Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

Arrhythmogenic Right Ventricular Dysplasia in Neuromuscular Disorders.

  • Josef Finsterer‎ et al.
  • Clinical Medicine Insights. Cardiology‎
  • 2016‎

Arrhythmogenic right ventricular dysplasia (ARVD) is a rare, genetic disorder predominantly affecting the right ventricle. There is increasing evidence that in some cases, ARVD is due to mutations in genes, which have also been implicated in primary myopathies. This review gives an overview about myopathy-associated ARVD and how these patients can be managed.


Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs.

  • Changsung Kim‎ et al.
  • Nature‎
  • 2013‎

Cellular reprogramming of somatic cells to patient-specific induced pluripotent stem cells (iPSCs) enables in vitro modelling of human genetic disorders for pathogenic investigations and therapeutic screens. However, using iPSC-derived cardiomyocytes (iPSC-CMs) to model an adult-onset heart disease remains challenging owing to the uncertainty regarding the ability of relatively immature iPSC-CMs to fully recapitulate adult disease phenotypes. Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited heart disease characterized by pathological fatty infiltration and cardiomyocyte loss predominantly in the right ventricle, which is associated with life-threatening ventricular arrhythmias. Over 50% of affected individuals have desmosome gene mutations, most commonly in PKP2, encoding plakophilin-2 (ref. 9). The median age at presentation of ARVD/C is 26 years. We used previously published methods to generate iPSC lines from fibroblasts of two patients with ARVD/C and PKP2 mutations. Mutant PKP2 iPSC-CMs demonstrate abnormal plakoglobin nuclear translocation and decreased β-catenin activity in cardiogenic conditions; yet, these abnormal features are insufficient to reproduce the pathological phenotypes of ARVD/C in standard cardiogenic conditions. Here we show that induction of adult-like metabolic energetics from an embryonic/glycolytic state and abnormal peroxisome proliferator-activated receptor gamma (PPAR-γ) activation underlie the pathogenesis of ARVD/C. By co-activating normal PPAR-alpha-dependent metabolism and abnormal PPAR-γ pathway in beating embryoid bodies (EBs) with defined media, we established an efficient ARVD/C in vitro model within 2 months. This model manifests exaggerated lipogenesis and apoptosis in mutant PKP2 iPSC-CMs. iPSC-CMs with a homozygous PKP2 mutation also had calcium-handling deficits. Our study is the first to demonstrate that induction of adult-like metabolism has a critical role in establishing an adult-onset disease model using patient-specific iPSCs. Using this model, we revealed crucial pathogenic insights that metabolic derangement in adult-like metabolic milieu underlies ARVD/C pathologies, enabling us to propose novel disease-modifying therapeutic strategies.


Assessment of inflammation in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia.

  • Maria E Campian‎ et al.
  • European journal of nuclear medicine and molecular imaging‎
  • 2010‎

Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is a myocardial disease that predominantly affects the right ventricle (RV). Its hallmark feature is fibro-fatty replacement of RV myocardium. However, patchy inflammatory infiltrates in the RV are also consistently reported using autopsy and myocardial biopsy. Although the role of inflammation in ARVC/D is unresolved, the ability to assess inflammation non-invasively may aid in the diagnostic process. We aimed to establish whether cardiac inflammation can be assessed non-invasively in ARVC/D patients.


Desmosomal cadherins are decreased in explanted arrhythmogenic right ventricular dysplasia/cardiomyopathy patient hearts.

  • Alexia Vite‎ et al.
  • PloS one‎
  • 2013‎

Arrhythmogenic right ventricular Dysplasia/cardiomyopathy (ARVD/C) is an autosomal dominant inherited cardiomyopathy associated with ventricular arrhythmia, heart failure and sudden death. Genetic studies have demonstrated the central role of desmosomal proteins in this disease, where 50% of patients harbor a mutation in a desmosmal gene. However, clinical diagnosis of the disease remains difficult and molecular mechanisms appears heterogeneous and poorly understood. The aim of this study was to characterize the expression profile of desmosomal proteins in explanted ARVD/C heart samples, in order to identify common features of the disease.


Contribution of exome sequencing for genetic diagnostic in arrhythmogenic right ventricular cardiomyopathy/dysplasia.

  • Joel Fedida‎ et al.
  • PloS one‎
  • 2017‎

Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia (ARVC/D) is an inherited cardiomyopathy mainly caused by heterozygous desmosomal gene mutations, the major gene being PKP2. The genetic cause remains unknown in ~50% of probands with routine desmosomal gene screening. The aim of this study was to assess the diagnostic accuracy of whole exome sequencing (WES) in ARVC/D with negative genetic testing.


Clinical features and arrhythmic complications of patients with pediatric-onset arrhythmogenic right ventricular dysplasia.

  • Fatma Sevinç Şengül‎ et al.
  • Anatolian journal of cardiology‎
  • 2019‎

Arrhythmogenic right ventricular dysplasia (ARVD) is a myocardial genetic disease that occurs primarily in the right ventricle. Patients with ARVD may present with severe ventricular arrhythmias, syncope, and cardiac arrest. The purpose of this study is to evaluate the clinical features and arrhythmic complications of patients with pediatric-onset ARVD.


Left ventricular fibro-fatty replacement in arrhythmogenic right ventricular dysplasia/cardiomyopathy: prevalence, patterns, and association with arrhythmias.

  • Tarek Zghaib‎ et al.
  • Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance‎
  • 2021‎

Left ventricular (LV) fibrofatty infiltration in arrhythmogenic right ventricular (RV) dysplasia/cardiomyopathy (ARVD/C) has been reported, however, detailed cardiovascular magnetic resonance (CMR) characteristics and association with outcomes are uncertain. We aim to describe LV findings on CMR in ARVD/C patients and their relationship with arrhythmic outcomes.


PKP2 and DSG2 genetic variations in Latvian arrhythmogenic right ventricular dysplasia/cardiomyopathy registry patients.

  • Luize Bidina‎ et al.
  • Anatolian journal of cardiology‎
  • 2018‎

The Latvian arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD-C) registry was established to determine the genetic background of ARVD-C for analyzing discovered genetic variation frequencies in the European and Latvian populations.


Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in the desmosomal gene desmocollin-2.

  • Petros Syrris‎ et al.
  • American journal of human genetics‎
  • 2006‎

Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited myocardial disorder associated with arrhythmias, heart failure, and sudden death. To date, mutations in four genes encoding major desmosomal proteins (plakoglobin, desmoplakin, plakophilin-2, and desmoglein-2) have been implicated in the pathogenesis of ARVD/C. We screened 77 probands with ARVD/C for mutations in desmocollin-2 (DSC2), a gene coding for a desmosomal cadherin. Two heterozygous mutations--a deletion and an insertion--were identified in four probands. Both mutations result in frameshifts and premature truncation of the desmocollin-2 protein. For the first time, we have identified mutations in desmocollin-2 in patients with ARVD/C, a finding that is consistent with the hypothesis that ARVD/C is a disease of the desmosome.


Subcutaneous Implantable Cardioverter-Defibrillator in Patients With Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: A Transatlantic Experience.

  • Gabriela M Orgeron‎ et al.
  • Journal of the American Heart Association‎
  • 2018‎

Background Despite growing use of the subcutaneous implantable cardioverter-defibrillator (S- ICD ), its clinical role in arrhythmogenic right ventricular cardiomyopathy/dysplasia ( ARVC /D) patients remains undefined. We aim to elucidate the cardiac phenotype, implant characteristics, and long-term efficacy regarding appropriate therapy and complications in ARVC /D patients with an S- ICD implant. Methods and Results A transatlantic cohort of ARVC /D patients who underwent S- ICD implantation was analyzed for clinical characteristics, S- ICD therapy, and long-term outcome including device-related complications. The cohort included 29 patients (52% male, 76% probands, 59% with ARVC /D-associated mutation, 59% primary prevention [no prior sustained ventricular arrhythmias], and 45% first-generation S- ICD devices). At implant, all inducible patients (27/29) had conversion of induced ventricular fibrillation. Two patients (7%) had superficial infections of the incision site that were treated conservatively. Over a median follow-up of 3.16 years (interquartile range: 2.21-4.51 years), all episodes (6 patients, 4% per year) of sustained ventricular arrhythmias were appropriately detected and treated. Six patients (21%) experienced 39 inappropriate shocks, with 3 requiring device explantation. Oversensing of noncardiac signal (n=4; especially myopotentials) and cardiac signal (n=4) was the most frequent etiology. No lead or device dislodgement, infection, skin erosion, or explantation related to need for antitachycardia pacing was noted. Conclusions S- ICD can effectively treat both induced and spontaneous ventricular arrhythmias in patients with ARVC /D. The rate of inappropriate shocks, although considerable, is comparable to that in ARVC /D patients treated with transvenous ICD s. When they occurred, inappropriate shocks were primarily due to cardiac and, uniquely, noncardiac oversensing. We suggest potential strategies for minimizing inappropriate therapy.


Cardiac Magnetic Resonance Imaging (MRI) Findings in Arrhythmogenic Right Ventricular Dysplasia (ARVD) Compared with Echocardiography.

  • Marzie Motevali‎ et al.
  • Medical sciences (Basel, Switzerland)‎
  • 2018‎

Arrhythmogenic right ventricular dysplasia (ARVD) is an abnormality in the right side of the heart that may lead to sudden death. The study aims to compare cardiac MRI (magnetic resonance imaging findings) with echocardiography in patients with ARVD. For the cross-sectional study, patients with ARVD that were diagnosed using Task Force criteria were included, and their cardiac MRI findings were evaluated. Additionally, the right ventricle was divided into three levels-basal, middle, and apical-and each of them was also subdivided into three secondary segments. Gadolinium enhancement was evaluated in each segment. Overall, 39 patients were studied. Thirty-one patients (81%) were men. The average age of female and male patients was 37.8 ± 4.6 and 32.48 ± 5.8, respectively. The average ejection fraction found was 43 ± 9.4 and 42.8 ± 8.5% by MRI and echocardiography, respectively. Additionally, 46 and 35.8% of the patients had hypokinesia in the right ventricle, found based on MRI and echocardiography, respectively. The right ventricular aneurysm was found in 20.5 and 5.1% of patients based on MRI and echocardiography, respectively. The cardiac MRI managed to diagnose some cases which echocardiography was not able to detect. Thus, MRI plays an important role in presenting diagnostic data for the management of patients with ARVD and also making the diagnosis in suspicious patients definitive.


TMEM43-S358L mutation enhances NF-κB-TGFβ signal cascade in arrhythmogenic right ventricular dysplasia/cardiomyopathy.

  • Guoxing Zheng‎ et al.
  • Protein & cell‎
  • 2019‎

Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is a genetic cardiac muscle disease that accounts for approximately 30% sudden cardiac death in young adults. The Ser358Leu mutation of transmembrane protein 43 (TMEM43) was commonly identified in the patients of highly lethal and fully penetrant ARVD subtype, ARVD5. Here, we generated TMEM43 S358L mouse to explore the underlying mechanism. This mouse strain showed the classic pathologies of ARVD patients, including structural abnormalities and cardiac fibrofatty. TMEM43 S358L mutation led to hyper-activated nuclear factor κB (NF-κB) activation in heart tissues and primary cardiomyocyte cells. Importantly, this hyper activation of NF-κB directly drove the expression of pro-fibrotic gene, transforming growth factor beta (TGFβ1), and enhanced downstream signal, indicating that TMEM43 S358L mutation up-regulates NF-κB-TGFβ signal cascade during ARVD cardiac fibrosis. Our study partially reveals the regulatory mechanism of ARVD development.


Left Ventricular Involvement in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Predicts Adverse Clinical Outcomes: A Cardiovascular Magnetic Resonance Feature Tracking Study.

  • Meng-Ting Shen‎ et al.
  • Scientific reports‎
  • 2019‎

The aim of this study was to investigate left ventricular (LV) global myocardial strain and LV involvement characteristics in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) and to evaluate their predictive value of adverse cardiac events. Sixty consecutive ARVD/C patients with a definite diagnosis of ARVD/C who underwent CMR examination and thirty-four healthy controls were enrolled retrospectively. The CMR images were analyzed for LV myocardial strain and the presence of LV involvement. The endpoint was defined as a composite of sustained ventricular tachycardia or fibrillation, cardiac death, resuscitated cardiac arrest, heart transplantation, and appropriate implantable cardioverter-defibrillator shock. LV global longitudinal (GLS), circumferential (GCS), and radial strain (GRS) were significantly impaired in ARVC/D patients compared to healthy controls (GLS: -13.89 ± 3.26% vs. -16.68 ± 2.74%, GCS: -15.65 ± 3.40% vs. -19.20 ± 2.23%, GRS: 34.57 ± 11.98% vs. 49.92 ± 12.59%; P < 0.001 for all). Even in ARVC/D patients with preserved LVEF, LV GLS, GCS and GRS were also significantly reduced than in controls. During a mean follow-up period of 4.10 ± 1.77 years, the endpoint was reached in 17 patients. LV GLS >-12.65% (HR, 3.58; 95%CI, 1.14 to 11.25; p = 0.029) and history of syncope (HR, 4.99; 95%CI, 1.88 to 13.24; p = 0.001) were the only independent predictors of cardiac outcomes. The LV myocardial deformation derived from FT CMR was significantly impaired in ARVD/C patients, and this alteration can occur before the impairment of LVEF. LV GLS >-12.65% and history of syncope were the only independent prognostic markers of adverse cardiac outcomes.


Imaging of programmed cell death in arrhythmogenic right ventricle cardiomyopathy/dysplasia.

  • Maria E Campian‎ et al.
  • European journal of nuclear medicine and molecular imaging‎
  • 2011‎

Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is a myocardial disease that predominantly affects the right ventricle (RV). Its hallmark feature is fibrofatty replacement of the RV myocardium. Apoptosis in ARVC/D has been proposed as an important process that mediates the slow, ongoing loss of heart muscle cells which is followed by ventricular dysfunction. We aimed to establish whether cardiac apoptosis can be assessed noninvasively in patients with ARVC/D.


Feature tracking CMR reveals abnormal strain in preclinical arrhythmogenic right ventricular dysplasia/ cardiomyopathy: a multisoftware feasibility and clinical implementation study.

  • Mimount Bourfiss‎ et al.
  • Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance‎
  • 2017‎

Regional right ventricular (RV) dysfunction is the hallmark of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C), but is currently only qualitatively evaluated in the clinical setting. Feature Tracking Cardiovascular Magnetic Resonance (FT-CMR) is a novel quantitative method that uses cine CMR to calculate strain values. However, most prior FT-CMR studies in ARVD/C have focused on global RV strain using different software methods, complicating implementation of FT-CMR in clinical practice. We aimed to assess the clinical value of global and regional strain using FT-CMR in ARVD/C and to determine differences between commercially available FT-CMR software packages.


Ablation strategies for arrhythmogenic right ventricular cardiomyopathy: a systematic review and meta-analysis.

  • Li-Shui Shen‎ et al.
  • Journal of geriatric cardiology : JGC‎
  • 2020‎

Catheter ablation for ventricular tachycardia (VT) in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) has significantly evolved over the past decade. However, different ablation strategies showed inconsistency in acute and long-term outcomes.


The locus of a novel gene responsible for arrhythmogenic right-ventricular dysplasia characterized by early onset and high penetrance maps to chromosome 10p12-p14.

  • D Li‎ et al.
  • American journal of human genetics‎
  • 2000‎

Arrhythmogenic right-ventricular dysplasia (ARVD), a cardiomyopathy inherited as an autosomal-dominant disease, is characterized by fibro-fatty infiltration of the right-ventricular myocardium. Four loci for ARVD have been mapped in the Italian population, and recently the first locus was mapped in inhabitants of North America. None of the genes have been identified. We have now identified another North American family with early onset of ARVD and high penetrance. All of the children with the disease haplotype had pathological or clinical evidence of the disease at age <10 years. The family spans five generations, having 10 living and 2 dead affected individuals, with ARVD segregating as an autosomal-dominant disorder. Genetic linkage analysis excluded known loci, and a novel locus was identified on chromosome 10p12-p14. A peak two-point LOD score of 3.92 was obtained with marker D10S1664, at a recombination fraction of 0. Additional genotyping and haplotype analysis identified a shared region of 10.6 cM between marker D10S547 and D10S1653. Thus, a novel gene responsible for ARVD resides on the short arm of chromosome 10. This disease is intriguing, since it initiates exclusively in the right ventricle and exhibits pathological features of apoptosis. Chromosomal localization of the ARVD gene is the first step in identification of the genetic defect and the unraveling of the molecular basis responsible for the pathogenesis of the disease.


An induced pluripotent stem cell line (EHTJUi004-A) generated from a neonate with c.4683_4684delCT:p.Leu1563fs mutation in the gene DSP causing Familial Arrhythmogenic Right Ventricular Dysplasia (ARVD).

  • Yi-Yao Qi‎ et al.
  • Stem cell research‎
  • 2021‎

Familial Arrhythmogenic Right Ventricular Dysplasia (ARVD) is a primary cardiomyopathy characterized by the abnormality of the right ventricular muscle. ARVD may be life-threatening due to the induction of paroxysmal refractory ventricular tachycardia or supraventricular arrhythmia. A human induced pluripotent stem cell line (EHTJUi004-A) was generated from human umbilical cord blood mononuclear cells (UCBMCs) of a female neonate with heterozygous mutation of p.Leu1563fs (c.4683_4684delCT) in the DSP gene. This iPS cell line resource provides an ideal in vitro model to study the pathological mechanism of ARVD.


Genotype-phenotype relationship in patients with arrhythmogenic right ventricular cardiomyopathy caused by desmosomal gene mutations: A systematic review and meta-analysis.

  • Zhenyan Xu‎ et al.
  • Scientific reports‎
  • 2017‎

The relationship between clinical phenotypes and desmosomal gene mutations in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) is poorly characterized. Therefore, we performed a meta-analysis to explore the genotype-phenotype relationship in patients with ARVC. Any studies reporting this genotype-phenotype relationship were included. In total, 11 studies involving 1,113 patients were included. The presence of desmosomal gene mutations was associated with a younger onset age of ARVC (32.7 ± 15.2 versus 43.2 ± 13.3 years; P = 0.001), a higher incidence of T wave inversion in V1-3 leads (78.5% versus 51.6%; P = 0.0002) or a family history of ARVC (39.5% versus 27.1%; P = 0.03). There was no difference in the proportion of males between desmosomal-positive and desmosomal-negative patients (68.3% versus 68.9%; P = 0.60). The presence of desmosomal gene mutations was not associated with global or regional structural and functional alterations (63.5% versus 60.5%; P = 0.37), epsilon wave (29.4% versus 26.2%; P = 0.51) or ventricular tachycardia of left bundle-branch morphology (62.6% versus 57.2%; P = 0.30). Overall, patients with desmosomal gene mutations are characterized by an earlier onset age, a higher incidence of T wave inversion in V1-3 leads and a strong family history of ARVC.


Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene.

  • Nancy D Merner‎ et al.
  • American journal of human genetics‎
  • 2008‎

Autosomal-dominant arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) causes sudden cardiac death and is characterized by clinical and genetic heterogeneity. Fifteen unrelated ARVC families with a disease-associated haplotype on chromosome 3p (ARVD5) were ascertained from a genetically isolated population. Identification of key recombination events reduced the disease region to a 2.36 Mb interval containing 20 annotated genes. Bidirectional resequencing showed one rare variant in transmembrane protein 43 (TMEM43 1073C-->T, S358L), was carried on all recombinant ARVD5 ancestral haplotypes from affected subjects and not found in population controls. The mutation occurs in a highly conserved transmembrane domain of TMEM43 and is predicted to be deleterious. Clinical outcomes in 257 affected and 151 unaffected subjects were compared, and penetrance was determined. We concluded that ARVC at locus ARVD5 is a lethal, fully penetrant, sex-influenced morbid disorder. Median life expectancy was 41 years in affected males compared to 71 years in affected females (relative risk 6.8, 95% CI 1.3-10.9). Heart failure was a late manifestation in survivors. Although little is known about the function of the TMEM43 gene, it contains a response element for PPAR gamma (an adipogenic transcription factor), which may explain the fibrofatty replacement of the myocardium, a characteristic pathological finding in ARVC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: