Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 197 papers

Nucleocytoplasmic shuttling activity of ataxin-3.

  • Sandra Macedo-Ribeiro‎ et al.
  • PloS one‎
  • 2009‎

Spinocerebellar ataxia type-3, also known as Machado-Joseph Disease (MJD), is one of many inherited neurodegenerative disorders caused by polyglutamine-encoding CAG repeat expansions in otherwise unrelated genes. Disease protein misfolding and aggregation, often within the nucleus of affected neurons, characterize polyglutamine disorders. Several evidences have implicated the nucleus as the primary site of pathogenesis for MJD. However, the molecular determinants for the nucleocytoplasmic transport of human ataxin-3 (Atx3), the protein which is mutated in patients with MJD, are not characterized. In order to characterize the nuclear shuttling activity of Atx3, we performed yeast nuclear import assays and found that Atx3 is actively imported into the nucleus, by means of a classical nuclear localizing sequence formed by a cluster of lysine and arginine residues. On the other hand, when active nuclear export was inhibited using leptomycin B, a specific inhibitor of the nuclear export receptor CRM1, both endogenous Atx3 and transfected GFP-Atx3 accumulated inside the nucleus of a subpopulation of COS-7 cells, whereas both proteins are normally predominant in the cytoplasm. Additionally, using a Rev(1.4)-GFP nuclear export assay, we performed an extensive analysis of six putative aliphatic nuclear export motifs identified in Atx3 amino acid sequence. Although none of the tested peptide sequences were found to drive nuclear export when isolated, we have successfully mapped the region of Atx3 responsible for its CRM1-independent nuclear export activity. Curiously, the N-terminal Josephin domain alone is exported into the cytoplasm, but the nuclear export activity of Atx3 is significantly enhanced in a longer construct that is truncated after the two ubiquitin interaction motifs, upstream from the polyQ tract. Our data show that Atx3 is actively imported to and exported from the cell nucleus, and that its nuclear export activity is dependent on a motif located at its N-terminal region. Since pathological Atx3 aggregates in the nucleus of affected neurons in MJD, and there is in vivo evidence that nuclear localization of Atx3 is required for the manifestation of symptoms in MJD, defects in the nucleocytoplasmic shuttling activity of the protein may be involved in the nuclear accumulation and aggregation of expanded Atx3.


NEDD8: a new ataxin-3 interactor.

  • Anabela Ferro‎ et al.
  • Biochimica et biophysica acta‎
  • 2007‎

Machado-Joseph disease (MJD/SCA3) is an autosomal dominant neurodegenerative disease caused by the expansion of a CAG tract in the coding portion of the ATXN3 gene. The presence of ubiquitin-positive aggregates of the defective protein in affected neurons is characteristic of this and most of the polyglutamine disorders. Recently, the accumulation of the neural precursor cell expressed developmentally downregulated 8 (NEDD8), a ubiquitin-like protein, in the inclusions of MJD brains was reported. Here, we report a new molecular interaction between wild-type ataxin-3 and NEDD8, using in vitro and in situ approaches. Furthermore, we show that this interaction is not dependent on the ubiquitin-interacting motifs in ataxin-3, since the presence of the Josephin domain is sufficient for the interaction to occur. The conservation of the interaction between the Caenorhabditis elegans ataxin-3 homologue (atx-3) and NEDD8 suggests its biological and functional relevance. Molecular docking studies of the NEDD8 molecule to the Josephin domain of ataxin-3 suggest that NEDD8 interacts with ataxin-3 in a substrate-like mode. In agreement, ataxin-3 displays deneddylase activity against a fluorogenic NEDD8 substrate.


Mouse ataxin-3 functional knock-out model.

  • Pawel M Switonski‎ et al.
  • Neuromolecular medicine‎
  • 2011‎

Spinocerebellar ataxia 3 (SCA3) is a genetic disorder resulting from the expansion of the CAG repeats in the ATXN3 gene. The pathogenesis of SCA3 is based on the toxic function of the mutant ataxin-3 protein, but the exact mechanism of the disease remains elusive. Various types of transgenic mouse models explore different aspects of SCA3 pathogenesis, but a knock-in humanized mouse has not yet been created. The initial aim of this study was to generate an ataxin-3 humanized mouse model using a knock-in strategy. The human cDNA for ataxin-3 containing 69 CAG repeats was cloned from SCA3 patient and introduced into the mouse ataxin-3 locus at exon 2, deleting it along with exon 3 and intron 2. Although the human transgene was inserted correctly, the resulting mice acquired the knock-out properties and did not express ataxin-3 protein in any analyzed tissues, as confirmed by western blot and immunohistochemistry. Analyses of RNA expression revealed that the entire locus consisting of human and mouse exons was expressed and alternatively spliced. We detected mRNA isoforms composed of exon 1 spliced with mouse exon 4 or with human exon 7. After applying 37 PCR cycles, we also detected a very low level of the correct exon 1/exon 2 isoform. Additionally, we confirmed by bioinformatic analysis that the structure and power of the splicing site between mouse intron 1 and human exon 2 (the targeted locus) was not changed compared with the native mouse locus. We hypothesized that these splicing aberrations result from the deletion of further splicing sites and the presence of a strong splicing site in exon 4, which was confirmed by bioinformatic analysis. In summary, we created a functional ataxin-3 knock-out mouse model that is viable and fertile and does not present a reduced life span. Our work provides new insights into the splicing characteristics of the Atxn3 gene and provides useful information for future attempts to create knock-in SCA3 models.


Ataxin-3 promotes genome integrity by stabilizing Chk1.

  • Yingfeng Tu‎ et al.
  • Nucleic acids research‎
  • 2017‎

The Chk1 protein is essential for genome integrity maintenance and cell survival in eukaryotic cells. After prolonged replication stress, Chk1 can be targeted for proteasomal degradation to terminate checkpoint signaling after DNA repair finishes. To ensure proper activation of DNA damage checkpoint and DNA repair signaling, a steady-state level of Chk1 needs to be retained under physiological conditions. Here, we report a dynamic signaling pathway that tightly regulates Chk1 stability. Under unperturbed conditions and upon DNA damage, ataxin-3 (ATX3) interacts with Chk1 and protects it from DDB1/CUL4A- and FBXO6/CUL1-mediated polyubiquitination and subsequent degradation, thereby promoting DNA repair and checkpoint signaling. Under prolonged replication stress, ATX3 dissociates from Chk1, concomitant with a stronger binding between Chk1 and its E3 ligase, which causes Chk1 proteasomal degradation. ATX3 deficiency results in pronounced reduction of Chk1 abundance, compromised DNA damage response, G2/M checkpoint defect and decreased cell survival after replication stress, which can all be rescued by ectopic expression of ATX3. Taken together, these findings reveal ATX3 to be a novel deubiquitinase of Chk1, providing a new mechanism of Chk1 stabilization in genome integrity maintenance.


Ataxin-3 phosphorylation decreases neuronal defects in spinocerebellar ataxia type 3 models.

  • Carlos A Matos‎ et al.
  • The Journal of cell biology‎
  • 2016‎

Different neurodegenerative diseases are caused by aberrant elongation of repeated glutamine sequences normally found in particular human proteins. Although the proteins involved are ubiquitously distributed in human tissues, toxicity targets only defined neuronal populations. Changes caused by an expanded polyglutamine protein are possibly influenced by endogenous cellular mechanisms, which may be harnessed to produce neuroprotection. Here, we show that ataxin-3, the protein involved in spinocerebellar ataxia type 3, also known as Machado-Joseph disease, causes dendritic and synapse loss in cultured neurons when expanded. We report that S12 of ataxin-3 is phosphorylated in neurons and that mutating this residue so as to mimic a constitutive phosphorylated state counters the neuromorphologic defects observed. In rats stereotaxically injected with expanded ataxin-3-encoding lentiviral vectors, mutation of serine 12 reduces aggregation, neuronal loss, and synapse loss. Our results suggest that S12 plays a role in the pathogenic pathways mediated by polyglutamine-expanded ataxin-3 and that phosphorylation of this residue protects against toxicity.


Study of subcellular localization and proteolysis of ataxin-3.

  • Chiara Pozzi‎ et al.
  • Neurobiology of disease‎
  • 2008‎

In this work we investigate subcellular localization and proteolytic cleavage of different forms of ataxin-3 (AT-3), the protein responsible for spinocerebellar ataxia type 3. Normal (AT-3Q6 and AT-3Q26) and pathological (AT-3Q72) ataxins-3, as well as two truncated forms lacking poly-Q, were studied. Full-length proteins were also expressed as C14A mutants, in order to assess whether AT-3 autoproteolytic activity was involved in its fragmentation. We found that both normal and pathological proteins localized in the cytoplasm and in the nucleus, as expected, but also in the mitochondria. Microsequencing showed that all ataxins-3 underwent the same proteolytic cleavage, removing the first 27 amino acids. Interestingly, while normal ataxins were further cleaved at a number of caspase sites, pathological AT-3 was proteolyzed to a much lesser extent. This may play a role in the pathogenesis, hampering degradation of aggregation-prone expanded AT-3. In addition, autolytic cleavage was apparently not involved in AT-3 proteolysis.


Ube2w and ataxin-3 coordinately regulate the ubiquitin ligase CHIP.

  • K Matthew Scaglione‎ et al.
  • Molecular cell‎
  • 2011‎

The mechanisms by which ubiquitin ligases are regulated remain poorly understood. Here we describe a series of molecular events that coordinately regulate CHIP, a neuroprotective E3 implicated in protein quality control. Through their opposing activities, the initiator E2, Ube2w, and the specialized deubiquitinating enzyme (DUB), ataxin-3, participate in initiating, regulating, and terminating the CHIP ubiquitination cycle. Monoubiquitination of CHIP by Ube2w stabilizes the interaction between CHIP and ataxin-3, which through its DUB activity limits the length of chains attached to CHIP substrates. Upon completion of substrate ubiquitination, ataxin-3 deubiquitinates CHIP, effectively terminating the reaction. Our results suggest that functional pairing of E3s with ataxin-3 or similar DUBs represents an important point of regulation in ubiquitin-dependent protein quality control. In addition, the results shed light on disease pathogenesis in SCA3, a neurodegenerative disorder caused by polyglutamine expansion in ataxin-3.


Basal and stress-induced Hsp70 are modulated by ataxin-3.

  • Christopher P Reina‎ et al.
  • Cell stress & chaperones‎
  • 2012‎

Regulation of basal and induced levels of hsp70 is critical for cellular homeostasis. Ataxin-3 is a deubiquitinase with several cellular functions including transcriptional regulation and maintenance of protein homeostasis. While investigating potential roles of ataxin-3 in response to cellular stress, it appeared that ataxin-3 regulated hsp70. Basal levels of hsp70 were lower in ataxin-3 knockout (KO) mouse brain from 2 to 63 weeks of age and hsp70 was also lower in fibroblasts from ataxin-3 KO mice. Transfecting KO cells with ataxin-3 rescued basal levels of hsp70 protein. Western blots of representative chaperones including hsp110, hsp90, hsp70, hsc70, hsp60, hsp40/hdj2, and hsp25 indicated that only hsp70 was appreciably altered in KO fibroblasts and KO mouse brain. Turnover of hsp70 protein was similar in wild-type (WT) and KO cells; however, basal hsp70 promoter reporter activity was decreased in ataxin-3 KO cells. Transfecting ataxin-3 restored hsp70 basal promoter activity in KO fibroblasts to levels of promoter activity in WT cells; however, mutations that inactivated deubiquitinase activity or the ubiquitin interacting motifs did not restore full activity to hsp70 basal promoter activity. Hsp70 protein and promoter activity were higher in WT compared to KO cells exposed to heat shock and azetidine-2-carboxylic acid, but WT and KO cells had similar levels in response to cadmium. Heat shock factor-1 had decreased levels and increased turnover in ataxin-3 KO fibroblasts. Data in this study are consistent with ataxin-3 regulating basal level of hsp70 as well as modulating hsp70 in response to a subset of cellular stresses.


Regulation of retrotranslocation by p97-associated deubiquitinating enzyme ataxin-3.

  • Qiuyan Wang‎ et al.
  • The Journal of cell biology‎
  • 2006‎

Misfolded proteins of the endoplasmic reticulum undergo retrotranslocation to enter the cytosol where they are degraded by the proteasome. Retrotranslocation of many substrates requires an ATPase complex consisting of the p97 ATPase and a dimeric cofactor, Ufd1-Npl4. We report that efficient elimination of misfolded ER proteins also involves ataxin-3 (atx3), a p97-associated deubiquitinating enzyme mutated in type-3 spinocerebellar ataxia. Overexpression of an atx3 mutant defective in deubiquitination inhibits the degradation of misfolded ER proteins and triggers ER stress. Misfolded polypeptides stabilized by mutant atx3 are accumulated in part as polyubiquitinated form, suggesting an involvement of its deubiquitinating activity in ER-associated protein degradation regulation. We demonstrate that atx3 transiently associates with the ER membrane via p97 and the recently identified Derlin-VIMP complex, and its release from the membrane appears to be governed by both the p97 ATPase cycle and its own deubiquitinating activity. We present evidence that atx3 may promote p97-associated deubiquitination to facilitate the transfer of polypeptides from p97 to the proteasome.


Differential toxicity of ataxin-3 isoforms in Drosophila models of Spinocerebellar Ataxia Type 3.

  • Sean L Johnson‎ et al.
  • Neurobiology of disease‎
  • 2019‎

The most commonly inherited dominant ataxia, Spinocerebellar Ataxia Type 3 (SCA3), is caused by a CAG repeat expansion that encodes an abnormally long polyglutamine (polyQ) repeat in the disease protein ataxin-3, a deubiquitinase. Two major full-length isoforms of ataxin-3 exist, both of which contain the same N-terminal portion and polyQ repeat, but differ in their C-termini; one (denoted here as isoform 1) contains a motif that binds ataxin-3's substrate, ubiquitin, whereas the other (denoted here as isoform 2) has a hydrophobic tail. Most SCA3 studies have focused on isoform 1, the predominant version in mammalian brain, yet both isoforms are present in brain and a better understanding of their relative pathogenicity in vivo is needed. We took advantage of the fruit fly, Drosophila melanogaster to model SCA3 and to examine the toxicity of each ataxin-3 isoform. Our assays reveal isoform 1 to be markedly more toxic than isoform 2 in all fly tissues. Reduced toxicity from isoform 2 is due to much lower protein levels as a result of its expedited degradation. Additional studies indicate that isoform 1 is more aggregation-prone than isoform 2 and that the C-terminus of isoform 2 is critical for its enhanced proteasomal degradation. According to our results, although both full-length, pathogenic ataxin-3 isoforms are toxic, isoform 1 is likely the primary contributor to SCA3 due to its presence at higher levels. Isoform 2, as a result of rapid degradation that is dictated by its tail, is unlikely to be a key player in this disease. Our findings provide new insight into the biology of this ataxia and the cellular processing of the underlying disease protein.


Universal RNAi Triggers for the Specific Inhibition of Mutant Huntingtin, Atrophin-1, Ataxin-3, and Ataxin-7 Expression.

  • Anna Kotowska-Zimmer‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2020‎

The expansion of CAG repeats within the coding region of associated genes is responsible for nine inherited neurodegenerative disorders including Huntington's disease (HD), spinocerebellar ataxias (SCAs), and dentatorubral-pallidoluysian atrophy (DRPLA). Despite years of research aimed at developing an effective method of treatment, these diseases remain incurable and only their symptoms are controlled. The purpose of this study was to develop effective and allele-selective genetic tools for silencing the expression of mutated genes containing expanded CAG repeats. Here we show that repeat-targeting short hairpin RNAs preferentially reduce the levels of mutant huntingtin, atrophin-1, ataxin-3, and ataxin-7 proteins in patient-derived fibroblasts and may serve as universal allele-selective reagents for polyglutamine (polyQ) diseases.


Ataxin-3, The Spinocerebellar Ataxia Type 3 Neurodegenerative Disorder Protein, Affects Mast Cell Functions.

  • Anna S Sowa‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease, is a progressive neurodegenerative disorder characterized by loss of neuronal matter due to the expansion of the CAG repeat in the ATXN3/MJD1 gene and subsequent ataxin-3 protein. Although the underlying pathogenic protein expansion has been known for more than 20 years, the complexity of its effects is still under exploration. The ataxin-3 protein in its expanded form is known to aggregate and disrupt cellular processes in neuronal tissue but the role of the protein on populations of immune cells is unknown. Recently, mast cells have emerged as potential key players in neuroinflammation and neurodegeneration. Here, we examined the mast cell-related effects of ataxin-3 expansion in the brain tissues of 304Q ataxin-3 knock-in mice and SCA3 patients. We also established cultures of mast cells from the 304Q knock-in mice and examined the effects of 304Q ataxin-3 knock-in on the immune responses of these cells and on markers involved in mast cell growth, development and function. Specifically, our results point to a role for expanded ataxin-3 in suppression of mast cell marker CD117/c-Kit, pro-inflammatory cytokine TNF-α and NF-κB inhibitor IκBα along with an increased expression of the granulocyte-attracting chemokine CXCL1. These results are the beginning of a more holistic understanding of ataxin-3 and could point to the development of novel therapeutic targets which act on inflammation to mitigate symptoms of SCA3.


Co-chaperone HSJ1a dually regulates the proteasomal degradation of ataxin-3.

  • Xue-Chao Gao‎ et al.
  • PloS one‎
  • 2011‎

Homo sapiens J domain protein (HSJ1) is a J-domain containing co-chaperone that is known to stimulate ATPase activity of HSP70 chaperone, while it also harbors two ubiquitin (Ub)-interacting motifs (UIMs) that may bind with ubiquitinated substrates and potentially function in protein degradation. We studied the effects of HSJ1a on the protein levels of both normal and the disease--related polyQ-expanded forms of ataxin-3 (Atx3) in cells. The results demonstrate that the N-terminal J-domain and the C-terminal UIM domain of HSJ1a exert opposite functions in regulating the protein level of cellular overexpressed Atx3. This dual regulation is dependent on the binding of the J-domain with HSP70, and the UIM domain with polyUb chains. The J-domain down-regulates the protein level of Atx3 through HSP70 mediated proteasomal degradation, while the UIM domain may alleviate this process via maintaining the ubiquitinated Atx3. We propose that co-chaperone HSJ1a orchestrates the balance of substrates in stressed cells in a Yin-Yang manner.


Autophagy mediates SUMO-induced degradation of a polyglutamine protein ataxin-3.

  • Soo Pyung Hwang‎ et al.
  • Animal cells and systems‎
  • 2017‎

Previously, we reported that small ubiquitin-like modifier-1 (SUMO-1) promotes the degradation of a polyglutamine (polyQ) protein ataxin-3 and proposed that proteasomes mediate the proteolysis. Here, we present evidence that autophagy is also responsible for SUMO-induced degradation of this polyQ protein. The autophagy inhibitor 3-MA increased the steady-state level of ataxin-3 and stabilized SUMO-modified ataxin-3 more prominently than the proteasome inhibitor MG132. Interestingly, SUMO-1 overexpression enhanced the co-localization of ataxin-3 and autophagy marker LC3 without increasing LC3 puncta formation suggesting that SUMO-1 is involved in the substrate recruitment rather than the induction of autophagy. To assess the importance of a putative SUMO-interacting motif (SIM) in ataxin-3 for SUMO-induced degradation, we constructed a SIM mutant of ataxin-3. Substitution of putative SIM (V165G) facilitated the degradation of polyQ-expanded ataxin-3, which is more resistant to SUMO-induced degradation than the normal ataxin-3. These results together indicate that SUMO-1 promotes the degradation of ataxin-3 via autophagy and the putative SIM of ataxin-3 plays a role in this process.


Absence of ataxin-3 leads to enhanced stress response in C. elegans.

  • Ana João Rodrigues‎ et al.
  • PloS one‎
  • 2011‎

Ataxin-3, the protein involved in Machado-Joseph disease, is able to bind ubiquitylated substrates and act as a deubiquitylating enzyme in vitro, and it has been involved in the modulation of protein degradation by the ubiquitin-proteasome pathway. C. elegans and mouse ataxin-3 knockout models are viable and without any obvious phenotype in a basal condition however their phenotype in stress situations has never been described.Considering the role of ataxin-3 in the protein degradation pathway, we analyzed the effects of heat shock, a known protein homeostasis stressor, in C. elegans ataxin-3 (ATX-3) knockout animals. We found that ATX-3 mutants have an exacerbated stress response and survive significantly better than wild type animals when subjected to a noxious heat shock stimulus. This increased thermotolerance of mutants was further enhanced by pre-exposure to a mild heat shock. At a molecular level, ATX-3 mutants have a distinct transcriptomic and proteomic profile with several molecular chaperones abnormally up-regulated during heat shock and recovery, consistent with the observed resistance phenotype.The improved thermotolerance in ATX-3 mutants is independent of heat shock factor 1, the maestro of the heat shock response, but fully dependent on DAF-16, a critical stress responsive transcription factor involved in longevity and stress resistance. We also show that the increased thermotolerance of ATX-3 mutants is mainly due to HSP-16.2, C12C8.1 and F44E5.5 given that the knockdown of these heat shock proteins using RNA interference causes the phenotype to revert. This report suggests that the absence of ATX-3 activates the DAF-16 pathway leading to an overexpression of molecular chaperones, which yields knockout animals with an improved capacity for dealing with deleterious stimuli.


Cerebellar soluble mutant ataxin-3 level decreases during disease progression in Spinocerebellar Ataxia Type 3 mice.

  • Huu Phuc Nguyen‎ et al.
  • PloS one‎
  • 2013‎

Spinocerebellar Ataxia Type 3 (SCA3), also known as Machado-Joseph disease, is an autosomal dominantly inherited neurodegenerative disease caused by an expanded polyglutamine stretch in the ataxin-3 protein. A pathological hallmark of the disease is cerebellar and brainstem atrophy, which correlates with the formation of intranuclear aggregates in a specific subset of neurons. Several studies have demonstrated that the formation of aggregates depends on the generation of aggregation-prone and toxic intracellular ataxin-3 fragments after proteolytic cleavage of the full-length protein. Despite this observed increase in aggregated mutant ataxin-3, information on soluble mutant ataxin-3 levels in brain tissue is lacking. A quantitative method to analyze soluble levels will be a useful tool to characterize disease progression or to screen and identify therapeutic compounds modulating the level of toxic soluble ataxin-3. In the present study we describe the development and application of a quantitative and easily applicable immunoassay for quantification of soluble mutant ataxin-3 in human cell lines and brain samples of transgenic SCA3 mice. Consistent with observations in Huntington disease, transgenic SCA3 mice reveal a tendency for decrease of soluble mutant ataxin-3 during disease progression in fractions of the cerebellum, which is inversely correlated with aggregate formation and phenotypic aggravation. Our analyses demonstrate that the time-resolved Förster resonance energy transfer immunoassay is a highly sensitive and easy method to measure the level of soluble mutant ataxin-3 in biological samples. Of interest, we observed a tendency for decrease of soluble mutant ataxin-3 only in the cerebellum of transgenic SCA3 mice, one of the most affected brain regions in Spinocerebellar Ataxia Type 3 but not in whole brain tissue, indicative of a brain region selective change in mutant ataxin-3 protein homeostasis.


Genome-wide screen for modifiers of ataxin-3 neurodegeneration in Drosophila.

  • Julide Bilen‎ et al.
  • PLoS genetics‎
  • 2007‎

Spinocerebellar ataxia type-3 (SCA3) is among the most common dominantly inherited ataxias, and is one of nine devastating human neurodegenerative diseases caused by the expansion of a CAG repeat encoding glutamine within the gene. The polyglutamine domain confers toxicity on the protein Ataxin-3 leading to neuronal dysfunction and loss. Although modifiers of polyglutamine toxicity have been identified, little is known concerning how the modifiers function mechanistically to affect toxicity. To reveal insight into spinocerebellar ataxia type-3, we performed a genetic screen in Drosophila with pathogenic Ataxin-3-induced neurodegeneration and identified 25 modifiers defining 18 genes. Despite a variety of predicted molecular activities, biological analysis indicated that the modifiers affected protein misfolding. Detailed mechanistic studies revealed that some modifiers affected protein accumulation in a manner dependent on the proteasome, whereas others affected autophagy. Select modifiers of Ataxin-3 also affected tau, revealing common pathways between degeneration due to distinct human neurotoxic proteins. These findings provide new insight into molecular pathways of polyQ toxicity, defining novel targets for promoting neuronal survival in human neurodegenerative disease.


Valosin-containing protein (VCP/p97) is an activator of wild-type ataxin-3.

  • Mário N Laço‎ et al.
  • PloS one‎
  • 2012‎

Alterations in the ubiquitin-proteasome system (UPS) have been reported in several neurodegenerative disorders characterized by protein misfolding and aggregation, including the polylgutamine diseases. Machado-Joseph disease (MJD) or Spinocerebellar Ataxia type 3 is caused by a polyglutamine-encoding CAG expansion in the ATXN3 gene, which encodes a 42 kDa deubiquitinating enzyme (DUB), ataxin-3. We investigated ataxin-3 deubiquitinating activity and the functional relevance of ataxin-3 interactions with two proteins previously described to interact with ataxin-3, hHR23A and valosin-containing protein (VCP/p97). We confirmed ataxin-3 affinity for both hHR23A and VCP/p97. hHR23A and ataxin-3 were shown to co-localize in discrete nuclear foci, while VCP/p97 was primarily cytoplasmic. hHR23A and VCP/p97 recombinant proteins were added, separately or together, to normal and expanded ataxin-3 in in vitro deubiquitination assays to evaluate their influence on ataxin-3 activity. VCP/p97 was shown to be an activator specifically of wild-type ataxin-3, exhibiting no effect on expanded ataxin-3, In contrast, we observed no significant alterations in ataxin-3 enzyme kinetics or substrate preference in the presence of hHR23A alone or in combination with VCP. Based on our results we propose a model where ataxin-3 normally functions with its interactors to specify the cellular fate of ubiquitinated proteins.


p62/sequestosome 1 regulates aggresome formation of pathogenic ataxin-3 with expanded polyglutamine.

  • Liang Zhou‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

The cellular protein quality control system in association with aggresome formation contributes to protecting cells against aggregation-prone protein-induced toxicity. p62/Sequestosome 1 (p62) is a multifunctional protein which plays an important role in protein degradation and aggregation. Although poly-ubiquitination is usually required for p62-mediated protein degradation and aggresome formation, several p62 substrates are processed to form aggregate in an ubiquitination-independent manner. In this study we demonstrate that p62 directly interacts with pathogenic Machado Joseph Disease (MJD)-associated protein ataxin-3 with polyglutamine (polyQ) expansion. Moreover, p62 could regulate the aggresome formation of pathogenic ataxin-3 and protect cells against pathogenic ataxin-3-induced cell death.


Characterization of the conformational fluctuations in the Josephin domain of ataxin-3.

  • Domenico Sanfelice‎ et al.
  • Biophysical journal‎
  • 2014‎

As for a variety of other molecular recognition processes, conformational fluctuations play an important role in the cleavage of polyubiquitin chains by the Josephin domain of ataxin-3. The interaction between Josephin and ubiquitin appears to be mediated by the motions of α-helical hairpin that is unusual among deubiquitinating enzymes. Here, we characterized the conformational fluctuations of the helical hairpin by incorporating NMR measurements as replica-averaged restraints in molecular dynamics simulations, and by validating the results by small-angle x-ray scattering measurements. This approach allowed us to define the extent of the helical hairpin motions and suggest a role of such motions in the recognition of ubiquitin.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: