Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 89 papers

Therapeutic targeting of argininosuccinate synthase 1 (ASS1)-deficient pulmonary fibrosis.

  • Ji-Min Li‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2021‎

Argininosuccinate synthase 1 (ASS1) serves as a critical enzyme in arginine biosynthesis; however, its role in interstitial lung diseases, particularly idiopathic pulmonary fibrosis (IPF), remains largely unknown. This study aims at characterization and targeting of ASS1 deficiency in pulmonary fibrosis. We find that ASS1 was significantly decreased and inversely correlated with fibrotic status. Transcriptional downregulation of ASS1 was noted in fibroblastic foci of primary lung fibroblasts isolated from IPF patients. Genetic manipulations of ASS1 studies confirm that ASS1 expression inhibited fibroblast cell proliferation, migration, and invasion. We further show that the hepatocyte growth factor receptor (Met) receptor was activated and acted upstream of the Src-STAT3 axis signaling in ASS1-knockdown fibroblasts. Interestingly, both arginine-free conditions and arginine deiminase treatment were demonstrated to kill fibrotic fibroblasts, attenuated bleomycin-induced pulmonary fibrosis in mice, as well as synergistically increased nintedanib efficacy. Our data suggest ASS1 deficiency as a druggable target and also provide a unique therapeutic strategy against pulmonary fibrosis.


Extracellular vesicles from human liver stem cells restore argininosuccinate synthase deficiency.

  • Maria Beatriz Herrera Sanchez‎ et al.
  • Stem cell research & therapy‎
  • 2017‎

Argininosuccinate synthase (ASS)1 is a urea cycle enzyme that catalyzes the conversion of citrulline and aspartate to argininosuccinate. Mutations in the ASS1 gene cause citrullinemia type I, a rare autosomal recessive disorder characterized by neonatal hyperammonemia, elevated citrulline levels, and early neonatal death. Treatment for this disease is currently restricted to liver transplantation; however, due to limited organ availability, substitute therapies are required. Recently, extracellular vesicles (EVs) have been reported to act as intercellular transporters carrying genetic information responsible for cell reprogramming. In previous studies, we isolated a population of stem cell-like cells known as human liver stem cells (HLSCs) from healthy liver tissue. Moreover, EVs derived from HLSCs were reported to exhibit regenerative effects on the liver parenchyma in models of acute liver injury. The aim of this study was to evaluate whether EVs derived from normal HLSCs restored ASS1 enzymatic activity and urea production in hepatocytes differentiated from HLSCs derived from a patient with type I citrullinemia.


Argininosuccinate synthase 1 is an intrinsic Akt repressor transactivated by p53.

  • Takafumi Miyamoto‎ et al.
  • Science advances‎
  • 2017‎

The transcription factor p53 is at the core of a built-in tumor suppression system that responds to varying degrees of stress input and is deregulated in most human cancers. Befitting its role in maintaining cellular fitness and fidelity, p53 regulates an appropriate set of target genes in response to cellular stresses. However, a comprehensive understanding of this scheme has not been accomplished. We show that argininosuccinate synthase 1 (ASS1), a citrulline-aspartate ligase in de novo arginine synthesis pathway, was directly transactivated by p53 in response to genotoxic stress, resulting in the rearrangement of arginine metabolism. Furthermore, we found that x-ray irradiation promoted the systemic induction of Ass1 and concomitantly increased plasma arginine levels in p53+/+ mice but not in p53-/- mice. Notably, Ass1+/- mice exhibited hypersensitivity to whole-body irradiation owing to increased apoptosis in the small intestinal crypts. Analyses of ASS1-deficient cells generated using the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated 9) system revealed that ASS1 plays a pivotal role in limiting Akt phosphorylation. In addition, aberrant activation of Akt resulting from ASS1 loss disrupted Akt-mediated cell survival signaling activity under genotoxic stress. Building on these results, we demonstrated that p53 induced an intrinsic Akt repressor, ASS1, and the perturbation of ASS1 expression rendered cells susceptible to genotoxic stress. Our findings uncover a new function of p53 in the regulation of Akt signaling and reveal how p53, ASS1, and Akt are interrelated to each other.


Leishmania donovani argininosuccinate synthase is an active enzyme associated with parasite pathogenesis.

  • Ines Lakhal-Naouar‎ et al.
  • PLoS neglected tropical diseases‎
  • 2012‎

Gene expression analysis in Leishmania donovani (Ld) identified an orthologue of the urea cycle enzyme, argininosuccinate synthase (LdASS), that was more abundantly expressed in amastigotes than in promastigotes. In order to characterize in detail this newly identified protein in Leishmania, we determined its enzymatic activity, subcellular localization in the parasite and affect on virulence in vivo.


Inhibition of the Polyamine Synthesis Pathway Is Synthetically Lethal with Loss of Argininosuccinate Synthase 1.

  • Matthew Locke‎ et al.
  • Cell reports‎
  • 2016‎

Argininosuccinate synthase 1 (ASS1) is the rate-limiting enzyme for arginine biosynthesis. ASS1 expression is lost in a range of tumor types, including 50% of malignant pleural mesotheliomas. Starving ASS1-deficient cells of arginine with arginine blockers such as ADI-PEG20 can induce selective lethality and has shown great promise in the clinical setting. We have generated a model of ADI-PEG20 resistance in mesothelioma cells. This resistance is mediated through re-expression of ASS1 via demethylation of the ASS1 promoter. Through coordinated transcriptomic and metabolomic profiling, we have shown that ASS1-deficient cells have decreased levels of acetylated polyamine metabolites, together with a compensatory increase in the expression of polyamine biosynthetic enzymes. Upon arginine deprivation, polyamine metabolites are decreased in the ASS1-deficient cells and in plasma isolated from ASS1-deficient mesothelioma patients. We identify a synthetic lethal dependence between ASS1 deficiency and polyamine metabolism, which could potentially be exploited for the treatment of ASS1-negative cancers.


Naturally-occurring spinosyn A and its derivatives function as argininosuccinate synthase activator and tumor inhibitor.

  • Zizheng Zou‎ et al.
  • Nature communications‎
  • 2021‎

Argininosuccinate synthase (ASS1) is a ubiquitous enzyme in mammals that catalyzes the formation of argininosuccinate from citrulline and aspartate. ASS1 genetic deficiency in patients leads to an autosomal recessive urea cycle disorder citrullinemia, while its somatic silence or down-regulation is very common in various human cancers. Here, we show that ASS1 functions as a tumor suppressor in breast cancer, and the pesticide spinosyn A (SPA) and its derivative LM-2I suppress breast tumor cell proliferation and growth by binding to and activating ASS1. The C13-C14 double bond in SPA and LM-2I while the Cys97 (C97) site in ASS1 are critical for the interaction between ASS1 and SPA or LM-2I. SPA and LM-2I treatment results in significant enhancement of ASS1 enzymatic activity in breast cancer cells, particularly in those cancer cells with low ASS1 expression, leading to reduced pyrimidine synthesis and consequently the inhibition of cancer cell proliferation. Thus, our results establish spinosyn A and its derivative LM-2I as potent ASS1 enzymatic activator and tumor inhibitor, which provides a therapeutic avenue for tumors with low ASS1 expression and for those non-tumor diseases caused by down-regulation of ASS1.


Genetic Manipulation of Leishmania donovani to Explore the Involvement of Argininosuccinate Synthase in Oxidative Stress Management.

  • Abul Hasan Sardar‎ et al.
  • PLoS neglected tropical diseases‎
  • 2016‎

Reactive oxygen and nitrogen species (ROS and RNS) produced by the phagocytic cells are the most common arsenals used to kill the intracellular pathogens. However, Leishmania, an intracellular pathogen, has evolved mechanisms to survive by counterbalancing the toxic oxygen metabolites produced during infection. Polyamines, the major contributor in this anti-oxidant machinery, are largely dependent on the availability of L-arginine in the intracellular milieu. Argininosuccinate synthase (ASS) plays an important role as the rate-limiting step required for converting L-citrulline to argininosuccinate to provide arginine for an assortment of metabolic processes. Leishmania produce an active ASS enzyme, yet it has an incomplete urea cycle as it lacks an argininosuccinate lyase (ASL). There is no evidence for endogenous synthesis of L-arginine in Leishmania, which suggests that these parasites salvage L-arginine from extracellular milieu and makes the biological function of ASS and the production of argininosuccinate in Leishmania unclear. Our previous quantitative proteomic analysis of Leishmania promastigotes treated with sub-lethal doses of ROS, RNS, or a combination of both, led to the identification of several differentially expressed proteins which included ASS. To assess the involvement of ASS in stress management, a mutant cell line with greatly reduced ASS activity was created by a double-targeted gene replacement strategy in L. donovani promastigote. Interestingly, LdASS is encoded by three copies of allele, but Western blot analysis showed the third allele did not appear to express ASS. The free thiol levels in the mutant LdASS-/-/+ cell line were decreased. Furthermore, the cell viability in L-arginine depleted medium was greatly attenuated on exposure to different stress environments and was adversely impacted in its ability to infect mice. These findings suggest that ASS is important for Leishmania donovani to counterbalance the stressed environments encountered during infection and can be targeted for chemotherapeutic purpose to treat visceral leishmaniasis.


Heterologous Expression of Argininosuccinate Synthase From Oenococcus oeni Enhances the Acid Resistance of Lactobacillus plantarum.

  • Hongyu Zhao‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Oenococcus oeni can survive well in wine (an acid-stress environment) and dominate malolactic fermentation (MLF). To demonstrate a possible role of argininosuccinate synthase gene (argG) in the acid tolerance response of O. oeni, a related argG gene was inserted into a plasmid pMG36e and heterologously expressed in Lactobacillus plantarum SL09, a wine isolate belonging to a species of relevant importance in MLF. The expression levels of the argG gene in L. plantarum were analyzed by RT-qPCR, argininosuccinate synthase (ASS) activity and cell properties (amino acids, pH, H+-ATPase activity, and ATP levels) were determined at pH 3.7 in comparison with that at pH 6.3. Results showed that the recombinant strain L. plantarum SL09 (pMG36eargG) exhibited stronger growth performance compared with the control strain (without argG gene), and the expression levels of hsp1, cfa, atp, the citrate and malate metabolic genes were apparently increased under acid stress. In addition, the recombinant strain exhibited 11.0-, 2.0-, 1.9-fold higher ASS activity, H+-ATPase activity and intracellular ATP level, compared with the corresponding values for control strain during acid-stresses condition, which may take responsible for the acid tolerance enhancement of the recombinant strain. This is the first work report on heterologous expression of argG gene, and the results presented in this study will be beneficial for the research on acid stress response of O. oeni.


Argininosuccinate synthase 1 suppresses tumor progression through activation of PERK/eIF2α/ATF4/CHOP axis in hepatocellular carcinoma.

  • Sanghwa Kim‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2021‎

Hepatocellular carcinoma (HCC) is one of the most common malignant cancers worldwide, and liver cancer has increased in mortality due to liver cancer because it was detected at an advanced stages in patients with liver dysfunction, making HCC a lethal cancer. Accordingly, we aim to new targets for HCC drug discovery using HCC tumor spheroids.


Argininosuccinate Synthase 1-Deficiency Enhances the Cell Sensitivity to Arginine through Decreased DEPTOR Expression in Endometrial Cancer.

  • Kenji Ohshima‎ et al.
  • Scientific reports‎
  • 2017‎

Argininosuccinate synthetase 1 (ASS1) is a rate-limiting enzyme in arginine biosynthesis. Although ASS1 expression levels are often reduced in several tumors and low ASS1 expression can be a poor prognostic factor, the underlying mechanism has not been elucidated. In this study, we reveal a novel association between ASS1 and migration/invasion of endometrial tumors via regulation of mechanistic target of rapamycin complex (mTORC) 1 signaling. ASS1-knockout cells showed enhanced migration and invasion in response to arginine following arginine starvation. In ASS1-knockout cells, DEPTOR, an inhibitor of mTORC1 signal, was downregulated and mTORC1 signaling was more activated in response to arginine. ASS1 epigenetically enhanced DEPTOR expression by altering the histone methylation. Consistent with these findings, tumor cells at the invasive front of endometrioid carcinoma cases showed lower ASS1 and DEPTOR expression. Our findings suggest that ASS1 levels in each tumor cell are associated with invasion capability in response to arginine within the tumor microenvironment through mTORC1 signal regulation.


N(6)-adenosine-methyltransferase-14 promotes glioma tumorigenesis by repressing argininosuccinate synthase 1 expression in an m6A-dependent manner.

  • You-Qing Miao‎ et al.
  • Bioengineered‎
  • 2022‎

Glioma is one of the leading causes of tumor-related deaths worldwide, but its potential mechanism remains unclear. This study aimed to explore the biological role and potential mechanism of argininosuccinate synthase 1 (ASS1) in glioma. The relative expression levels of ASS1 in glioma specimens and cell lines were calculated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting. The biological functions of ASS1 were demonstrated using the 5-ethynyl-2'-deoxyuridine (EdU) assay, transwell assay, and in vivo experiments. In addition, methylated RNA immunoprecipitation (MeRIP), RNA immunoprecipitation (RIP), and luciferase reporter assays were performed to explore the molecular mechanism of ASS1 in glioma. ASS1 expression levels were found to be downregulated in glioma specimens and cell lines. Functionally, we confirmed that ASS1 inhibited glioma cell proliferation, migration, invasion, and growth both. Furthermore, we found that ASS1 was a target of N(6)-adenosine-methyltransferase-14 (METTL14)-mediated N6-methyladenosine (m6A) modification. Overexpression of METTL14 markedly elevated ASS1 mRNA m6A modification and suppressed ASS1 mRNA expression. We also revealed that METTL14-mediated ASS1 mRNA degradation relied on the YTH m6A RNA-binding protein 2 (YTHDF2)-dependent pathway. We confirmed that decreased ASS1 expression promoted the cell proliferation, migration, and invasion in glioma, and that the METTL14/ASS1/YTHDF2 regulatory axis may be an effective therapeutic target for glioma.


The prognostic and therapeutic implications of distinct patterns of argininosuccinate synthase 1 (ASS1) and arginase-2 (ARG2) expression by cancer cells and tumor stroma in non-small-cell lung cancer.

  • Alexandra Giatromanolaki‎ et al.
  • Cancer & metabolism‎
  • 2021‎

Arginine (Arg) is essential for cancer cell growth and also for the activation of T cells. Thus, therapies aiming to reduce Arg utilization by cancer may prove detrimental for the immune response.


Reconstitution of T Cell Proliferation under Arginine Limitation: Activated Human T Cells Take Up Citrulline via L-Type Amino Acid Transporter 1 and Use It to Regenerate Arginine after Induction of Argininosuccinate Synthase Expression.

  • Anke Werner‎ et al.
  • Frontiers in immunology‎
  • 2017‎

In the tumor microenvironment, arginine is metabolized by arginase-expressing myeloid cells. This arginine depletion profoundly inhibits T cell functions and is crucially involved in tumor-induced immunosuppression. Reconstitution of adaptive immune functions in the context of arginase-mediated tumor immune escape is a promising therapeutic strategy to boost the immunological antitumor response. Arginine can be recycled in certain mammalian tissues from citrulline via argininosuccinate (ASA) in a two-step enzymatic process involving the enzymes argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL). Here, we demonstrate that anti-CD3/anti-CD28-activated human primary CD4+ and CD8+ T cells upregulate ASS expression in response to low extracellular arginine concentrations, while ASL is expressed constitutively. ASS expression peaked under moderate arginine restriction (20 µM), but no relevant induction was detectable in the complete absence of extracellular arginine. The upregulated ASS correlated with a reconstitution of T cell proliferation upon supplementation of citrulline, while the suppressed production of IFN-γ was refractory to citrulline substitution. In contrast, ASA reconstituted proliferation and cytokine synthesis even in the complete absence of arginine. By direct quantification of intracellular metabolites we show that activated primary human T cells import citrulline but only metabolize it further to ASA and arginine when ASS is expressed in the context of low amounts of extracellular arginine. We then clarify that citrulline transport is largely mediated by the L-type amino acid transporter 1 (LAT1), induced upon human T cell activation. Upon siRNA-mediated knockdown of LAT1, activated T cells lost the ability to import citrulline. These data underline the potential of citrulline substitution as a promising pharmacological way to treat immunosuppression in settings of arginine deprivation.


The Combination of Arginine Deprivation and 5-Fluorouracil Improves Therapeutic Efficacy in Argininosuccinate Synthetase Negative Hepatocellular Carcinoma.

  • Angkana Thongkum‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

Argininosuccinate synthetase (ASS), a key enzyme to synthesize arginine is down regulated in many tumors including hepatocellular carcinoma (HCC). Similar to previous reports, we have found the decrease in ASS expression in poorly differentiated HCC. These ASS(-) tumors are auxotrophic for arginine. Pegylated arginine deiminase (ADI-PEG20), which degrades arginine, has shown activity in these tumors, but the antitumor effect is not robust and hence combination treatment is needed. Herein, we have elucidated the effectiveness of ADI-PEG20 combined with 5-Fluorouracil (5-FU) in ASS(-)HCC by targeting urea cycle and pyrimidine metabolism using four HCC cell lines as model. SNU398 and SNU387 express very low levels of ASS or ASS(-) while Huh-1, and HepG2 express high ASS similar to normal cells. Our results showed that the augmented cytotoxic effect of combination treatment only occurs in SNU398 and SNU387, and not in HepG2 and Huh-1 (ASS(+)) cells, and is partly due to reduced anti-apoptotic proteins X-linked inhibitor of apoptosis protein (XIAP), myeloid leukemia cell differentiation protein (Mcl-1) and B-cell lymphoma-2 (Bcl-2). Importantly, lack of ASS also influences essential enzymes in pyrimidine synthesis (carbamoyl-phosphate synthetase2, aspartate transcarbamylase and dihydrooratase (CAD) and thymidylate synthase (TS)) and malate dehydrogenase-1 (MDH-1) in TCA cycle. ADI-PEG20 treatment decreased these enzymes and made them more vulnerable to 5-FU. Transfection of ASS restored these enzymes and abolished the sensitivity to ADI-PEG20 and combination treatment. Overall, our data suggest that ASS influences multiple enzymes involved in 5-FU sensitivity. Combining ADI-PEG20 and 5-FU may be effective to treat ASS(-)hepatoma and warrants further clinical investigation.


Argininosuccinate lyase interacts with cyclin A2 in cytoplasm and modulates growth of liver tumor cells.

  • Yu-Hsuan Hung‎ et al.
  • Oncology reports‎
  • 2017‎

Arginine is a critical amino acid in specific cancer types including hepatocellular carcinoma (HCC) and melanoma. Novel molecular mechanisms and therapeutic targets in arginine metabolism-mediated cancer formation await further identification. Our laboratory has previously demonstrated that arginine metabolic enzyme argininosuccinate lyase (ASL) promoted HCC formation in part via maintenance of cyclin A2 protein expression and arginine production for channeling to nitric oxide synthase. In this study, we investigated the mechanism by which ASL regulates cyclin A2 expression. We found that ASL interacted with cyclin A2 in HCC cells and the localization of their interaction was in the cytoplasm. Mutation of essential residues for enzymatic activity of ASL did not affect the binding of ASL to cyclin A2. Moreover, the mutant ASL retained the ability to restore the decreased tumorigenicity caused by ASL shRNA. Furthermore, overexpression of ASL conferred resistance to arginine deprivation therapy. Finally, the important pathways and potential therapeutic targets in ASL-regulated HCC were identified by bioinformatics analyses with Metacore database and Connectivity Map database. Our analyses suggested that bisoprolol, celecoxib, and ipratropium bromide, are potential therapeutics for ASL-regulated HCC formation. Thus, ASL interacts with cyclin A2 in cytoplasm, and may promote HCC formation through this non-enzymatic function. Overexpression of ASL may be a contributing factor in drug resistance for arginine deprivation therapy.


Argininosuccinate lyase deficiency causes blood-brain barrier disruption via nitric oxide-mediated dysregulation of claudin expression.

  • Jordan Kho‎ et al.
  • JCI insight‎
  • 2023‎

Nitric oxide (NO) is a critical signaling molecule that has been implicated in the pathogenesis of neurocognitive diseases. Both excessive and insufficient NO production have been linked to pathology. Previously, we have shown that argininosuccinate lyase deficiency (ASLD) is a novel model system to investigate cell-autonomous, nitric oxide synthase-dependent NO deficiency. Humans with ASLD are at increased risk for developing hyperammonemia due to a block in ureagenesis. However, natural history studies have shown that individuals with ASLD have multisystem disease including neurocognitive deficits that can be independent of ammonia. Here, using ASLD as a model of NO deficiency, we investigated the effects of NO on brain endothelial cells in vitro and the blood-brain barrier (BBB) in vivo. Knockdown of ASL in human brain microvascular endothelial cells (HBMECs) led to decreased transendothelial electrical resistance, indicative of increased cell permeability. Mechanistically, treatment with an NO donor or inhibition of Claudin-1 improved barrier integrity in ASL-deficient HBMECs. Furthermore, in vivo assessment of a hypomorphic mouse model of ASLD showed increased BBB leakage, which was partially rescued by NO supplementation. Our results suggest that ASL-mediated NO synthesis is required for proper maintenance of brain microvascular endothelial cell functions as well as BBB integrity.


A regulatory role of Kruppel-like factor 4 in endothelial argininosuccinate synthetase 1 expression in response to laminar shear stress.

  • Gyeong In Mun‎ et al.
  • Biochemical and biophysical research communications‎
  • 2012‎

Endothelial argininosuccinate synthetase 1 (ASS1) regulates the provision of l-arginine to nitric oxide synthase 3 (NOS3). Previous studies demonstrated that endothelial ASS1 expression was induced by laminar shear stress (LSS) and that this enzyme plays a role in maintaining anti-inflammatory microenvironments through enhancing NO production. However, differently from the case of NOS3, the regulatory mechanism for the endothelial ASS1 expression in response to LSS is not well understood. This study addressed a specific issue whether endothelial ASS1 expression is regulated by Kruppel-like factors (KLFs) that are presumed to coordinate endothelial gene expressions in response to LSS. The cDNA microarray data indicated that LSS stimulated the expression of numerous KLFs in human umbilical vein endothelial cells. KLF4 showed the highest fold increase and LSS-dependent increases of KLF4 and most other KLFs were similar in young versus senescent endothelial cells. LSS-induced KLF4 expression was verified by RT-PCR and Western blotting. LSS-induced ASS1 expression and NO production were suppressed by a small interfering RNA for KLF4. The ectopic expression of KLF4 led to the increase of ASS1 expression and NO production. The present study demonstrated a key regulatory role of KLF4 in the endothelial ASS1 expression and NO production in response to LSS.


Expression pattern and biochemical properties of zebrafish N-acetylglutamate synthase.

  • Ljubica Caldovic‎ et al.
  • PloS one‎
  • 2014‎

The urea cycle converts ammonia, a waste product of protein catabolism, into urea. Because fish dispose ammonia directly into water, the role of the urea cycle in fish remains unknown. Six enzymes, N-acetylglutamate synthase (NAGS), carbamylphosphate synthetase III, ornithine transcarbamylase, argininosuccinate synthase, argininosuccinate lyase and arginase 1, and two membrane transporters, ornithine transporter and aralar, comprise the urea cycle. The genes for all six enzymes and both transporters are present in the zebrafish genome. NAGS (EC 2.3.1.1) catalyzes the formation of N-acetylglutamate from glutamate and acetyl coenzyme A and in zebrafish is partially inhibited by L-arginine. NAGS and other urea cycle genes are highly expressed during the first four days of zebrafish development. Sequence alignment of NAGS proteins from six fish species revealed three regions of sequence conservation: the mitochondrial targeting signal (MTS) at the N-terminus, followed by the variable and conserved segments. Removal of the MTS yields mature zebrafish NAGS (zfNAGS-M) while removal of the variable segment from zfNAGS-M results in conserved NAGS (zfNAGS-C). Both zfNAGS-M and zfNAGS-C are tetramers in the absence of L-arginine; addition of L-arginine decreased partition coefficients of both proteins. The zfNAGS-C unfolds over a broader temperature range and has higher specific activity than zfNAGS-M. In the presence of L-arginine the apparent Vmax of zfNAGS-M and zfNAGS-C decreased, their Km(app) for acetyl coenzyme A increased while the Km(app) for glutamate remained unchanged. The expression pattern of NAGS and other urea cycle genes in developing zebrafish suggests that they may have a role in citrulline and/or arginine biosynthesis during the first day of development and in ammonia detoxification thereafter. Biophysical and biochemical properties of zebrafish NAGS suggest that the variable segment may stabilize a tetrameric state of zfNAGS-M and that under physiological conditions zebrafish NAGS catalyzes formation of N-acetylglutamate at the maximal rate.


Clinical outcomes of neonatal onset proximal versus distal urea cycle disorders do not differ.

  • Nicholas Ah Mew‎ et al.
  • The Journal of pediatrics‎
  • 2013‎

To compare the clinical course and outcome of patients diagnosed with one of 4 neonatal-onset urea cycle disorders (UCDs): deficiency of carbamyl phosphate synthase 1 (CPSD), ornithine transcarbamylase (OTCD), argininosuccinate synthase (ASD), or argininosuccinate lyase (ALD).


Modulation of intestinal urea cycle by dietary spermine in suckling rat.

  • Myriam Gharbi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2005‎

Argininosuccinate synthetase, an ubiquitous enzyme in mammals, catalyses the formation of argininosuccinate, the precursor of arginine. Arginine is recognised as an essential amino acid in foetuses and neonates, but also as a conditionally essential amino acid in adults. Argininosuccinate synthetase is initially expressed in enterocytes during the developmental period, it disappeared from this organ then appeared in the kidneys. Although the importance of both intestinal and renal argininosuccinate synthetases has been recognised for a long time, nutrients have not yet been identified as inducers of the gene expression. In the context of a proteomic screening of intestinal modifications induced by dietary spermine in suckling rats, we showed that argininosuccinate synthetase and carbamoyl phosphate synthase disappeared from enterocytes after this treatment. The disappearance of argininosuccinate synthetase in small intestine was confirmed by immunodetection. Expression of carbamoyl phosphate synthase and argininosuccinate synthetase coding genes decreased also after spermine administration. Expression of other urea cycle enzyme coding genes was modulated by spermine administration: argininosuccinate lyase decreased and arginase increased. Our results fit with the developmental variation of argininosuccinate synthetase and carbamoyl phosphate synthase. Modulation of the gene expression for several urea cycle enzymes suggests a coordination between all the pathway steps and switch toward polyamine (or proline and glutamate) biosynthesis from ornithine.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: