9 ligand) into CNS of otherwise unmanipulated mice induced IFNβ expression, with greater magnitude in response to CpG. CD45+ cells in the meninges were identified as source of IFNβ. Intrathecal CpG induced infiltration of monocytes, neutrophils, CD4+ T cells and NK cells whereas Imiquimod did not recruit blood-derived CD45+ cells. CpG, but not Imiquimod, had a beneficial effect on EAE, when given at time of disease onset. This therapeutic effect of CpG on EAE was not seen in mice lacking the Type I IFN receptor. In mice with EAE treated with CpG, the proportion of monocytes was significantly increased in the CNS. Infiltrating cells were predominantly localized to spinal cord meninges and demyelination was significantly reduced compared to non-treated mice with EAE. Our findings show that TLR7 and TLR9 signaling induce distinct inflammatory responses in the CNS with different outcome in EAE and point to recruitment of blood-derived cells and IFNβ induction as possible mechanistic links between TLR9 stimulation and amelioration of EAE. The protective role of TLR9 signaling in the CNS may have application in treatment of diseases such as MS.


Exacerbation of experimental autoimmune encephalomyelitis in prion protein (PrPc)-null mice: evidence for a critical role of the central nervous system.

  • Pauline Gourdain‎ et al.
  • Journal of neuroinflammation‎
  • 2012‎

The cellular prion protein (PrPc) is a host-encoded glycoprotein whose transconformation into PrP scrapie (PrPSc) initiates prion diseases. The role of PrPc in health is still obscure, but many candidate functions have been attributed to the protein, both in the immune and the nervous systems. Recent data show that experimental autoimmune encephalomyelitis (EAE) is worsened in mice lacking PrPc. Disease exacerbation has been attributed to T cells that would differentiate into more aggressive effectors when deprived of PrPc. However, alternative interpretations such as reduced resistance of neurons to autoimmune insult and exacerbated gliosis leading to neuronal deficits were not considered.


Reactivity to Novel Autoantigens in Patients with Coexisting Central Nervous System Demyelinating Disease and Autoimmune Thyroid Disease.

  • Judith M Greer‎ et al.
  • Frontiers in immunology‎
  • 2017‎

Several lines of evidence suggest a definite and unique link between CNS demyelinating diseases and autoimmune thyroid disease (AITD). The aim of the current study was to systematically compare the clinical and laboratory features of patients with coexistent AITD and CNS demyelinating disease with those of patients with just CNS demyelinating disease. Forty-four patients with coexisting CNS demyelinating disease and AITD were identified and their clinical and radiological features were recorded. Blood and DNA were collected and tested for HLA type and for the response of T cells and antibodies to a variety of antigens. Patients with multiple sclerosis (MS) without AITD and healthy individuals were included as controls. Patients with coexisting AITD and CNS demyelinating disease were almost exclusively female (43/44) and had prominent spinal cord involvement as the main neurological finding. The HLA molecules carried by individuals with CNS demyelinating disease and AITD differed from both other MS patients and healthy individuals. Furthermore, patients with both CNS disease and AITD showed less T cell reactivity than patients with MS alone to myelin proteolipid protein, but, compared to other groups, showed elevated levels of T cell reactivity to the calcitonin gene-related peptide, which is present in both the CNS and the thyroid, and elevated levels of T cell and antibody to the leucine-rich repeat-containing G-protein coupled receptor 4 (LGR4), a molecule that is expressed in the brainstem and spinal cord, and which is a homolog of the thyroid-stimulating hormone receptor. We suggest that reactivity of autoreactive immune cells in these patients against antigens present in both the thyroid and the spinal cord is a potential mechanism underlying the pattern of lesion development in the CNS in patients with coexisting AITD and MS and might indicate a novel mechanism of disease pathogenesis in these patients.


Astrocytic junctional adhesion molecule-A regulates T-cell entry past the glia limitans to promote central nervous system autoimmune attack.

  • Mario Amatruda‎ et al.
  • Brain communications‎
  • 2022‎

Contact-mediated interactions between the astrocytic endfeet and infiltrating immune cells within the perivascular space are underexplored, yet represent potential regulatory check-points against CNS autoimmune disease and disability. Reactive astrocytes upregulate junctional adhesion molecule-A, an immunoglobulin-like cell surface receptor that binds to T cells via its ligand, the integrin, lymphocyte function-associated antigen-1. Here, we tested the role of astrocytic junctional adhesion molecule-A in regulating CNS autoinflammatory disease. In cell co-cultures, we found that junctional adhesion molecule-A-mediated signalling between astrocytes and T cells increases levels of matrix metalloproteinase-2, C-C motif chemokine ligand 2 and granulocyte-macrophage colony-stimulating factor, pro-inflammatory factors driving lymphocyte entry and pathogenicity in multiple sclerosis and experimental autoimmune encephalomyelitis, an animal model of CNS autoimmune disease. In experimental autoimmune encephalomyelitis, mice with astrocyte-specific JAM-A deletion (mGFAP:CreJAM-Afl/fl ) exhibit decreased levels of matrix metalloproteinase-2, reduced ability of T cells to infiltrate the CNS parenchyma from the perivascular spaces and a milder histopathological and clinical course of disease compared with wild-type controls (JAM-Afl/fl ). Treatment of wild-type mice with intraperitoneal injection of soluble junctional adhesion molecule-A blocking peptide decreases the severity of experimental autoimmune encephalomyelitis, highlighting the potential of contact-mediated astrocyte-immune cell signalling as a novel translational target against neuroinflammatory disease.


Altered humoral immunity to mycobacterial antigens in Japanese patients affected by inflammatory demyelinating diseases of the central nervous system.

  • Davide Cossu‎ et al.
  • Scientific reports‎
  • 2017‎

Mycobacterium avium subsp. paratuberculosis (MAP) and Mycobacterium bovis (BCG) have been associated to several human autoimmune diseases such as multiple sclerosis (MS), but there are conflicting evidence on the issue. The objective of this study is to evaluate their role in Japanese patients affected by inflammatory demyelinating disorders of the central nervous system (IDDs). A total of 97 IDDs subjects including 51 MS and 46 neuromyelitis optica spectrum disorder (NMOSD) patients, and 34 healthy controls (HCs) were tested for the detection of IgG, IgM and IgA against mycobacterial antigens by indirect ELISA. The levels of anti-MAP IgG were higher in MS patients compared to NMOSD patients (AUC = 0.59, p = 0.02) and HCs (AUC = 0.67, p = 0.01), and the anti-MAP antibodies were more prevalent in MS patients treated with interferon-beta (OR = 11.9; p = 0.004). Anti-BCG IgG antibodies were detected in 8% of MS, 32% of NMOSD and 18% of HCs, the difference between MS and NMOSD groups was statistically significant (AUC = 0.66, p = 0.005). Competition experiments showed that nonspecific IgM were elicited by common mycobacterial antigens. Our study provided further evidence for a possible association between MAP and MS, while BCG vaccination seemed to be inversely related to the risk of developing MS.


Viral infection of transgenic mice expressing a viral protein in oligodendrocytes leads to chronic central nervous system autoimmune disease.

  • C F Evans‎ et al.
  • The Journal of experimental medicine‎
  • 1996‎

One hypothesis for the etiology of central nervous system (CNS) autoimmune disease is that infection by a virus sharing antigenic epitopes with CNS antigens (molecular mimicry) elicits a virus-specific immune response that also recognizes self-epitopes. To address this hypothesis, transgenic mice were generated that express the nucleoprotein or glycoprotein of lymphocytic choriomeningitis virus (LCMV) as self in oligodendrocytes. Intraperitoneal infection with LCMV strain Armstrong led to infection of tissues in the periphery but not the CNS, and the virus was cleared within 7-14 d. After clearance, a chronic inflammation of the CNS resulted, accompanied by upregulation of CNS expression of MHC class I and II molecules. A second LCMV infection led to enhanced CNS pathology, characterized by loss of myelin and clinical motor dysfunction. Disease enhancement also occurred after a second infection with unrelated viruses that cross-activated LCMV-specific memory T cells. These findings indicate that chronic CNS autoimmune disease may be induced by infection with a virus sharing epitopes with a protein expressed in oligodendrocytes and this disease may be enhanced by a second infection with the same or an unrelated virus. These results may explain the association of several different viruses with some human autoimmune diseases.


Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis.

  • Jayasri Das Sarma‎ et al.
  • Journal of neuroinflammation‎
  • 2009‎

Interleukin-17A (IL-17A) is the founding member of a novel family of inflammatory cytokines that plays a critical role in the pathogenesis of many autoimmune diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). IL-17A signals through its receptor, IL-17RA, which is expressed in many peripheral tissues; however, expression of IL-17RA in the central nervous system (CNS) and its role in CNS inflammation are not well understood.


IFN-β inhibits T cells accumulation in the central nervous system by reducing the expression and activity of chemokines in experimental autoimmune encephalomyelitis.

  • Wenjing Cheng‎ et al.
  • Molecular immunology‎
  • 2015‎

Multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), are chronic neuroinflammatory autoimmune diseases characterized by axonal loss, demyelination and neurodegeneration of the central nervous system (CNS). Overactivation of CD4(+)T cells, especially the Th1 and Th17 subsets, is thought to play a causal role in this disease. In this study, we investigated the immunomodulatory effects of IFN-β treatment in EAE. IFN-β significantly inhibits disease severity, and decreases levels of CCR2, CCR4, CCR5, CCR6 and CXCR3 in the CNS. This was associated with fewer Th1/Th17 cells expressing these chemokine receptors. Furthermore, levels of their corresponding ligands CCL2, CCL3, CCL4, CCL5, CCL20, CCL22 and CXCL10 were also reduced, coinciding with reduced CNS inflammation and demyelination. Chemokine expression significantly correlated with disease severity. Furthermore, we demonstrate that IFN-β reduces CCL2/CCL5 induced-T cell migration by inhibiting p38-MAPK and ERK1/2 activation. Our results reveal that IFN-β reduces the expression of chemokines and chemokine receptors expressed by encephalitogenic Th1/Th17 cells, thereby decreasing their migration into the CNS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: