Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 87 papers

Stability of Ophthalmic Atropine Solutions for Child Myopia Control.

  • Baptiste Berton‎ et al.
  • Pharmaceutics‎
  • 2020‎

Myopia is an ophthalmic condition affecting more than 1/5th of the world population, especially children. Low-dose atropine eyedrops have been shown to limit myopia evolution during treatment. However, there are currently no commercial industrial forms available and there is little data published concerning the stability of medications prepared by compounding pharmacies. The objective of this study was to evaluate the stability of two 0.1 mg/mL atropine formulations (with and without antimicrobiobial preservatives) for 6 months in two different low-density polyethylene (LDPE) multidose eyedroppers. Analyses used were the following: visual inspection, turbidity, chromaticity measurements, osmolality and pH measurements, atropine quantification by a stability-indicating liquid chromatography method, breakdown product research, and sterility assay. In an in-use study, atropine quantification was also performed on the drops emitted from the multidose eyedroppers. All tested parameters remained stable during the 6 months period, with atropine concentrations above 94.7% of initial concentration. A breakdown product (tropic acid) did increase slowly over time but remained well below usually admitted concentrations. Atropine concentrations remained stable during the in-use study. Both formulations of 0.1 mg/mL of atropine (with and without antimicrobial preservative) were proved to be physicochemically stable for 6 months at 25 °C when stored in LDPE bottles, with an identical microbial shelf-life.


Atropine and Scopolamine in Maize Products from the Retail Stores in the Republic of Serbia.

  • Gorica Vuković‎ et al.
  • Toxins‎
  • 2022‎

The cereal grains, which represent the cultivated grasses fruits, supply almost half of the total caloric requirements for humans and provide more nourishment compared with any other class of the food. Out of many cereals used for food, maize, rice, and wheat are the most important food resources for humans, representing 94% of the total cereals consumption. According to the data of the Republic Institute of Statistics for the year 2018, the harvested areas of corn amount to 906,753 hectares. The production of about 7 million tons was achieved with an average yield of 7.7 t/ha according to the Ministry of Agriculture of the Republic of Serbia. Serbia is still among the ten largest exporters of wheat and corn in the world for the period of 2014/15-2017/18. More precisely, it ranks seventh in the export of corn. Utilization of maize products for food animal nutrition (1000 t) is 491,48, and for industrial processing (1000 t) 278,862 expressed as the total consumption (1000 t) is 769,910. Therefore, a total of 103 samples of maize products were analyzed for the presence of toxins, i.e., tropane alkaloids (TAs). The samples were collected from the retail stores in the Republic of Serbia in 2021 and analyzed for the presence of atropine and scopolamine (33 corn grits, 39 polenta, and 31 semolina samples). Therefore, the Recommendation 2015/976/EU on the monitoring of TAs in food was adopted by the EU Commission to obtain more occurrence data on TAs in food. The monitoring extent, however, is restricted because reliable analytical methods and appropriate sensitivity are limited. There was a limit of 1 g/kg for each atropine and scopolamine in cereals containing millet, sorghum, buckwheat, or their derivatives. All the samples were analyzed by the LC-MS/MS. The LOQ was set at 1.0 μg/kg. Out of the total 103 tested samples, 32 samples (31.1%) were contaminated with atropine and scopolamine in concentrations above the LOQ. The highest concentrations of the studied TAs were observed in a semolina sample-atropine: 58.80 μg/kg, scopolamine: 10.20 μg/kg. The obtained results indicate that the TAs concentrations are above the LOQ which can be considered potential human and animal health hazards.


Evaluation of Tropane Alkaloids in Teas and Herbal Infusions: Effect of Brewing Time and Temperature on Atropine and Scopolamine Content.

  • Lorena González-Gómez‎ et al.
  • Toxins‎
  • 2023‎

Atropine and scopolamine belong to the tropane alkaloid (TA) family of natural toxins. They can contaminate teas and herbal teas and appear in infusions. Therefore, this study focused on analyzing atropine and scopolamine in 33 samples of tea and herbal tea infusions purchased in Spain and Portugal to determine the presence of these compounds in infusions brewed at 97 °C for 5 min. A rapid microextraction technique (µSPEed®) followed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to analyze the selected TAs. The results showed that 64% of the analyzed samples were contaminated by one or both toxins. White and green teas were generally more contaminated than black and other herbal teas. Of the 21 contaminated samples, 15 had concentrations above the maximum limit for liquid herbal infusions (0.2 ng/mL) set by Commission Regulation (EU) 2021/1408. In addition, the effects of heating conditions (time and temperature) on atropine and scopolamine standards and naturally contaminated samples of white, green, and black teas were evaluated. The results showed that at the concentrations studied (0.2 and 4 ng/mL), there was no degradation in the standard solutions. Brewing with boiling water (decoction) for 5 and 10 min allowed for higher extraction of TAs from dry tea to infusion water.


Systematic Analysis of Transcriptomic Profile of the Effects of Low Dose Atropine Treatment on Scleral Fibroblasts using Next-Generation Sequencing and Bioinformatics.

  • Yu-Ting Hsiao‎ et al.
  • International journal of medical sciences‎
  • 2019‎

This study has two novel findings: it is not only the first to deduct potential genes involved in scleral growth repression upon atropine instillation from a prevention point of view, but also the first to demonstrate that only slight changes in scleral gene expression were found after atropine treatment as side effects and safety reasons of the eye drops are of concern. The sclera determines the final ocular shape and size, constituting of scleral fibroblasts as the principal cell type and the major regulator of extracellular matrix. The aim of our study was to identify differentially expressed genes and microRNA regulations in atropine-treated scleral fibroblasts that are potentially involved in preventing the onset of excessive ocular growth using next-generation sequencing and bioinformatics approaches. Differentially expressed genes were functionally enriched in anti-remodeling effects, comprising of structural changes of extracellular matrix and metabolic pathways involving cell differentiation. Significant canonical pathways were correlated to inhibition of melatonin degradation, which was compatible with our clinical practice as atropine eye drops are instilled at night. Validation of the dysregulated genes with previous eye growth-related arrays and through microRNA-mRNA interaction predictions revealed the association of hsa-miR-2682-5p-KCNJ5 and hsa-miR-2682-5p-PRLR with scleral anti-remodeling and circadian rhythmicity. Our findings present new insights into understanding the anti-myopic effects of atropine, which may assist in prevention of myopia development.


Sulfonic Acid-Functionalized SBA-15 as Strong Cation-Exchange Sorbent for Solid-Phase Extraction of Atropine and Scopolamine in Gluten-Free Grains and Flours.

  • Lorena González-Gómez‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2020‎

A novel method was developed and applied to the determination of the most representative tropane alkaloids (TAs), atropine and scopolamine, in gluten-free (GF) grains and flours by HPLC-MS/MS. Accordingly a suitable sample treatment procedure based on solid-liquid extraction (SLE) and followed by strong cation-exchange solid-phase extraction (SCX-SPE) was optimized. SBA-15 mesostructured silica functionalized with sulfonic acids was evaluated as sorbent. The proposed method was fully validated in sorghum flour showing good accuracy with recoveries in the range of 93-105%, good linearity (R2 > 0.999) and adequate precision (RSD < 20%). Low method quantification limits (MQL) were obtained (1.5 and 2.4 µg/kg for atropine and scopolamine, respectively) and no matrix effect was observed thanks to the extraction and clean-up protocol applied. The method was applied to 15 types of GF samples of pseudocereals (buckwheat, quinoa and amaranth), cereals (teff, corn and blue corn, sorghum and millet) and legumes (red and green lentil, chickpea and pea). Atropine was found above the MQL in eight of them, with values between 7 and 78 µg/kg, while scopolamine was only found in teff flour, its concentration being 28 µg/kg. The method developed is an interesting tool for determining TAs in a variety of samples of GF grains and flours.


Development of Atropa belladonna L. Plants with High-Yield Hyoscyamine and without Its Derivatives Using the CRISPR/Cas9 System.

  • Lingjiang Zeng‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Atropa belladonna L. is one of the most important herbal plants that produces hyoscyamine or atropine, and it also produces anisodamine and scopolamine. However, the in planta hyoscyamine content is very low, and it is difficult and expensive to independently separate hyoscyamine from the tropane alkaloids in A. belladonna. Therefore, it is vital to develop A. belladonna plants with high yields of hyoscyamine, and without anisodamine and scopolamine. In this study, we generated A. belladonna plants without anisodamine and scopolamine, via the CRISPR/Cas9-based disruption of hyoscyamine 6β-hydroxylase (AbH6H), for the first time. Hyoscyamine production was significantly elevated, while neither anisodamine nor scopolamine were produced, in the A. belladonna plants with homozygous mutations in AbH6H. In summary, new varieties of A. belladonna with high yields of hyoscyamine and without anisodamine and scopolamine have great potential applicability in producing hyoscyamine at a low cost.


In Silico and In Vitro Analysis of Bacoside A Aglycones and Its Derivatives as the Constituents Responsible for the Cognitive Effects of Bacopa monnieri.

  • Seetha Ramasamy‎ et al.
  • PloS one‎
  • 2015‎

Bacopa monnieri has been used in Ayurvedic medicine to improve memory and cognition. The active constituent responsible for its pharmacological effects is bacoside A, a mixture of dammarane-type triterpenoid saponins containing sugar chains linked to a steroid aglycone skeleton. Triterpenoid saponins have been reported to be transformed in vivo to metabolites that give better biological activity and pharmacokinetic characteristics. Thus, the activities of the parent compounds (bacosides), aglycones (jujubogenin and pseudojujubogenin) and their derivatives (ebelin lactone and bacogenin A1) were compared using a combination of in silico and in vitro screening methods. The compounds were docked into 5-HT1A, 5-HT2A, D1, D2, M1 receptors and acetylcholinesterase (AChE) using AutoDock and their central nervous system (CNS) drug-like properties were determined using Discovery Studio molecular properties and ADMET descriptors. The compounds were screened in vitro using radioligand receptor binding and AChE inhibition assays. In silico studies showed that the parent bacosides were not able to dock into the chosen CNS targets and had poor molecular properties as a CNS drug. In contrast, the aglycones and their derivatives showed better binding affinity and good CNS drug-like properties, were well absorbed through the intestines and had good blood brain barrier (BBB) penetration. Among the compounds tested in vitro, ebelin lactone showed binding affinity towards M1 (Ki = 0.45 μM) and 5-HT2A (4.21 μM) receptors. Bacoside A and bacopaside X (9.06 μM) showed binding affinity towards the D1 receptor. None of the compounds showed any inhibitory activity against AChE. Since the stimulation of M1 and 5-HT2A receptors has been implicated in memory and cognition and ebelin lactone was shown to have the strongest binding energy, highest BBB penetration and binding affinity towards M1 and 5-HT2A receptors, we suggest that B. monnieri constituents may be transformed in vivo to the active form before exerting their pharmacological activity.


Protection studies of new bis quaternary 2-(hydroxyimino)-N-(pyridin-3yl) acetamide derivatives (HNK-series) oximes against acute poisoning by dichlorvos (DDVP) in Swiss albino mice.

  • Pravin Kumar‎ et al.
  • Interdisciplinary toxicology‎
  • 2016‎

The available antidotal therapy against acute poisoning by organophosphates involves the use of atropine alone or in combination with one of the oximes, e.g. 2-PAM, Obidoxime, TMB-4 or HI-6. Each of these oximes has some limitation, raising the question of the universal antidotal efficacy against poisoning by all OPs/nerve agents. In the present study, newly synthesized bis quaternary 2-(hydroxyimino)-N-(pyridin-3yl) acetamide derivatives (HNK-series) oximes were evaluated for their antidotal efficacy against DDVP intoxicated Swiss mice, in terms of the Protection Index (PI) and AChE reactivation in brain and serum. The inhibition concentration (IC50) was determined in brain and serum after optimizing the time point for maximum inhibition (60 min post DDVP exposure). AChE reactivation efficacy of the HNK series was evaluated at IC50 and compared with 2-PAM. HNK-102 showed a ~2 times better Protection Index (PI) as compared to 2-PAM against DDVP toxicity. IC50 at 60 min DDVP post exposure was found to be approximately one fifth and one half of the LD50 dose for brain and serum AChE, respectively. Out of three HNK oximes, HNK-102 & 106 at 0.20 LD50 dose significantly reactivated DDVP intoxicated brain AChE (p<0.05) as compared to 2-PAM at double IC50 dose of DDVP. In light of double PI and higher AChE reactivation, HNK 102 was found to be a better oxime than 2-PAM in the treatment of acute poisoning by DDVP.


Emx1-Cre Is Expressed in Peripheral Autonomic Ganglia That Regulate Central Cardiorespiratory Functions.

  • Yao Ning‎ et al.
  • eNeuro‎
  • 2022‎

The Emx1-IRES-Cre transgenic mouse is commonly used to direct genetic recombination in forebrain excitatory neurons. However, the original study reported that Emx1-Cre is also expressed embryonically in peripheral autonomic ganglia, which could potentially affect the interpretation of targeted circuitry contributing to systemic phenotypes. Here, we report that Emx1-Cre is expressed in the afferent vagus nerve system involved in autonomic cardiorespiratory regulatory pathways. Our imaging studies revealed expression of Emx1-Cre driven tdtomato fluorescence in the afferent vagus nerve innervating the dorsal medulla of brainstem, cell bodies in the nodose ganglion, and their potential target structures at the carotid bifurcation such as the carotid sinus and the superior cervical ganglion (SCG). Photostimulation of the afferent terminals in the nucleus tractus solitarius (NTS) in vitro using Emx1-Cre driven ChR2 reliably evoked EPSCs in the postsynaptic neurons with electrophysiological characteristics consistent with the vagus afferent nerves. In addition, optogenetic stimulation targeting the Emx1-Cre expressing structures identified in this study, such as vagus nerve, carotid bifurcation, and the dorsal medulla surface transiently depressed cardiorespiratory rate in urethane anesthetized mice in vivo Together, our study demonstrates that Emx1-IRES-Cre is expressed in the key peripheral autonomic nerve system and can modulate cardiorespiratory function independently of forebrain expression. These results raise caution when interpreting systemic phenotypes of Emx1-IRES-Cre conditional recombinant mice, and also suggest the utility of this line to investigate modulators of the afferent vagal system.


Does Impedance Matter When Recording Spikes With Polytrodes?

  • Joana P Neto‎ et al.
  • Frontiers in neuroscience‎
  • 2018‎

Extracellular microelectrodes have been widely used to measure brain activity, yet there are still basic questions about the requirements for a good extracellular microelectrode. One common source of confusion is how much an electrode's impedance affects the amplitude of extracellular spikes and background noise. Here we quantify the effect of an electrode's impedance on data quality in extracellular recordings, which is crucial for both the detection of spikes and their assignment to the correct neurons. This study employs commercial polytrodes containing 32 electrodes (177 μm2) arranged in a dense array. This allowed us to directly compare, side-by-side, the same extracellular signals measured by modified low impedance (∼100 kΩ) microelectrodes with unmodified high impedance (∼1 MΩ) microelectrodes. We begin with an evaluation of existing protocols to lower the impedance of the electrodes. The poly (3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS) electrodeposition protocol is a simple, stable, and reliable method for decreasing the impedance of a microelectrode up to 10-fold. We next record in vivo using polytrodes that are modified in a 'chess board' pattern, such that the signal of one neuron is detected by multiple coated and non-coated electrodes. The performance of the coated and non-coated electrodes is then compared on measures of background noise and amplitude of the detected action potentials. If the proper recording system is used, then the impedance of a microelectrode within the range of standard polytrodes (∼0.1 to 2 MΩ) does not greatly affect data quality and spike sorting. This study should encourage neuroscientists to stop worrying about one more unknown.


Mechanism of central hypopnoea induced by organic phosphorus poisoning.

  • Kazuhito Nomura‎ et al.
  • Scientific reports‎
  • 2020‎

Whether central apnoea or hypopnoea can be induced by organophosphorus poisoning remains unknown to date. By using the acute brainstem slice method and multi-electrode array system, we established a paraoxon (a typical acetylcholinesterase inhibitor) poisoning model to investigate the time-dependent changes in respiratory burst amplitudes of the pre-Bötzinger complex (respiratory rhythm generator). We then determined whether pralidoxime or atropine, which are antidotes of paraoxon, could counteract the effects of paraoxon. Herein, we showed that paraoxon significantly decreased the respiratory burst amplitude of the pre-Bötzinger complex (p < 0.05). Moreover, pralidoxime and atropine could suppress the decrease in amplitude by paraoxon (p < 0.05). Paraoxon directly impaired the pre-Bötzinger complex, and the findings implied that this impairment caused central apnoea or hypopnoea. Pralidoxime and atropine could therapeutically attenuate the impairment. This study is the first to prove the usefulness of the multi-electrode array method for electrophysiological and toxicological studies in the mammalian brainstem.


Balanced modulation of neuromuscular synaptic transmission via M1 and M2 muscarinic receptors during inhibition of cholinesterases.

  • Oksana A Lenina‎ et al.
  • Scientific reports‎
  • 2022‎

Organophosphorus (OP) compounds that inhibit acetylcholinesterase are a common cause of poisoning worldwide, resulting in several hundred thousand deaths each year. The pathways activated during OP compound poisoning via overstimulation of muscarinic acetylcholine receptors (mAChRs) play a decisive role in toxidrome. The antidotal therapy includes atropine, which is a nonspecific blocker of all mAChR subtypes. Atropine is efficient for mitigating depression in respiratory control centers but does not benefit patients with OP-induced skeletal muscle weakness. By using an ex vivo model of OP-induced muscle weakness, we studied the effects of the M1/M4 mAChR antagonist pirenzepine and the M2/M4 mAChR antagonist methoctramine on the force of mouse diaphragm muscle contraction. It was shown that weakness caused by the application of paraoxon can be significantly prevented by methoctramine (1 µM). However, neither pirenzepine (0.1 µM) nor atropine (1 µM) was able to prevent muscle weakness. Moreover, the application of pirenzepine significantly reduced the positive effect of methoctramine. Thus, balanced modulation of neuromuscular synaptic transmission via M1 and M2 mAChRs contributes to paraoxon-induced muscle weakness. It was shown that methoctramine (10 µmol/kg, i.p.) and atropine (50 µmol/kg, i.p.) were equieffective toward increasing the survival of mice poisoned with a 2xLD50 dose of paraoxon.


Increased Choroidal Blood Perfusion Can Inhibit Form Deprivation Myopia in Guinea Pigs.

  • Xuan Zhou‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2020‎

In guinea pigs, choroidal thickness (ChT) and choroidal blood perfusion (ChBP) simultaneously decrease in experimental myopia, and both increase during recovery. However, the causal relationship between ChBP and myopia requires further investigation. In this study, we examined the changes of ChBP with three different antimyopia treatments. We also actively increased ChBP to examine the direct effect on myopia development in guinea pigs.


Role of Muscarinic Receptors in Hypoalgesia Induced by Crocin in Neuropathic Pain Rats.

  • Hossein Ali Safakhah‎ et al.
  • TheScientificWorldJournal‎
  • 2020‎

Crocin as an important constituent of saffron has antineuropathic pain properties; however, the exact mechanism of this effect is not known. The aim of this study was whether the hypoalgesic effect of crocin can be exerted through muscarinic receptors.


Vasorelaxant Mechanism of Herbal Extracts from Mentha suaveolens, Conyza canadensis, Teucrium polium and Salvia verbenaca in the Aorta of Wistar Rats.

  • Jamila El-Akhal‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Mentha suaveolens (MS), Conyza canadensis (CC), Teucrium polium (TP) and Salvia verbenaca (SV) are used in Morocco to treat hypertension. Our aim was to characterize the composition and vasoreactivity of extracts of MS, CC, TP and SV. The chemical compositions of aqueous extracts of MS, SV and TP, and of a hydromethanolic extract of CC, were identified by HPLC-DAD. The vasoreactive effect was tested in rings of the thoracic aorta of female Wistar rats (8-14 weeks-old) pre-contracted with 10 µM noradrenaline, in the absence or presence of L-NAME 100 µM, indomethacin 10 µM or atropine 6 µM, to inhibit nitric oxide synthase, cyclooxygenase or muscarinic receptors, respectively. L-NAME and atropine decreased the vasorelaxant effect caused by low concentrations of MS. Atropine and indomethacin decreased the vasorelaxant effect of low concentrations of SV. High concentrations of MS or SV and the effect of SV and TP were not altered by any antagonist. The activation of muscarinic receptors and NO or the cyclooxygenase pathway underlie the vasorelaxant effect of MS and SV, respectively. Neither of those mechanisms underlines the vasorelaxant effect of CC and TP. These vasorelaxant effect might support the use of herbal teas from these plants as anti-hypertensives in folk medicine.


Improved Analytical Approach for Determination of Tropane Alkaloids in Leafy Vegetables Based on µ-QuEChERS Combined with HPLC-MS/MS.

  • Lorena González-Gómez‎ et al.
  • Toxins‎
  • 2022‎

This work presents an optimized methodology based on the miniaturization of the original QuEChERS (μ-QuEChERS) followed by liquid chromatography coupled to mass spectrometry (HPLC-MS/MS) for the determination of tropane alkaloids (TAs), atropine, and scopolamine in leafy vegetable samples. The analytical methodology was successfully validated, demonstrating quantitation limits (MQL) ≤ 2.3 ng/g, good accuracy, and precision, with recoveries between 90-100% and RSD ≤ 13% for both analytes. The method was applied to the analysis of TA-producing plants (Brugmansia versicolor, Solandra maxima, and Convolvulus arvensis). High concentrations of scopolamine were found in flowers (1771 mg/kg) and leaves (297 mg/kg) of B. versicolor. The highest concentration of atropine was found in flowers of S. maxima (10.4 mg/kg). Commercial mixed leafy vegetables contaminated with B. versicolor and S. maxima were analysed to verify the efficacy of the method, showing recoveries between 82 and 110% for both analytes. Finally, the method was applied to the analysis of eighteen samples of leafy vegetables, finding atropine in three samples of mixed leafy vegetables, with concentrations of 2.7, 3.2, and 3.4 ng/g, and in nine samples with concentrations ≤MQL. In turn, scopolamine was only found in a sample of chopped Swiss chard with a concentration ≤MQL.


Alterations in histamine responses between juvenile and adult urinary bladder urothelium, lamina propria and detrusor tissues.

  • Zane Stromberga‎ et al.
  • Scientific reports‎
  • 2020‎

Inflammatory mediators may have a role in various lower urinary tract disorders. Histamine is known to induce significant increases in both the tension and frequency of spontaneous phasic contractions in both urothelium with lamina propria (U&LP) and detrusor muscle via the activation of H1 receptor in juvenile animal models. However, it is unclear whether age affects these contractile responses to histamine. This study assessed the histamine receptor subtypes mediating contraction in juvenile and adult porcine bladders and compared the urothelium with lamina propria and detrusor responses to histamine. Isolated tissue bath studies were conducted using strips of porcine U&LP and detrusor obtained from juvenile (6 months) and adult (3 years) animals exposed to histamine receptor agonists and antagonists. Treatment with histamine (100 µM) in U&LP of juvenile animals caused increases in baseline tension by 47.84 ± 6.52 mN/g (p < 0.001, n = 51) and by 50.76 ± 4.10 mN/g (p < 0.001, n = 55) in adult animals. Furthermore, the frequency of spontaneous phasic contractions was significantly enhanced in response to histamine in U&LP of both juvenile and adult tissues (p < 0.001 for both age groups). Treatment with an H2 agonist in U&LP of juvenile animals decreased baseline tension by 13.97 ± 3.45 mN/g (n = 12, p < 0.05), but had no effect in adult animals. Inhibition of H1 receptors resulted in significantly reduced contractile responses of U&LP and detrusor to histamine in both juvenile and adult animals (p < 0.05). Treatment with an H2 receptor antagonist significantly enhanced contractions in juvenile preparations (n = 10, p < 0.05) but had no effect in adult preparations (n = 8). In detrusor, treatment with histamine (100 µM) in juvenile tissues showed a significantly higher increase in baseline tension of 19.10 ± 4.92 mN/g (n = 51) when compared to adult tissues exhibiting increases of 8.21 ± 0.89 mN/g (n = 56, p < 0.05). The increases in the baseline tension were significantly inhibited by the presence of H1 receptor antagonists in both juvenile and adult detrusor preparations. Treatment with either the H2 receptor antagonist or agonist in detrusor had no effect on both juvenile and adult tissues. Therefore, the histamine receptor system may play an essential role in the maintenance of bladder function or in bladder dysfunction observed in some lower urinary tract disorders.


Analysis of enteric nervous system and intestinal epithelial barrier to predict complications in Hirschsprung's disease.

  • Anne Dariel‎ et al.
  • Scientific reports‎
  • 2020‎

In Hirschsprung's disease (HSCR), postoperative course remains unpredictable. Our aim was to define predictive factors of the main postoperative complications: obstructive symptoms (OS) and Hirschsprung-associated enterocolitis (HAEC). In this prospective multicentre cohort study, samples of resected bowel were collected at time of surgery in 18 neonates with short-segment HSCR in tertiary care hospitals. OS and HAEC were noted during postoperative follow-up. We assessed the enteric nervous system and the intestinal epithelial barrier (IEB) in ganglionic segments by combining immunohistochemical, proteomic and transcriptomic approaches, with functional ex vivo analysis of motility and para/transcellular permeability. Ten HSCR patients presented postoperative complications (median follow-up 23.5 months): 6 OS, 4 HAEC (2 with OS), 2 diarrhoea (without OS/HAEC). Immunohistochemical analysis showed a significant 41% and 60% decrease in median number of nNOS-IR myenteric neurons per ganglion in HSCR with OS as compared to HSCR with HAEC/diarrhoea (without OS) and HSCR without complications (p = 0.0095; p = 0.002, respectively). Paracellular and transcellular permeability was significantly increased in HSCR with HAEC as compared to HSCR with OS/diarrhoea without HAEC (p = 0.016; p = 0.009) and HSCR without complications (p = 0.029; p = 0.017). This pilot study supports the hypothesis that modulating neuronal phenotype and enhancing IEB permeability may treat or prevent postoperative complications in HSCR.


Development of CE-C4D Method for Determination Tropane Alkaloids.

  • Małgorzata Gołąb‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

A fast method for the determination of tropane alkaloids, using a portable CE instrument with a capacitively coupled contactless conductivity detector (CE-C4D) was developed and validated for determination of atropine and scopolamine in seeds from Solanaceae family plants. Separation was obtained within 5 min, using an optimized background electrolyte consisting of 0.5 M acetic acid with 0.25% (w/v) β-CD. The limit of detection and quantification was 0.5 µg/mL and 1.5 µg/mL, respectively, for both atropine and scopolamine. The developed method was validated with the following parameters-precision (CV): 1.07-2.08%, accuracy of the assay (recovery, RE): 101.0-102.7% and matrix effect (ME): 92.99-94.23%. Moreover, the optimized CE-C4D method was applied to the analysis of plant extracts and pharmaceuticals, proving its applicability and accuracy.


Preparation of monoethyl fumarate-based molecularly imprinted polymers and their application as a solid-phase extraction sorbent for the separation of scopolamine from tropane alkaloids.

  • Jie Zuo‎ et al.
  • RSC advances‎
  • 2019‎

Molecularly imprinted polymers (MIPs) prepared using conventional functional monomers exhibit poor specific extraction of scopolamine from tropane alkaloids, which hinders their application in separation and purification. In this paper, a novel molecularly imprinted polymer (MIP) was prepared by precipitation polymerization using scopolamine as the template, monoethyl fumarate (MFMA) as a functional monomer, and ethylene dimethacrylate (EGDMA) as a cross-linker. The advantages of the supercritical fluid technology for the removal of the template were verified by comparing the efficiency of the swelling method and the Soxhlet extraction method. The prepared MFMA-based MIPs (MFMA-MIPs) showed a high adsorption capacity (49.75 mg g-1) and high selectivity toward scopolamine with a selectivity coefficient of 3.5. 1H NMR spectroscopy was performed to demonstrate the interactions between the two functional groups of the functional monomer and the template. Lastly, MFMA-MIPs were used as solid phase extraction (SPE) sorbents for scopolamine analysis. It was found that 97.0-107.0% of the template had been extracted using the SPE column from the complex of scopolamine, atropine and anisodamine. The mean recoveries of scopolamine from plant samples were 96.0-106.0% using the established method, which showed a good linearity in the range of 8.0-4.0 × 104 μg L-1. The results showed that MFMA-MIPs could be applied for the separation of scopolamine from tropane alkaloids.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: