Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 767 papers

Identification of glucose transporters in Aspergillus nidulans.

  • Thaila Fernanda Dos Reis‎ et al.
  • PloS one‎
  • 2013‎

To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and -E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose.


Functional analysis of the Aspergillus nidulans kinome.

  • Colin P De Souza‎ et al.
  • PloS one‎
  • 2013‎

The filamentous fungi are an ecologically important group of organisms which also have important industrial applications but devastating effects as pathogens and agents of food spoilage. Protein kinases have been implicated in the regulation of virtually all biological processes but how they regulate filamentous fungal specific processes is not understood. The filamentous fungus Aspergillus nidulans has long been utilized as a powerful molecular genetic system and recent technical advances have made systematic approaches to study large gene sets possible. To enhance A. nidulans functional genomics we have created gene deletion constructs for 9851 genes representing 93.3% of the encoding genome. To illustrate the utility of these constructs, and advance the understanding of fungal kinases, we have systematically generated deletion strains for 128 A. nidulans kinases including expanded groups of 15 histidine kinases, 7 SRPK (serine-arginine protein kinases) kinases and an interesting group of 11 filamentous fungal specific kinases. We defined the terminal phenotype of 23 of the 25 essential kinases by heterokaryon rescue and identified phenotypes for 43 of the 103 non-essential kinases. Uncovered phenotypes ranged from almost no growth for a small number of essential kinases implicated in processes such as ribosomal biosynthesis, to conditional defects in response to cellular stresses. The data provide experimental evidence that previously uncharacterized kinases function in the septation initiation network, the cell wall integrity and the morphogenesis Orb6 kinase signaling pathways, as well as in pathways regulating vesicular trafficking, sexual development and secondary metabolism. Finally, we identify ChkC as a third effector kinase functioning in the cellular response to genotoxic stress. The identification of many previously unknown functions for kinases through the functional analysis of the A. nidulans kinome illustrates the utility of the A. nidulans gene deletion constructs.


Core oxidative stress response in Aspergillus nidulans.

  • Tamás Emri‎ et al.
  • BMC genomics‎
  • 2015‎

The b-Zip transcription factor AtfA plays a key role in regulating stress responses in the filamentous fungus Aspergillus nidulans. To identify the core regulons of AtfA, we examined genome-wide expression changes caused by various stresses in the presence/absence of AtfA using A. nidulans microarrays. We also intended to address the intriguing question regarding the existence of core environmental stress response in this important model eukaryote.


Nup2 performs diverse interphase functions in Aspergillus nidulans.

  • Subbulakshmi Suresh‎ et al.
  • Molecular biology of the cell‎
  • 2018‎

The nuclear pore complex (NPC) protein Nup2 plays interphase nuclear transport roles and in Aspergillus nidulans also functions to bridge NPCs at mitotic chromatin for their faithful coinheritance to daughter G1 nuclei. In this study, we further investigate the interphase functions of Nup2 in A. nidulans. Although Nup2 is not required for nuclear import of all nuclear proteins after mitosis, it is required for normal G1 nuclear accumulation of the NPC nuclear basket-associated components Mad2 and Mlp1 as well as the THO complex protein Tho2. Targeting of Mlp1 to nuclei partially rescues the interphase delay seen in nup2 mutants indicating that some of the interphase defects in Nup2-deleted cells are due to Mlp1 mislocalization. Among the inner nuclear membrane proteins, Nup2 affects the localization of Ima1, orthologues of which are involved in nuclear movement. Interestingly, nup2 mutant G1 nuclei also exhibit an abnormally long period of extensive to-and-fro movement immediately after mitosis in a manner dependent on the microtubule cytoskeleton. This indicates that Nup2 is required to limit the transient postmitotic nuclear migration typical of many filamentous fungi. The findings reveal that Nup2 is a multifunctional protein that performs diverse functions during both interphase and mitosis in A. nidulans.


Oxidative stress-induced calcium signalling in Aspergillus nidulans.

  • Vilma Greene‎ et al.
  • Cellular signalling‎
  • 2002‎

The effects of oxidative stress on levels of calcium ion (Ca(2+)) in Aspergillus nidulans were measured using strains expressing aequorin in the cytoplasm (Aeq(cyt)) and mitochondria (Aeq(mt)). When oxidative stress was induced by exposure to 10-mM H(2)O(2), the mitochondrial calcium response (Ca(mt)(2+)) was greater than the change in cytoplasmic calcium (Ca(c)(2+)). The Ca(mt)(2+) response to H(2)O(2) was dose dependent, while the increase in [Ca(c)(2+)] did not change with increasing H(2)O(2). The increase in both [Ca(c)(2+)] and [Ca(mt)(2+)] in response to oxidative stress was enhanced by exposure of cells to Ca(2+). The presence of chelator in the external medium only partially inhibited the Ca(mt)(2+) and Ca(c)(2+) responses to oxidative stress. Reagents that alter calcium fluxes had varied effects on the Ca(mt)(2+) response to peroxide. Ruthenium red blocked the increase in [Ca(mt)(2+)], while neomycin caused an even greater increase in [Ca(mt)(2+)]. Treatment with ruthenium red and neomycin had no effect on the Ca(c)(2+) response. Bafilomycin A and oligomycin had no effect on either the mitochondrial or cytoplasmic response. Inhibitors of both voltage-regulated calcium channels and intracellular calcium release channels inhibited the Ca(2+)-dependent component of the Ca(mt)(2+) response to oxidative stress. We conclude that the more significant Ca(2+) response to oxidative stress occurs in the mitochondria and that both intracellular and extracellular calcium pools can contribute to the increases in [Ca(c)(2+)] and [Ca(mt)(2+)] induced by oxidative stress.


VelC positively controls sexual development in Aspergillus nidulans.

  • Hee-Soo Park‎ et al.
  • PloS one‎
  • 2014‎

Fungal development and secondary metabolism is intimately associated via activities of the fungi-specific velvet family proteins including VeA, VosA, VelB and VelC. Among these, VelC has not been characterized in Aspergillus nidulans. In this study, we characterize the role of VelC in asexual and sexual development in A. nidulans. The velC mRNA specifically accumulates during the early phase of sexual development. The deletion of velC leads to increased number of conidia and reduced production of sexual fruiting bodies (cleistothecia). In the velC deletion mutant, mRNA levels of the brlA, abaA, wetA and vosA genes that control sequential activation of asexual sporulation increase. Overexpression of velC causes increased formation of cleistothecia. These results suggest that VelC functions as a positive regulator of sexual development. VelC is one of the five proteins that physically interact with VosA in yeast two-hybrid and GST pull down analyses. The ΔvelC ΔvosA double mutant produced fewer cleistothecia and behaved similar to the ΔvosA mutant, suggesting that VosA is epistatic to VelC in sexual development, and that VelC might mediate control of sex through interacting with VosA at specific life stages for sexual fruiting.


Functional characterization of a xylose transporter in Aspergillus nidulans.

  • Ana Cristina Colabardini‎ et al.
  • Biotechnology for biofuels‎
  • 2014‎

The production of bioethanol from lignocellulosic feedstocks will only become economically feasible when the majority of cellulosic and hemicellulosic biopolymers can be efficiently converted into bioethanol. The main component of cellulose is glucose, whereas hemicelluloses mainly consist of pentose sugars such as D-xylose and L-arabinose. The genomes of filamentous fungi such as A. nidulans encode a multiplicity of sugar transporters with broad affinities for hexose and pentose sugars. Saccharomyces cerevisiae, which has a long history of use in industrial fermentation processes, is not able to efficiently transport or metabolize pentose sugars (e.g. xylose). Subsequently, the aim of this study was to identify xylose-transporters from A. nidulans, as potential candidates for introduction into S. cerevisiae in order to improve xylose utilization.


Colistin and Isavuconazole Interact Synergistically In Vitro against Aspergillus nidulans and Aspergillus niger.

  • Patrick Schwarz‎ et al.
  • Microorganisms‎
  • 2020‎

The in vitro interactions of isavuconazole in combination with colistin were evaluated against 55 clinical Aspergillus species isolates belonging to the five most important species (Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, and Aspergillus terreus) responsible for human aspergillosis by a microdilution checkerboard technique based on the European Committee on Antimicrobial Susceptibility Testing (EUCAST) reference method for antifungal susceptibility testing. Selected isolates (A. nidulans, n = 10; A. niger, n = 15) were additionally evaluated by an agar diffusion assay using isavuconazole gradient concentration strips with or without colistin incorporated Roswell Parc Memorial Institute (RPMI) agar. Interpretation of the checkerboard results was done by the fractional inhibitory concentration index. Using the checkerboard method, combination isavuconazole-colistin was synergistic for 100% of the 15 A. nidulans isolates and for 60% of the 20 A. niger isolates. No interactions were found for any of the other isolates. By agar diffusion assay, minimal inhibitory concentrations (MICs) in combination decreased compared to isavuconazole alone for 92% of the isolates. No interactions were found for any A. nidulans isolates, but synergy was observed for 40% of the A. niger isolates. A poor essential agreement of EUCAST and gradient concentration strip MICs at ± 2 log2 dilutions with 0% was obtained. Antagonistic interactions were never observed regardless of the technique used.


Heterologous expression of Gaeumannomyces graminis lipoxygenase in Aspergillus nidulans.

  • Ruud Heshof‎ et al.
  • AMB Express‎
  • 2014‎

Aspergillus sp. contain ppo genes coding for Ppo enzymes that produce oxylipins from polyunsaturated fatty acids. These oxylipins function as signal molecules in sporulation and influence the asexual to sexual ratio of Aspergillus sp. Fungi like Aspergillus nidulans and Aspergillus niger contain just ppo genes where the human pathogenic Aspergillus flavus and Aspergillus fumigatus contain ppo genes as well as lipoxygenases. Lipoxygenases catalyze the synthesis of oxylipins and are hypothesized to be involved in quorum-sensing abilities and invading plant tissue. In this study we used A. nidulans WG505 as an expression host to heterologously express Gaeumannomyces graminis lipoxygenase. The presence of the recombinant LOX induced phenotypic changes in A. nidulans transformants. Also, a proteomic analysis of an A. nidulans LOX producing strain indicated that the heterologous protein was degraded before its glycosylation in the secretory pathway. We observed that the presence of LOX induced the specific production of aminopeptidase Y that possibly degrades the G. graminis lipoxygenase intercellularly. Also the presence of the protein thioredoxin reductase suggests that the G. graminis lipoxygenase is actively repressed in A. nidulans.


Analysis of a novel calcium auxotrophy in Aspergillus nidulans.

  • Helen Findon‎ et al.
  • Fungal genetics and biology : FG & B‎
  • 2010‎

In Aspergillus nidulans a combination of null mutations in halA, encoding a protein kinase, and sltA, encoding a zinc-finger transcription factor having no yeast homologues, results in an elevated calcium requirement ('calcium auxotrophy') without impairing net calcium uptake. sltA(-) (+/-halA(-)) mutations result in hypertrophy of the vacuolar system. In halA(-)sltA(-) (and sltA(-)) strains, transcript levels for pmcA and pmcB, encoding vacuolar Ca(2+)-ATPase homologues, are highly elevated, suggesting a regulatory relationship between vacuolar membrane area and certain vacuolar membrane ATPase levels. Deletion of both pmcA and pmcB strongly suppresses the 'calcium auxotrophy'. Therefore the 'calcium auxotrophy' possibly results from excessive vacuolar calcium sequestration, causing cytosolic calcium deprivation. Null mutations in nhaA, homologous to Saccharomyces cerevisiae NHA1, encoding a plasma membrane Na(+)/H(+) antiporter effluxing Na(+) and K(+), and a non-null mutation in trkB, homologous to S. cerevisiae TRK1, encoding a plasma membrane high affinity K(+) transporter, also suppress the calcium auxotrophy.


Survival Factor A (SvfA) Contributes to Aspergillus nidulans Pathogenicity.

  • Joo-Yeon Lim‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2023‎

Survival factor A (SvfA) in Aspergillus nidulans plays multiple roles in growth and developmental processes. It is a candidate for a novel VeA-dependent protein involved in sexual development. VeA is a key developmental regulator in Aspergillus species that can interact with other velvet-family proteins and enter into the nucleus to function as a transcription factor. In yeast and fungi, SvfA-homologous proteins are required for survival under oxidative and cold-stress conditions. To assess the role of SvfA in virulence in A. nidulans, cell wall components, biofilm formation, and protease activity were evaluated in a svfA-gene-deletion or an AfsvfA-overexpressing strain. The svfA-deletion strain showed decreased production of β-1,3-glucan in conidia, a cell wall pathogen-associated molecular pattern, with a decrease in gene expression for chitin synthases and β-1,3-glucan synthase. The ability to form biofilms and produce proteases was reduced in the svfA-deletion strain. We hypothesized that the svfA-deletion strain was less virulent than the wild-type strain; therefore, we performed in vitro phagocytosis assays using alveolar macrophages and analyzed in vivo survival using two vertebrate animal models. While phagocytosis was reduced in mouse alveolar macrophages challenged with conidia from the svfA-deletion strain, the killing rate showed a significant increase with increased extracellular signal-regulated kinase ERK activation. The svfA-deletion conidia infection reduced host mortality in both T-cell-deficient zebrafish and chronic granulomatous disease mouse models. Taken together, these results indicate that SvfA plays a significant role in the pathogenicity of A. nidulans.


Diversity of Secondary Metabolism in Aspergillus nidulans Clinical Isolates.

  • M T Drott‎ et al.
  • mSphere‎
  • 2020‎

The filamentous fungus Aspergillus nidulans has been a primary workhorse used to understand fungal genetics. Much of this work has focused on elucidating the genetics of biosynthetic gene clusters (BGCs) and the secondary metabolites (SMs) they produce. SMs are both niche defining in fungi and of great economic importance to humans. Despite the focus on A. nidulans, very little is known about the natural diversity in secondary metabolism within this species. We determined the BGC content and looked for evolutionary patterns in BGCs from whole-genome sequences of two clinical isolates and the A4 reference genome of A. nidulans Differences in BGC content were used to explain SM profiles determined using liquid chromatography-high-resolution mass spectrometry. We found that in addition to genetic variation of BGCs contained by all isolates, nine BGCs varied by presence/absence. We discovered the viridicatumtoxin BGC in A. nidulans and suggest that this BGC has undergone a horizontal gene transfer from the Aspergillus section Nigri lineage into Penicillium sometime after the sections Nigri and Nidulantes diverged. We identified the production of viridicatumtoxin and several other compounds previously not known to be produced by A. nidulans One isolate showed a lack of sterigmatocystin production even though it contained an apparently intact sterigmatocystin BGC, raising questions about other genes and processes known to regulate this BGC. Altogether, our work uncovers a large degree of intraspecies diversity in BGC and SM production in this genetic model species and offers new avenues to understand the evolution and regulation of secondary metabolism.IMPORTANCE Much of what we know about the genetics underlying secondary metabolite (SM) production and the function of SMs in the model fungus Aspergillus nidulans comes from a single reference genome. A growing body of research indicates the importance of biosynthetic gene cluster (BGC) and SM diversity within a species. However, there is no information about the natural diversity of secondary metabolism in A. nidulans We discovered six novel clusters that contribute to the considerable variation in both BGC content and SM production within A. nidulans We characterize a diverse set of mutations and emphasize how findings of single nucleotide polymorphisms (SNPs), deletions, and differences in evolutionary history encompass much of the variation observed in nonmodel systems. Our results emphasize that A. nidulans may also be a strong model to use within-species diversity to elucidate regulatory cross talk, fungal ecology, and drug discovery systems.


Mitotic processes which restore genome balance in Aspergillus nidulans.

  • B L Case‎ et al.
  • Journal of general microbiology‎
  • 1981‎

Previous work had shown that haploid strains of Aspergillus nidulans with a duplicate chromosome segment (one in normal position, one translocated to another chromosome) were unstable at mitosis; genome balance was restored by spontaneous deletion of either duplicate segment. Diploids with an extra, translocated segment showed high instability which was confined to the excess segments; loss of one of these, usually that in translocated position, gave balanced diploid nuclei and the loss was assumed to be by deletion. This led to the proposal that high-frequency deletion was provoked by, and confined to, the excess segment. In the present work it has been shown that elimination of the translocated segment in such diploids occurs more frequently by mitotic crossing over than by deletion. Accordingly, in a more rigorous test of the possible association of excess segments and deletions, a diploid homozygous for an extra, translocated segment has been studied as mitotic crossing over in this strain could not give a balanced genome. The strain was extremely unstable and gave variants of which most had a balanced, or near-balanced, diploid genome. Some variants arose by simultaneous deletions involving both non-translocated segments; almost all variants had deletions with breakpoints different from those most frequent in the corresponding, duplication haploid. The results have shown the diversity of mechanisms available for the correction of genome imbalance and that, at least in the case of Dp(I,II), the degree and modalities of mitotic instability are functions of the balance of chromosome segments and of ploidy.


The Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex in Aspergillus nidulans.

  • Paraskevi Georgakopoulos‎ et al.
  • PloS one‎
  • 2013‎

A mutation screen in Aspergillus nidulans uncovered mutations in the acdX gene that led to altered repression by acetate, but not by glucose. AcdX of A. nidulans is highly conserved with Spt8p of Saccharomyces cerevisiae, and since Spt8p is a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex, the SAGA complex may have a role in acetate repression in A. nidulans. We used a bioinformatic approach to identify genes encoding most members of the SAGA complex in A. nidulans, and a proteomic analysis to confirm that most protein components identified indeed exist as a complex in A. nidulans. No apparent compositional differences were detected in mycelia cultured in acetate compared to glucose medium. The methods used revealed apparent differences between Yeast and A. nidulans in the deubiquitination (DUB) module of the complex, which in S. cerevisiae consists of Sgf11p, Sus1p, and Ubp8p. Although a convincing homologue of S. cerevisiae Ubp8p was identified in the A. nidulans genome, there were no apparent homologues for Sus1p and Sgf11p. In addition, when the SAGA complex was purified from A. nidulans, members of the DUB module were not co-purified with the complex, indicating that functional homologues of Sus1p and Sgf11p were not part of the complex. Thus, deubiquitination of H2B-Ub in stress conditions is likely to be regulated differently in A. nidulans compared to S. cerevisiae.


Aspergillus nidulans Pmts form heterodimers in all pairwise combinations.

  • Thanyanuch Kriangkripipat‎ et al.
  • FEBS open bio‎
  • 2014‎

Eukaryotic protein O-mannosyltransferases (Pmts) are divided into three subfamilies (Pmt1, Pmt2, and Pmt4) and activity of Pmts in yeasts and animals requires assembly into complexes. In Saccharomyces cerevisiae, Pmt1 and Pmt2 form a heteromeric complex and Pmt 4 forms a homomeric complex. The filamentous fungus Aspergillus nidulans has three Pmts: PmtA (subfamily 2), PmtB (subfamily 1), and PmtC (subfamily 4). In this study we show that A. nidulans Pmts form heteromeric complexes in all possible pairwise combinations and that PmtC forms homomeric complexes. We also show that MsbA, an ortholog of a Pmt4-modified protein, is not modified by PmtC.


The WOPR Domain Protein OsaA Orchestrates Development in Aspergillus nidulans.

  • Fahad Alkahyyat‎ et al.
  • PloS one‎
  • 2015‎

Orchestration of cellular growth and development occurs during the life cycle of Aspergillus nidulans. A multi-copy genetic screen intended to unveil novel regulators of development identified the AN6578 locus predicted to encode a protein with the WOPR domain, which is a broadly present fungi-specific DNA-binding motif. Multi-copy of AN6578 disrupted the normal life cycle of the fungus leading to enhanced proliferation of vegetative cells, whereas the deletion resulted in hyper-active sexual fruiting with reduced asexual development (conidiation), thus named as osaA (Orchestrator of Sex and Asex). Further genetic studies indicate that OsaA balances development mainly by repressing sexual development downstream of the velvet regulator VeA. The absence of osaA is sufficient to suppress the veA1 allele leading to the sporulation levels comparable to veA+ wild type (WT). Genome-wide transcriptomic analyses of WT, veA1, and ΔosaA veA1 strains by RNA-Seq further corroborate that OsaA functions in repressing sexual development downstream of VeA. However, OsaA also plays additional roles in controlling development, as the ΔosaA veA1 mutant exhibits precocious and enhanced formation of Hülle cells compared to WT. The OsaA orthologue of Aspergillus flavus is able to complement the osaA null phenotype in A. nidulans, suggesting a conserved role of this group of WOPR domain proteins. In summary, OsaA is an upstream orchestrator of morphological and chemical development in Aspergillus that functions downstream of VeA.


A Simple CRISPR/Cas9 System for Efficiently Targeting Genes of Aspergillus Section Flavi Species, Aspergillus nidulans, Aspergillus fumigatus, Aspergillus terreus, and Aspergillus niger.

  • Perng-Kuang Chang‎
  • Microbiology spectrum‎
  • 2023‎

For Aspergillus flavus, a pathogen of considerable economic and health concern, successful gene knockout work for more than a decade has relied nearly exclusively on using nonhomologous end-joining pathway (NHEJ)-deficient recipients via forced double-crossover recombination of homologous sequences. In this study, a simple CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease) genome editing system that gave extremely high (>95%) gene-targeting frequencies in A. flavus was developed. It contained a shortened Aspergillus nidulans AMA1 autonomously replicating sequence that maintained good transformation frequencies and Aspergillus oryzae ptrA as the selection marker for pyrithiamine resistance. Expression of the codon-optimized cas9 gene was driven by the A. nidulans gpdA promoter and trpC terminator. Expression of single guide RNA (sgRNA) cassettes was controlled by the A. flavus U6 promoter and terminator. The high transformation and gene-targeting frequencies of this system made generation of A. flavus gene knockouts with or without phenotypic changes effortless. Additionally, multiple-gene knockouts of A. flavus conidial pigment genes (olgA/copT/wA or olgA/yA/wA) were quickly generated by a sequential approach. Cotransforming sgRNA vectors targeting A. flavus kojA, yA, and wA gave 52%, 40%, and 8% of single-, double-, and triple-gene knockouts, respectively. The system was readily applicable to other section Flavi aspergilli (A. parasiticus, A. oryzae, A. sojae, A. nomius, A. bombycis, and A. pseudotamarii) with comparable transformation and gene-targeting efficiencies. Moreover, it gave satisfactory gene-targeting efficiencies (>90%) in A. nidulans (section Nidulantes), A. fumigatus (section Fumigati), A. terreus (section Terrei), and A. niger (section Nigri). It likely will have a broad application in aspergilli. IMPORTANCE CRISPR/Cas9 genome editing systems have been developed for many aspergilli. Reported gene-targeting efficiencies vary greatly and are dependent on delivery methods, repair mechanisms of induced double-stranded breaks, selection markers, and genetic backgrounds of transformation recipient strains. They are also mostly strain specific or species specific. This developed system is highly efficient and allows knocking out multiple genes in A. flavus efficiently either by sequential transformation or by cotransformation of individual sgRNA vectors if desired. It is readily applicable to section Flavi species and aspergilli in other sections ("section" is a taxonomic rank between genus and species). This cross-Aspergillus section system is for wild-type isolates and does not require homologous donor DNAs to be added, NHEJ-deficient strains to be created, or forced recycling of knockout recipients to be performed for multiple-gene targeting. Hence, it simplifies and expedites the gene-targeting process significantly.


Mitotic nuclear pore complex segregation involves Nup2 in Aspergillus nidulans.

  • Subbulakshmi Suresh‎ et al.
  • The Journal of cell biology‎
  • 2017‎

Transport through nuclear pore complexes (NPCs) during interphase is facilitated by the nucleoporin Nup2 via its importin α- and Ran-binding domains. However, Aspergillus nidulans and vertebrate Nup2 also locate to chromatin during mitosis, suggestive of mitotic functions. In this study, we report that Nup2 is required for mitotic NPC inheritance in A. nidulans Interestingly, the role of Nup2 during mitotic NPC segregation is independent of its importin α- and Ran-binding domains but relies on a central targeting domain that is necessary for localization and viability. To test whether mitotic chromatin-associated Nup2 might function to bridge NPCs with chromatin during segregation, we provided an artificial link between NPCs and chromatin via Nup133 and histone H1. Using this approach, we bypassed the requirement of Nup2 for NPC segregation. This indicates that A. nidulans cells ensure accurate mitotic NPC segregation to daughter nuclei by linking mitotic DNA and NPC segregation via the mitotic specific chromatin association of Nup2.


Mechanism of Sterigmatocystin Biosynthesis Regulation by pH in Aspergillus nidulans.

  • Francisco Delgado-Virgen‎ et al.
  • Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]‎
  • 2009‎

External pH constitutes one of the most important environmental factors that control growth, metabolism and differentiation in microorganisms, including fungi. We have analyzed the effect of external pH on sterigmatocystin biosynthesis in Aspergillus nidulans. It was observed in repeated experiments that alkaline pH, in opposition to acid pH, increased sterigmatocystin production and the transcript levels of aflR, the master gene that regulates expression of the sterigmatocystin cluster in A. nidulans. It is known that pH effects in fungi operate mostly through the Pal/Pac signaling pathway, originally described in Aspergillus nidulans. Accordingly, we studied the role of this signaling pathway in ST biosynthesis. It was observed that aflR transcript levels were increased in the "alkalinity mimicking" mutant pacC(c)14 and were minimal in the "acidity mimicking" mutant palA1. No sterigmatocystin was produced by palA1 or pacC- mutants at neither acid or alkaline pH of incubation. Finally, fluG and flbA, genes known to regulate both conidiation and sterigmatocystin synthesis upstream in the regulatory cascade, were up-regulated at alkaline pH.


Investigating Aspergillus nidulans secretome during colonisation of cork cell walls.

  • Isabel Martins‎ et al.
  • Journal of proteomics‎
  • 2014‎

Cork, the outer bark of Quercus suber, shows a unique compositional structure, a set of remarkable properties, including high recalcitrance. Cork colonisation by Ascomycota remains largely overlooked. Herein, Aspergillus nidulans secretome on cork was analysed (2DE). Proteomic data were further complemented by microscopic (SEM) and spectroscopic (ATR-FTIR) evaluation of the colonised substrate and by targeted analysis of lignin degradation compounds (UPLC-HRMS). Data showed that the fungus formed an intricate network of hyphae around the cork cell walls, which enabled polysaccharides and lignin superficial degradation, but probably not of suberin. The degradation of polysaccharides was suggested by the identification of few polysaccharide degrading enzymes (β-glucosidases and endo-1,5-α-l-arabinosidase). Lignin degradation, which likely evolved throughout a Fenton-like mechanism relying on the activity of alcohol oxidases, was supported by the identification of small aromatic compounds (e.g. cinnamic acid and veratrylaldehyde) and of several putative high molecular weight lignin degradation products. In addition, cork recalcitrance was corroborated by the identification of several protein species which are associated with autolysis. Finally, stringent comparative proteomics revealed that A. nidulans colonisation of cork and wood share a common set of enzymatic mechanisms. However the higher polysaccharide accessibility in cork might explain the increase of β-glucosidase in cork secretome.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: