Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,646 papers

FADS1-arachidonic acid axis enhances arachidonic acid metabolism by altering intestinal microecology in colorectal cancer.

  • Chunjie Xu‎ et al.
  • Nature communications‎
  • 2023‎

Colonocyte metabolism shapes the microbiome. Metabolites are the main mediators of information exchange between intestine and microbial communities. Arachidonic acid (AA) is an essential polyunsaturated fatty acid and its role in colorectal cancer (CRC) remains unexplored. In this study, we show that AA feeding promotes tumor growth in AOM/DSS and intestinal specific Apc-/- mice via modulating the intestinal microecology of increased gram-negative bacteria. Delta-5 desaturase (FADS1), a rate-limiting enzyme, is upregulated in CRC and effectively mediates AA synthesis. Functionally, FADS1 regulates CRC tumor growth via high AA microenvironment-induced enriched gram-negative microbes. Elimination of gram-negative microbe abolishes FADS1 effect. Mechanistically, gram-negative microbes activate TLR4/MYD88 pathway in CRC cells that contributes FADS1-AA axis to metabolize to prostaglandin E2 (PGE2). Cumulatively, we report a potential cancer-promoting mechanism of FADS1-AA axis in CRC that converts raising synthesized AA to PGE2 via modulating the intestinal microecology of gram-negative.


Arachidonic acid-induced dye uncoupling in rat cortical astrocytes is mediated by arachidonic acid byproducts.

  • A D Martínez‎ et al.
  • Brain research‎
  • 1999‎

Arachidonic acid (AA) induced a concentration- and time-dependent reduction in gap junction-mediated dye coupling between cultured astrocytes. The effect was greatly diminished by inhibition of cyclooxygenases and lipoxygenases. The action of a low concentration of AA (5 microM) was also prevented by Ca2+-free extracellular solution or a high concentration of melatonin, a potent free radical scavenger, but not by Nomega-nitro-l-arginine, a nitric oxide (NO) synthase inhibitor. Thus, this effect may depend on Ca2+ influx and oxygen free radicals but not on NO generation. Cellular uncoupling induced by a high (100 microM), but not a low, AA concentration was rapidly reversed by washing with albumin containing solution. After reversal from 5 min but not 2.5 min inhibition with a high AA concentration dye coupling between astrocytes became refractory to a low concentration of AA, suggesting desensitization of the response elicited by a low concentration of the fatty acid. Dye uncoupling occurred without changes in levels and state of phosphorylation (immunoblotting and 32P-incorporation) of connexin43, the main astrocyte gap junctional protein. However, maximal cell uncoupling induced by a low (Slow action) but not by a high (Fast action) AA concentration was paralleled by a reduction in connexin43 (immunofluorescence) at cell-to-cell contacts. It is proposed that the AA-induced dye uncoupling is mediated by byproducts that induce rapid channel closure or slow removal of connexin43 gap junctions.


Arachidonic acid and peanut oil.

  • A S Truswell‎ et al.
  • Lancet (London, England)‎
  • 1994‎

No abstract available


Is arachidonic acid an endoschistosomicide?

  • Violette Said Hanna‎ et al.
  • Journal of advanced research‎
  • 2018‎

Schistosoma mansoni and Schistosoma haematobium are intravascular, parasitic flatworms that infect >250 million people in 70 developing countries, yet not all people of the same community and household are afflicted. Regarding laboratory rodents, mice but not rats are susceptible to infection with S. mansoni and hamsters but not mice are entirely permissive to infection with S. haematobium. A recent Brazilian publication has demonstrated that resistance of the water-rat, Nectomys squamipes to S. mansoni infection might be ascribed to stores of arachidonic acid (ARA)-rich lipids in liver. Several reports have previously shown that ARA is a safe and effective schistosomicide in vitro, and in vivo in mice, hamsters and in children. Schistosoma haematobium appeared more sensitive than S. mansoni to ARA in in vitro and in vivo experiments. Accordingly, it was proposed that ARA increased levels might be predominantly responsible for natural attrition of S. mansoni and S. haematobium in resistant experimental rodents. Therefore, the levels of ARA in serum, lung, and liver of rats (resistant) and mice (susceptible) at 1, 2, 3, 4 and 6 weeks after infection with S. mansoni cercariae and between mice (semi-permissive) and hamster (susceptible) at 1, 2, 3, 4, and 12 weeks after infection with S. haematobium cercariae were compared and contrasted. Neutral triglycerides and ARA levels were assessed in serum using commercially available assays and in liver and lung sections by transmission electron microscopy, Oil Red O staining, and specific anti-ARA antibody-based immunohistochemistry assays. Significant (P < .05), consistent, and reproducible correlation was recorded between ARA content in serum, lung, and liver and rodent resistance to schistosome infection, thereby implicating ARA as an endoschistosomicide.


Arachidonic Acid Stress Impacts Pneumococcal Fatty Acid Homeostasis.

  • Bart A Eijkelkamp‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Free fatty acids hold dual roles during infection, serving to modulate the host immune response while also functioning directly as antimicrobials. Of particular importance are the long chain polyunsaturated fatty acids, which are not commonly found in bacterial organisms, that have been proposed to have antibacterial roles. Arachidonic acid (AA) is a highly abundant long chain polyunsaturated fatty acid and we examined its effect upon Streptococcus pneumoniae. Here, we observed that in a murine model of S. pneumoniae infection the concentration of AA significantly increases in the blood. The impact of AA stress upon the pathogen was then assessed by a combination of biochemical, biophysical and microbiological assays. In vitro bacterial growth and intra-macrophage survival assays revealed that AA has detrimental effects on pneumococcal fitness. Subsequent analyses demonstrated that AA exerts antimicrobial activity via insertion into the pneumococcal membrane, although this did not increase the susceptibility of the bacterium to antibiotic, oxidative or metal ion stress. Transcriptomic profiling showed that AA treatment also resulted in a dramatic down-regulation of the genes involved in fatty acid biosynthesis, in addition to impacts on other metabolic processes, such as carbon-source utilization. Hence, these data reveal that AA has two distinct mechanisms of perturbing the pneumococcal membrane composition. Collectively, this work provides a molecular basis for the antimicrobial contribution of AA to combat pneumococcal infections.


The arachidonic acid metabolite 11,12-epoxyeicosatrienoic acid alleviates pulmonary fibrosis.

  • Hak Su Kim‎ et al.
  • Experimental & molecular medicine‎
  • 2021‎

Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid that are rapidly metabolized into diols by soluble epoxide hydrolase (sEH). sEH inhibition has been shown to increase the biological activity of EETs, which are known to have anti-inflammatory properties. However, the role of EETs in pulmonary fibrosis remains unexplored. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used to analyze EETs in the lung tissues of patients with idiopathic pulmonary fibrosis (IPF, n = 29) and controls (n = 15), and the function of 11,12-EET was evaluated in in vitro and in vivo in pulmonary fibrosis models. EET levels in IPF lung tissues, including those of 8,9-EET, 11,12-EET, and 14,15-EET, were significantly lower than those in control tissues. The 11,12-EET/11,12-DHET ratio in human lung tissues also differentiated IPF from control tissues. 11,12-EET significantly decreased transforming growth factor (TGF)-β1-induced expression of α-smooth muscle actin (SMA) and collagen type-I in MRC-5 cells and primary fibroblasts from IPF patients. sEH-specific siRNA and 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU; sEH inhibitor) also decreased TGF-β1-induced expression of α-SMA and collagen type-I in fibroblasts. Moreover, 11,12-EET and TPPU decreased TGF-β1-induced p-Smad2/3 and extracellular-signal-regulated kinase (ERK) expression in primary fibroblasts from patients with IPF and fibronectin expression in Beas-2B cells. TPPU decreased the levels of hydroxyproline in the lungs of bleomycin-induced mice. 11,12-EET or sEH inhibitors could inhibit pulmonary fibrosis by regulating TGF-β1-induced profibrotic signaling, suggesting that 11,12-EET and the regulation of EETs could serve as potential therapeutic targets for IPF treatment.


Proteasome inhibitors: their effects on arachidonic acid release from cells in culture and arachidonic acid metabolism in rat liver cells.

  • Lawrence Levine‎
  • BMC pharmacology‎
  • 2004‎

I have postulated that arachidonic acid release from rat liver cells is associated with cancer chemoprevention. Since it has been reported that inhibition of proteasome activities may prevent cancer, the effects of proteasome inhibitors on arachidonic acid release from cells and on prostaglandin I2 production in rat liver cells were studied.


Arachidonic acid metabolism in human prostate cancer.

  • Peiying Yang‎ et al.
  • International journal of oncology‎
  • 2012‎

The arachidonic acid pathway is important in the development and progression of numerous malignant diseases, including prostate cancer. To more fully evaluate the role of individual cyclooxygenases (COXs), lipoxygenases (LOXs) and their metabolites in prostate cancer, we measured mRNA and protein levels of COXs and LOXs and their arachidonate metabolites in androgen-dependent (LNCaP) and androgen-independent (PC-3 and DU145) prostate cancer cell lines, bone metastasis-derived MDA PCa 2a and MDA PCa 2b cell lines and their corresponding xenograft models, as well as core biopsy specimens of primary prostate cancer and nonneoplastic prostate tissue taken ex vivo after prostatectomy. Relatively high levels of COX-2 mRNA and its product PGE2 were observed only in PC-3 cells and their xenografts. By contrast, levels of the exogenous 12-LOX product 12-HETE were consistently higher in MDA PCa 2b and PC-3 cells and their corresponding xenograft tissues than were those in LNCaP cells. More strikingly, the mean endogenous level of 12-HETE was significantly higher in the primary prostate cancers than in the nonneoplastic prostate tissue (0.094 vs. 0.010 ng/mg protein, respectively; p=0.019). Our results suggest that LOX metabolites such as 12-HETE are critical in prostate cancer progression and that the LOX pathway may be a target for treating and preventing prostate cancer.


Mechanisms of Arachidonic Acid In Vitro Tumoricidal Impact.

  • Hatem Tallima‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

To promote the potential of arachidonic acid (ARA) for cancer prevention and management, experiments were implemented to disclose the mechanisms of its tumoricidal action. Hepatocellular, lung, and breast carcinoma and normal hepatocytes cell lines were exposed to 0 or 50 μM ARA for 30 min and then assessed for proliferative capacity, surface membrane-associated sphingomyelin (SM) content, neutral sphingomyelinase (nSMase) activity, beta 2 microglobulin (β2 m) expression, and ceramide (Cer) levels. Reactive oxygen species (ROS) content and caspase 3/7 activity were evaluated. Exposure to ARA for 30 min led to impairment of the tumor cells' proliferative capacity and revealed that the different cell lines display remarkably similar surface membrane SM content but diverse responses to ARA treatment. Arachidonic acid tumoricidal impact was shown to be associated with nSMase activation, exposure of cell surface membrane β2 m to antibody binding, and hydrolysis of SM to Cer, which accumulated on the cell surface and in the cytosol. The ARA and Cer-mediated inhibition of tumor cell viability appeared to be independent of ROS generation or caspase 3/7 activation. The data were compared and contrasted to findings reported in the literature on ARA tumoricidal mechanisms.


Proteolysis negatively regulates agonist-stimulated arachidonic acid metabolism.

  • L Levine‎
  • Cellular signalling‎
  • 1998‎

Phenylmethylsulphonyl fluoride, lactacystin (a selective inhibitor of the proteasome) and the peptide aldehydes carbobenzoxyleucylleucylnorvalinal and carbobenzoxyleucylleucylleucinal amplify the production of prostacyclin in rat liver cells incubated for 6 h with the tumour promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and the TPA-type tumour promoters teleocidin and aplysiatoxin. Such stimulation is not dependent upon the simultaneous presence of the inhibitor and TPA. Preincubation of the cells with TPA followed by addition of the inhibitor or preincubation with the inhibitor followed by addition of TPA results in amplified prostacyclin production. Phenylmethylsulphonyl fluoride, lactacystin, and carbobenzoxyleucylleucylnorvaline also enhance prostacyclin production after incubation with interleukin-1beta and transforming growth factor-alpha. The Ca2+ chelator ethyleneglycol-O,O'-bis(2-aminoethyl)-N,N,N',N'-tetraacetic acid inhibits the phenylmethylsulphonyl fluoride-TPA or lactacystin-TPA amplifications. Cells, treated with phenylmethylsulphonyl fluoride, TPA, interleukin-1beta, lactacystin or the peptide aldehydes exhibit increased prostaglandin endoperoxide G/H synthase activity. The increased activities as well as the constitutive prostaglandin endoperoxide G/H synthase activity are inhibited by a selective prostaglandin endoperoxide G/H synthase-2 inhibitor, 1-[2-(4-fluorophenyl)-cyclopenten-1-yl]-4-(methysulphonyl)-b enzene, with an IC50 of approximately 0.5 microM. These results demonstrate that the C-9 rat liver cells express prostaglandin endoperoxide G/H synthase-2 constitutively and express induced prostaglandin endoperoxide G/H synthase-2. Inhibition of proteolytic activity amplifies agonist-stimulated arachidonic acid metabolism in these cells.


Mechanism of arachidonic acid action on syntaxin-Munc18.

  • Emma Connell‎ et al.
  • EMBO reports‎
  • 2007‎

Syntaxin and Munc18 are, in tandem, essential for exocytosis in all eukaryotes. Recently, it was shown that Munc18 inhibition of neuronal syntaxin 1 can be overcome by arachidonic acid, indicating that this common second messenger acts to disrupt the syntaxin-Munc18 interaction. Here, we show that arachidonic acid can stimulate syntaxin 1 alone, indicating that it is syntaxin 1 that undergoes a structural change in the syntaxin 1-Munc18 complex. Arachidonic acid is incapable of dissociating Munc18 from syntaxin 1 and, crucially, Munc18 remains associated with syntaxin 1 after arachidonic-acid-induced syntaxin 1 binding to synaptosomal-associated protein 25 kDa (SNAP25). We also show that the same principle operates in the case of the ubiquitous syntaxin 3 isoform, highlighting the conserved nature of the mechanism of arachidonic acid action. Neuronal soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs) can be isolated from brain membranes in a complex with endogenous Munc18, consistent with a proposed function of Munc18 in vesicle docking and fusion.


Role of Arachidonic Acid in Promoting Hair Growth.

  • Semchin Munkhbayar‎ et al.
  • Annals of dermatology‎
  • 2016‎

Arachidonic acid (AA) is an omega-6 polyunsaturated fatty acid present in all mammalian cell membranes, and involved in the regulation of many cellular processes, including cell survival, angiogenesis, and mitogenesis. The dermal papilla, composed of specialized fibroblasts located in the bulb of the hair follicle, contributes to the control of hair growth and the hair cycle.


Dynamic simulations on the arachidonic acid metabolic network.

  • Kun Yang‎ et al.
  • PLoS computational biology‎
  • 2007‎

Drug molecules not only interact with specific targets, but also alter the state and function of the associated biological network. How to design drugs and evaluate their functions at the systems level becomes a key issue in highly efficient and low-side-effect drug design. The arachidonic acid metabolic network is the network that produces inflammatory mediators, in which several enzymes, including cyclooxygenase-2 (COX-2), have been used as targets for anti-inflammatory drugs. However, neither the century-old nonsteriodal anti-inflammatory drugs nor the recently revocatory Vioxx have provided completely successful anti-inflammatory treatment. To gain more insights into the anti-inflammatory drug design, the authors have studied the dynamic properties of arachidonic acid (AA) metabolic network in human polymorphous leukocytes. Metabolic flux, exogenous AA effects, and drug efficacy have been analyzed using ordinary differential equations. The flux balance in the AA network was found to be important for efficient and safe drug design. When only the 5-lipoxygenase (5-LOX) inhibitor was used, the flux of the COX-2 pathway was increased significantly, showing that a single functional inhibitor cannot effectively control the production of inflammatory mediators. When both COX-2 and 5-LOX were blocked, the production of inflammatory mediators could be completely shut off. The authors have also investigated the differences between a dual-functional COX-2 and 5-LOX inhibitor and a mixture of these two types of inhibitors. Their work provides an example for the integration of systems biology and drug discovery.


Arachidonic Acid Metabolites in Cardiovascular and Metabolic Diseases.

  • Thomas Sonnweber‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Lipid and immune pathways are crucial in the pathophysiology of metabolic and cardiovascular disease. Arachidonic acid (AA) and its derivatives link nutrient metabolism to immunity and inflammation, thus holding a key role in the emergence and progression of frequent diseases such as obesity, diabetes, non-alcoholic fatty liver disease, and cardiovascular disease. We herein present a synopsis of AA metabolism in human health, tissue homeostasis, and immunity, and explore the role of the AA metabolome in diverse pathophysiological conditions and diseases.


Flavonolignans inhibit the arachidonic acid pathway in blood platelets.

  • Michal Bijak‎ et al.
  • BMC complementary and alternative medicine‎
  • 2017‎

Arachidonic acid metabolism by cyclooxygenase (COX) is a major pathway for blood platelets' activation, which is associated with pro-thrombotic platelet activity and the production of pro-inflammatory mediators. Inhibition of COX activity is one of the major means of anti-platelet pharmacotherapy preventing arterial thrombosis and reducing the incidence of cardiovascular events. Recent studies have presented that a silymarin (standardized extract of Milk thistle (Silybum marianum)) can inhibit the COX pathway. Accordingly, the aim of our study was to determine the effects of three major flavonolignans (silybin, silychristin and silydianin) on COX pathway activity in blood platelets.


Fatty Acid Taste Receptor GPR120 Activation by Arachidonic Acid, Eicosapentaenoic Acid, and Docosahexaenoic Acid in Chickens.

  • Fuminori Kawabata‎ et al.
  • The journal of poultry science‎
  • 2022‎

It has been reported that the supplementation of chicken diet with polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA), eicosapentaenoic acid (EPA), or docosahexaenoic acid (DHA) affects the qualities of eggs and meat. Previous studies have shown that a functional fatty acid taste receptor, G protein-coupled receptor 120 (GPR120), is broadly expressed in chicken oral and gastrointestinal tissues, and chickens have a gustatory perception of oleic acid, which is a chicken GPR120 agonist. The aim of this study was to elucidate the role of chicken GPR120 in response to PUFAs in chicken diets. Ca2+ imaging analyses revealed that chicken GPR120 was activated by AA, EPA, and DHA in a concentration-dependent manner. These results suggest that chickens can detect PUFAs via GPR120 in the oral and gastrointestinal tissues, implying that chickens have a gustatory perception of PUFAs.


Ancestral genetic complexity of arachidonic acid metabolism in Metazoa.

  • Dongjuan Yuan‎ et al.
  • Biochimica et biophysica acta‎
  • 2014‎

Eicosanoids play an important role in inducing complex and crucial physiological processes in animals. Eicosanoid biosynthesis in animals is widely reported; however, eicosanoid production in invertebrate tissue is remarkably different to vertebrates and in certain respects remains elusive. We, for the first time, compared the orthologs involved in arachidonic acid (AA) metabolism in 14 species of invertebrates and 3 species of vertebrates. Based on parsimony, a complex AA-metabolic system may have existed in the common ancestor of the Metazoa, and then expanded and diversified through invertebrate lineages. A primary vertebrate-like AA-metabolic system via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) pathways was further identified in the basal chordate, amphioxus. The expression profiling of AA-metabolic enzymes and lipidomic analysis of eicosanoid production in the tissues of amphioxus supported our supposition. Thus, we proposed that the ancestral complexity of AA-metabolic network diversified with the different lineages of invertebrates, adapting with the diversity of body plans and ecological opportunity, and arriving at the vertebrate-like pattern in the basal chordate, amphioxus.


Low serum eicosapentaenoic acid / arachidonic acid ratio in male subjects with visceral obesity.

  • Kana Inoue‎ et al.
  • Nutrition & metabolism‎
  • 2013‎

Visceral fat accumulation is caused by over-nutrition and physical inactivity. Excess accumulation of visceral fat associates with atherosclerosis. Polyunsaturated fatty acids have an important role in human nutrition, but imbalance of dietary long-chain polyunsaturated fatty acids, especially low eicosapentaenoic acid (EPA) / arachidonic acid (AA) ratio, is associated with increased risk of cardiovascular disease. The present study investigated the correlation between EPA, docosahexaenoic acid (DHA), AA parameters and clinical features in male subjects.


Arachidonic Acid Promotes Intestinal Regeneration by Activating WNT Signaling.

  • Qingyu Wang‎ et al.
  • Stem cell reports‎
  • 2020‎

Intestinal regeneration is crucial for functional restoration after injury, and nutritional molecules can play an important role in this process. Here, we found that arachidonic acid (AA) serves as a direct proliferation promoter of intestinal epithelial cells that facilitates small intestinal regeneration in both three-dimensional cultured organoids and mouse models. As shown in the study, during post-irradiation regeneration, AA positively regulates intestinal epithelial cell proliferation by upregulating the expression of Ascl2 and activating WNT signaling, but negatively regulates intestinal epithelial cell differentiation. AA acts as a delicate regulator that efficiently facilitates epithelial tissue repair by activating radiation-resistant Msi1+ cells rather than Lgr5+ cells, which are extensively considered WNT-activated crypt base stem cells. Additionally, short-term AA treatment maintains optimal intestinal epithelial homeostasis under physiological conditions. As a result, AA treatment can be considered a potential therapy for irradiation injury repair and tissue regeneration.


5-Aminolevulinic acid promotes arachidonic acid biosynthesis in the red microalga Porphyridium purpureum.

  • Kailin Jiao‎ et al.
  • Biotechnology for biofuels‎
  • 2017‎

The microalga Porphyridium purpureum within Rhodophyta abundantly produces several valuable proteins, polysaccharides, pigments and long-chain polyunsaturated fatty acid; it is especially effective in accumulating arachidonic acid (ARA). However, this high ARA yield is always achieved in conditions unfavourable for cell growth. In this study, we present a method for obtaining desirable ARA levels from P. purpureum while simultaneously promoting cell growth using appropriate concentrations of the growth hormone 5-Aminolevulinic acid (5-ALA).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: