Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Novel mutations underlying argininosuccinic aciduria in Saudi Arabia.

  • Faiqa Imtiaz‎ et al.
  • BMC research notes‎
  • 2010‎

Argininosuccinic aciduria (ASAuria) is an autosomal recessive disorder of the urea cycle relatively common in Saudi Arabia as a consequence of extensive consanguinity. It is the most common urea cycle disorder identified in the Saudi population, which therefore prioritizes the need to delineate the underlying molecular defects leading to disease.


Expanding the phenotype in argininosuccinic aciduria: need for new therapies.

  • Julien Baruteau‎ et al.
  • Journal of inherited metabolic disease‎
  • 2017‎

This UK-wide study defines the natural history of argininosuccinic aciduria and compares long-term neurological outcomes in patients presenting clinically or treated prospectively from birth with ammonia-lowering drugs.


Argininosuccinic aciduria fosters neuronal nitrosative stress reversed by Asl gene transfer.

  • Julien Baruteau‎ et al.
  • Nature communications‎
  • 2018‎

Argininosuccinate lyase (ASL) belongs to the hepatic urea cycle detoxifying ammonia, and the citrulline-nitric oxide (NO) cycle producing NO. ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia, multiorgan disease and neurocognitive impairment despite treatment aiming to normalise ammonaemia without considering NO imbalance. Here we show that cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress independent of hyperammonaemia. Intravenous injection of AAV8 vector into adult or neonatal ASL-deficient mice demonstrates long-term correction of the hepatic urea cycle and the cerebral citrulline-NO cycle, respectively. Cerebral disease persists if ammonaemia only is normalised but is dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This correlates with behavioural improvement and reduced cortical cell death. Thus, neuronal oxidative/nitrosative stress is a distinct pathophysiological mechanism from hyperammonaemia. Disease amelioration by simultaneous brain and liver gene transfer with one vector, to treat both metabolic pathways, provides new hope for hepatocerebral metabolic diseases.


Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria.

  • Sandesh C S Nagamani‎ et al.
  • American journal of human genetics‎
  • 2012‎

Argininosuccinate lyase (ASL) is required for the synthesis and channeling of L-arginine to nitric oxide synthase (NOS) for nitric oxide (NO) production. Congenital ASL deficiency causes argininosuccinic aciduria (ASA), the second most common urea-cycle disorder, and leads to deficiency of both ureagenesis and NO production. Subjects with ASA have been reported to develop long-term complications such as hypertension and neurocognitive deficits despite early initiation of therapy and the absence of documented hyperammonemia. In order to distinguish the relative contributions of the hepatic urea-cycle defect from those of the NO deficiency to the phenotype, we performed liver-directed gene therapy in a mouse model of ASA. Whereas the gene therapy corrected the ureagenesis defect, the systemic hypertension in mice could be corrected by treatment with an exogenous NO source. In an ASA subject with severe hypertension refractory to antihypertensive medications, monotherapy with NO supplements resulted in the long-term control of hypertension and a decrease in cardiac hypertrophy. In addition, the NO therapy was associated with an improvement in some neuropsychological parameters pertaining to verbal memory and nonverbal problem solving. Our data show that ASA, in addition to being a classical urea-cycle disorder, is also a model of congenital human NO deficiency and that ASA subjects could potentially benefit from NO supplementation. Hence, NO supplementation should be investigated for the long-term treatment of this condition.


Adeno-associated viral gene therapy corrects a mouse model of argininosuccinic aciduria.

  • Scott N Ashley‎ et al.
  • Molecular genetics and metabolism‎
  • 2018‎

Argininosuccinic aciduria (ASA) is the second most common genetic disorder affecting the urea cycle. The disease is caused by deleterious mutations in the gene encoding argininosuccinate lyase (ASL); total loss of ASL activity results in severe neonatal onset of the disease, which is characterized by hyperammonemia within a few days of birth that can rapidly progress to coma and death. The long-term complications of ASA, such as hypertension and neurocognitive deficits, appear to be resistant to the current treatment options of dietary restriction, arginine supplementation, and nitrogen scavenging drugs. Treatment-resistant disease is currently being managed by orthotopic liver transplant, which shows variable improvement and requires lifetime immunosuppression. Here, we developed a gene therapy strategy for ASA aimed at alleviating the symptoms associated with urea cycle disruption by providing stable expression of ASL protein in the liver. We designed a codon-optimized human ASL gene packaged within adeno-associated virus serotype 8 (AAV8) as a vector for targeted delivery to the liver. To evaluate the therapeutic efficacy of this approach, we utilized a murine hypomorphic model of ASA. Neonatal administration of AAV8 via the temporal facial vein extended survival in ASA hypomorphic mice, although not to wild-type levels. Intravenous injection into adolescent hypomorphic mice led to increased survival and body weight and correction of metabolites associated with the disease. Our results demonstrate that AAV8 gene therapy is a viable approach for the treatment of ASA.


ASL mRNA-LNP Therapeutic for the Treatment of Argininosuccinic Aciduria Enables Survival Benefit in a Mouse Model.

  • Owen Daly‎ et al.
  • Biomedicines‎
  • 2023‎

Argininosuccinic aciduria (ASA) is a metabolic disorder caused by a deficiency in argininosuccinate lyase (ASL), which cleaves argininosuccinic acid to arginine and fumarate in the urea cycle. ASL deficiency (ASLD) leads to hepatocyte dysfunction, hyperammonemia, encephalopathy, and respiratory alkalosis. Here we describe a novel therapeutic approach for treating ASA, based on nucleoside-modified messenger RNA (modRNA) formulated in lipid nanoparticles (LNP). To optimize ASL-encoding mRNA, we modified its cap, 5' and 3' untranslated regions, coding sequence, and the poly(A) tail. We tested multiple optimizations of the formulated mRNA in human cells and wild-type C57BL/6 mice. The ASL protein showed robust expression in vitro and in vivo and a favorable safety profile, with low cytokine and chemokine secretion even upon administration of increasing doses of ASL mRNA-LNP. In the ASLNeo/Neo mouse model of ASLD, intravenous administration of the lead therapeutic candidate LNP-ASL CDS2 drastically improved the survival of the mice. When administered twice a week lower doses partially protected and 3 mg/kg LNP-ASL CDS2 fully protected the mice. These results demonstrate the considerable potential of LNP-formulated, modified ASL-encoding mRNA as an effective alternative to AAV-based approaches for the treatment of ASA.


Late-onset argininosuccinic aciduria associated with hyperammonemia triggered by influenza infection in an adolescent: A case report.

  • Yoshimitsu Osawa‎ et al.
  • Molecular genetics and metabolism reports‎
  • 2020‎

Hyperammonemia is a typical symptom of urea cycle disorders. While early-onset argininosuccinic aciduria (ASA) can often be detected by hyperammonemia, patients with late-onset ASA predominantly present with psychomotor retardation and mental disorders. However, in late-onset ASA that develops during early childhood, hyperammonemia can sometimes be caused by acute infections, stress, and reduced dietary intake. Here, we report the case of a 14-year-old boy with late-onset ASA associated with hyperammonemia that was triggered by an influenza A infection. Due to the infection, he presented with a fever and was unable to eat food or take oral medication. He then experienced restlessness, a disturbance in his level of consciousness, and seizures. Hyperammonemia (3286 μg/dL, reference value ≤100 μg/dL) was detected. He was biochemically diagnosed with ASA based on increased serum and urinary argininosuccinic acid levels. Additionally, genetic testing revealed compound heterozygous mutations in the ASL gene: c.91G > A(p.Asp31Asn) and c.1251-1G > C. This case revealed that in late-onset ASA, hyperammonemia can occur not only in early childhood but also during adolescence. Late-onset ASA may have a very broad clinical spectrum that includes hyperammonemia. We suggest that urea cycle disorders such as ASA must be considered when patients present with hyperammonemic decompensation during adolescence.


Functional Characterization of Argininosuccinate Lyase Gene Variants by Mini-Gene Splicing Assay.

  • Yanyun Wang‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Argininosuccinate lyase (ASL) gene mutations account for argininosuccinic aciduria (ASA). This study aimed to design a minigene construct of ASL gene in order to investigate the impact of variants on splicing.


Generation of induced pluripotent stem cells (UCLi024-A) from a patient with argininosuccinate lyase deficiency carrying a homozygous c.437G > A (p.Arg146Gln) mutation.

  • Claire Duff‎ et al.
  • Stem cell research‎
  • 2024‎

Argininosuccinic aciduria (ASA) is a rare inherited metabolic disease caused by argininosuccinate lyase (ASL) deficiency. Patients with ASA present with hyperammonaemia due to an impaired urea cycle pathway in the liver, and systemic disease with epileptic encephalopathy, chronic liver disease, and arterial hypertension. A human induced pluripotent stem cell (iPSC) line from the fibroblasts of a patient with ASA with homozygous pathogenic c.437G > A mutation of hASL was generated. Characterization of the cell line demonstrated pluripotency, differentiation potential and normal karyotype. This cell line, called UCLi024-A, can be utilized for in vitro disease modelling of ASA, and design of novel therapeutics.


Creatine metabolism in patients with urea cycle disorders.

  • Filippo Ingoglia‎ et al.
  • Molecular genetics and metabolism reports‎
  • 2021‎

The urea cycle generates arginine that is one of the major precursors for creatine biosynthesis. Here we evaluate levels of creatine and guanidinoacetate (the precursor in the synthesis of creatine) in plasma samples (ns = 207) of patients (np = 73) with different types of urea cycle disorders (ornithine transcarbamylase deficiency (ns = 22; np = 7), citrullinemia type 1 (ns = 60; np = 22), argininosuccinic aciduria (ns = 81; np = 31), arginase deficiency (ns = 44; np = 13)). The concentration of plasma guanidinoacetate positively correlated (p < 0.001, R2 = 0.64) with levels of arginine, but not with glycine in all patients with urea cycle defects, rising to levels above normal in most samples (34 out of 44) of patients with arginase deficiency. In contrast to patients with guanidinoacetate methyltransferase deficiency (a disorder of creatine synthesis characterized by elevated guanidinoacetate concentrations), creatine levels were normal (32 out of 44) or above normal (12 out of 44) in samples from patients with arginase deficiency. Creatine levels correlated significantly, but poorly (p < 0.01, R2 = 0.1) with guanidinoacetate levels and, despite being overall in the normal range in patients with all other urea cycle disorders, were occasionally below normal in some patients with argininosuccinic acid synthase and lyase deficiency. Creatine levels positively correlated with levels of methionine (p < 0.001, R2 = 0.16), the donor of the methyl group for creatine synthesis. The direct correlation of arginine levels with guanidinoacetate in patients with urea cycle disorders explains the increased concentration of guanidino compounds in arginase deficiency. Low creatine levels in some patients with other urea cycle defects might be explained by low protein intake (creatine is naturally present in meat) and relative or absolute intracellular arginine deficiency.


Identification of rare variants causing urea cycle disorders: A clinical, genetic, and biophysical study.

  • Fang Liu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Urea cycle disorders (UCDs) are a group of rare metabolic conditions characterized by hyperammonemia and a broad spectrum of phenotypic severity. They are caused by the congenital deficiency in the eight biomolecules involved in urea cycle. In the present study, five cases of UCD were recruited and submitted to a series of clinical, biochemical, and genetic analysis with a combination of high throughput techniques. Moreover, in silico analysis was conducted on the identified missense genetic variants. Various clinical and biochemical indications (including profiles of amino acids and urinary orotic acids) of UCD were manifested by the five probands. Sequence analysis revealed nine diagnostic variants, including three novel ones, which caused Argininosuccinic aciduria (ASA) in one case, Carbamoyl phosphate synthetase 1deficiency (CPS1D) in two cases, Ornithine transcarbamylase deficiency (OTCD) in one case, and Citrin deficiency in 1case. Results of in silico biophysical analysis strongly suggested the pathogenicity of each the five missense variants and provided insight into their intramolecular impacts. In conclusion, this study expanded the genetic variation spectrum of UCD, gave solid evidence for counselling to the affected families, and should facilitate the functional study on the proteins in urea cycle.


Intrahepatic Administration of Human Liver Stem Cells in Infants with Inherited Neonatal-Onset Hyperammonemia: A Phase I Study.

  • Marco Spada‎ et al.
  • Stem cell reviews and reports‎
  • 2020‎

Previous studies have shown that human liver stem-like cells (HLSCs) may undergo differentiation in vitro into urea producing hepatocytes and in vivo may sustain liver function in models of experimentally induced acute liver injury. The aim of this study was to assess the safety of HLSCs intrahepatic administration in inherited neonatal-onset hyperammonemia. The study was approved by the Agenzia Italiana del Farmaco on favorable opinion of the Italian Institute of Health as an open-label, prospective, uncontrolled, monocentric Phase I study (HLSC 01-11, EudraCT-No. 2012-002120-33). Three patients affected by argininosuccinic aciduria (patient 1) and methylmalonic acidemia (patients 2 and 3) and included in the liver transplantation list were enrolled. In all patients, HLSCs were administered by percutaneous intrahepatic injections (once a week for two consecutive weeks) within the first months of life. The first patient received 125,000 HLSCs x gram of liver/dose while the other two patients received twice this dose. No immunosuppression was administered since HLSCs possess immunomodulatory activities. None of the patients experienced infections, hyperammonemia decompensation, or other adverse events during the whole observation period. No donor specific antibodies (DSA) against HLSCs were detected. Patients were metabolic stable despite an increase (~30%) in protein intake. Two patients underwent liver transplantation after 19 and 11 months respectively, and after explantation, the native livers showed no histological alterations. In conclusion, percutaneous intrahepatic administration of HLSCs was safe in newborn with inherited neonatal-onset hyperammonemia. These data pave the way for Phase II studies in selected inherited and acquired liver disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: