Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 47 papers

Diminished arachidonate 5-lipoxygenase perturbs phase separation and transcriptional response of Runx2 to reverse pathological ventricular remodeling.

  • Saiyang Xie‎ et al.
  • EBioMedicine‎
  • 2022‎

Arachidonate 5-lipoxygenase (Alox5) belongs to a class of nonheme iron-containing dioxygenases involved in the catalysis of leukotriene biosynthesis. However, the effects of Alox5 itself on pathological cardiac remodeling and heart failure remain elusive.


HIV X4 Variants Increase Arachidonate 5-Lipoxygenase in the Pulmonary Microenvironment and are associated with Pulmonary Arterial Hypertension.

  • Sharilyn Almodovar‎ et al.
  • Scientific reports‎
  • 2020‎

Pulmonary Arterial Hypertension (PAH) is overrepresented in People Living with Human Immunodeficiency Virus (PLWH). HIV protein gp120 plays a key role in the pathogenesis of HIV-PAH. Genetic changes in HIV gp120 determine viral interactions with chemokine receptors; specifically, HIV-X4 viruses interact with CXCR4 while HIV-R5 interact with CCR5 co-receptors. Herein, we leveraged banked samples from patients enrolled in the NIH Lung HIV studies and used bioinformatic analyses to investigate whether signature sequences in HIV-gp120 that predict tropism also predict PAH. Further biological assays were conducted in pulmonary endothelial cells in vitro and in HIV-transgenic rats. We found that significantly more persons living with HIV-PAH harbor HIV-X4 variants. Multiple HIV models showed that recombinant gp120-X4 as well as infectious HIV-X4 remarkably increase arachidonate 5-lipoxygenase (ALOX5) expression. ALOX5 is essential for the production of leukotrienes; we confirmed that leukotriene levels are increased in bronchoalveolar lavage fluid of HIV-infected patients. This is the first report associating HIV-gp120 genotype to a pulmonary disease phenotype, as we uncovered X4 viruses as potential agents in the pathophysiology of HIV-PAH. Altogether, our results allude to the supplementation of antiretroviral therapy with ALOX5 antagonists to rescue patients with HIV-X4 variants from fatal PAH.


Variants of the arachidonate 5-lipoxygenase-activating protein (ALOX5AP) gene and risk of ischemic stroke in Han Chinese of eastern China.

  • Gannan Wang‎ et al.
  • Journal of biomedical research‎
  • 2011‎

Variants of the arachidonate 5-lipoxygenase-activating protein (ALOX5AP) gene have been suggested to play an important role in the pathogenesis of atherosclerosis and ischemic stroke. This study was aimed to explore the association of ALOX5AP variants with ischemic stroke risk in Han Chinese of eastern China. A total of 690 ischemic stroke cases and 767 controls were recruited. The subjects were further subtyped according to the Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria. On the basis of that, two polymorphisms of the ALOX5AP gene (rs10507391 and rs12429692) were determined by TaqMan genotyping assay. In addition, plasma leukotriene B4 (LTB4) levels were analyzed in these subjects. There was no evidence of association between the two variants of ALOX5AP and the risk of ischemic stroke or its TOAST-subtypes. Haplotype analysis and stratification analysis according to sex, age, body mass index, hypertension, and diabetes also showed negative association. Analysis of LTB4 levels in a subset of cases and controls revealed that LTB4 levels were significantly higher in ischemic stroke cases than in the controls (70.06±14.75 ng/L vs 57.34±10.93 ng/L; P = 0.000) and carriers of the T allele of the rs10507391 variant were associated with higher plasma LTB4 levels (P = 0.000). The present study suggests there is no association of the two polymorphisms in the ALOX5AP gene with ischemic stroke risk in Han Chinese of eastern China.


Impact of Aspirin Eugenol Ester on Cyclooxygenase-1, Cyclooxygenase-2, C-Reactive Protein, Prothrombin and Arachidonate 5-Lipoxygenase in Healthy Rats.

  • Ning Ma‎ et al.
  • Iranian journal of pharmaceutical research : IJPR‎
  • 2017‎

Aspirin eugenol ester (AEE) is a promising drug candidate which is used for the treatment of inflammation, pain, fever, and the prevention of cardiovascular diseases. This study focuses on the effect of AEE on five proteins which are related to inflammation and thrombosis, including cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), C-reactive protein (CRP), prothrombin (FII) and arachidonate 5-lipoxygenase (ALOX5). Meanwhile, the study was administrated to compare the drug effect between AEE and its precursor from the view of chemical-protein interactions. Healthy rats were given AEE, aspirin, eugenol and integration of aspirin and eugenol. Carboxyl methyl cellulose sodium (CMC-Na) was used as control. After drugs were administered intragastrically for seven days, the blood samples were collected to measure the proteins concentration by enzyme linked immuno-sorbent assay (ELISA). The results showed that the concentrations of key endogenic bioactive enzymes were significantly reduced in AEE groups when compared with CMC-Na and aspirin groups (P < 0.01). Drug effects of AEE on five proteins were stronger than aspirin and eugenol. From the view of chemical-protein interactions, AEE had positive effects on anti-inflammation and anti-thrombosis and showed stronger effects than aspirin and eugenol.


Qualitative and Quantitative analysis of 3D predicted arachidonate 15-lipoxygenase-B (15-LOX-2) from Homo sapiens.

  • Neha Arora‎ et al.
  • Bioinformation‎
  • 2012‎

15-Lipoxygenase-2 protein has been reported to play an important role in normal development of prostate, lung, skin, and cornea tissues. It behaves as a suppressor of prostate cancer development by restricting cell cycle progression and implicating a possible protective role against tumor formation. On the basis of the above report, we selected 15-LOX-2 protein to study the structural classification and functional relationship with associated protein network at computational level. Sequence alignment and protein functional study shows that it contains a highly conserved LOX motif. PLAT domain with PF01477 and LH2 domain with PF00305 were successfully observed. Arachidonate 5-lipoxygenase (PDB ID: 3O8Y) was selected as a template with 42% identity. 3D structure was successfully predicted and verified. Qualitative analysis suggests that the predicted model was reliable and stable with best quality. Quantitative study shows that the model contained expected volume and area with best resolution. Predicted and best evaluated model has been successfully deposited to PMDB database with PMDB ID PM0078035. Active site identification revealed GLU(369), ALA(370), LEU(371), THR(372), HIS(373), LEU(374), HIS(376), SER(377), HIS(378), THR(385), LEU(389), HIS(394), PHE(399), LYS(400), LEU(401), ILE(403) and PRO(404) residues may play a major role during protein-protein, protein-drug and protein-cofactor interactions. STRING database result indicated that IL (4), GPX (2 and 4), PPARG, PTGS (1 and 2), CYP (2J2, 2C8, 4A11 and 2B6), PLA (2G2A, 2G4A, 2G1B and 2G6) and A LOX (5, 15, 12 and 12B) members from their respective gene families have network based functional association with 15-LOX-2.


5-Lipoxygenase (ALOX5): Genetic susceptibility to type 2 diabetes and vitamin D effects on monocytes.

  • Nojan Nejatian‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2019‎

The arachidonate 5-lipoxygenase (ALOX5) pathway has been implicated in chronic inflammatory disease which may be influenced by vitamin D due to vitamin D response elements (VDRE). We investigated an ALOX5 polymorphism (rs4987105) in patients with type 2 diabetes (T2D) and the in vitro effects of calcitriol (1,25(OH)2D3) on ALOX5 metabolism in monocytes of T2D patients and healthy controls (HC). 533 T2D and 473 HC were genotyped for the rs4987105 polymorphism. In addition, the 25(OH)D3 and 1,25(OH)2D3 plasma levels were measured in both cohorts. Further C-reactive protein (CRP) was determined in T2D patients. Our results demonstrate, that genotype CC and the allele C of ALOX5 rs4987105 polymorphism were more frequent in T2D compared to HC (OR = 1.44; 95% CI: 1.12-1.84; p < 0.05). Lower levels of both vitamin D metabolites (p < 0.0001 respectively) were found in the CC genotyped T2D patients compared to CC genotyped HC. In addition, CC genotyped T2D patients had higher levels of CRP compared to CT and TT genotyped T2D patients, (p < 0.01). In order to evaluate the impact of calcitriol in primary isolated monocytes, we isolated monocytes of 20 T2D patients and 20 HC. The cells were treated with 1,25(OH)2D3 and interleukin-1beta (IL-1β) for 24 h. The following genes were analysed for expression changes: ALOX5, leukotriene A4 hydrolase (LTA4H), leukotriene B4 receptor type 1 (LTB4R1) and CD14. Treatment with IL-1β+1,25(OH)2D3 increased ALOX5, LTA4H and LTB4R1 and CD14 mRNA in both T2D patients and HC (p < 0.0001, respectively). In addition, IL-1β+1,25(OH)2D3 treatment led to higher ALOX5, LTA4H and CD14 mRNA levels in T2D patients compared to HC (p < 0.001, p < 0.05, p ≤ 0.05, respectively). In conclusion, ALOX5 rs4987105 allele C confers susceptibility to T2D, lower vitamin D metabolites and higher CRP levels complement this association. Additionally, IL-1β+1,25(OH)2D3 treatment on, ALOX5, LTA4H and CD14 mRNA indicate a diabetes specific modulation. These findings identify a novel pathway in T2D potentially amenable for individualized therapeutic targeting.


Induction of a 5-lipoxygenase product by daidzein is involved in the regulation of influenza virus replication.

  • Yuka Horio‎ et al.
  • Journal of clinical biochemistry and nutrition‎
  • 2020‎

This study was conducted to evaluate the regulation mechanism of influenza virus replication following treatment of Madin-Darby canine kidney cells with the soy isoflavone daidzein. We performed comparative qualitative and quantitative analyses of lipid peroxide between mock-infected and virus-infected cells treated with or without daidzein, as it had been reported that daidzein was an antioxidant and lipid peroxide levels increased upon virus infection. Contrary to our belief, lipid peroxides were not elevated in virus-infected cells and no decrease in lipid peroxides was observed in daidzein-treated cells. In daidzein-treated cells, 5-hydroxyeicosatetraenoic acid, the 5-lipoxygenase product derived from arachidonate, was significantly elevated compared to other lipid peroxides. Zileuton (5-lipoxygenase inhibitor) and 5-lipoxygenase knockdown reduced the daidzein-induced antiviral effect. Moreover, virus replication was regulated by treatment with 5-hydroperoxyeicosatetraenoic acid, a precursor of 5-hydroxyeicosatetraenoic acid and 5-lipoxygenase primary product. These results suggest that daidzein regulates virus replication via signal transduction through 5-lipoxygenase products.


Inhibiting 5-lipoxygenase prevents skeletal muscle atrophy by targeting organogenesis signalling and insulin-like growth factor-1.

  • Hyun-Jun Kim‎ et al.
  • Journal of cachexia, sarcopenia and muscle‎
  • 2022‎

Skeletal muscle atrophy can occur in response to numerous factors, such as ageing and certain medications, and produces a major socio-economic burden. At present, there are no approved drugs for treating skeletal muscle atrophy. Arachidonate 5-lipoxygenase (Alox5) is a drug target for a number of diseases. However, pharmacological targeting of Alox5, and its role in skeletal muscle atrophy, is unclear.


Common Polymorphisms in the 5-Lipoxygenase Pathway and Risk of Incident Myocardial Infarction: A Danish Case-Cohort Study.

  • Anders Gammelmark‎ et al.
  • PloS one‎
  • 2016‎

The 5-lipoxygenase pathway (5-LOX) has been implicated in the development of cardiovascular disease and studies have suggested that genetic polymorphisms related to key enzymes in this pathway may confer risk of myocardial infarction (MI). This study investigated the association of pre-selected genetic polymorphisms in four candidate genes of 5-LOX (arachidonate 5-lipoxygenase and its activating protein (ALOX-5 and FLAP), leukotriene A4 hydroxylase (LTA4-H) and leukotriene C4 synthase (LTC4-S)) with incident MI.


5-Lipoxygenase Gene Variants Are Not Associated With Atherosclerosis or Incident Coronary Heart Disease in the Multi-Ethnic Study of Atherosclerosis Cohort.

  • Michael Y Tsai‎ et al.
  • Journal of the American Heart Association‎
  • 2016‎

The arachidonate 5-lipoxygenase enzyme plays a crucial role in mediating inflammation to maintain homeostasis, yet certain allelic variants of the 5-lipoxygenase gene, ALOX5, may increase risk of atherosclerosis and coronary heart disease (CHD). Further, relations between ALOX5 and disease outcomes may be enhanced or attenuated depending on the bioavailability of 5-lipoxygenase enzyme substrates. By using a candidate gene approach in 6153 Multi-Ethnic Study of Atherosclerosis (MESA) participants, associations were determined among 1348 ALOX5 single nucleotide polymorphisms (SNPs) and carotid intima-media thickness (cIMT) as well as incident CHD, and interactions with plasma concentrations of arachidonic acid, eicosapentaenoic acid, or docosahexaenoic acid were tested.


Five-lipoxygenase-activating protein-mediated CYLD attenuation is a candidate driver in hepatic malignant lesion.

  • Kun-Kai Su‎ et al.
  • Frontiers in oncology‎
  • 2022‎

Hepatocellular carcinoma (HCC) is an inflammation-associated cancer. However, the lipid pro-inflammatory mediators have only been seldom investigated in HCC pathogenesis. Cylindromatosis (CYLD) attenuation is involved in hepatocarcinogenesis. Here, we aimed to evaluate the significance of hepatic lipid pro-inflammatory metabolites of arachidonate-affected CYLD expression via the 5-lipoxygenase (5-LO) pathway. Resection liver tissues from HCC patients or donors were evaluated for the correlation of 5-LO/cysteinyl leukotrienes (CysLTs) signaling to the expression of CYLD. The impact of functional components in 5-LO/CysLTs cascade on survival of HCC patients was subsequently assessed. Both livers from canines, a preponderant animal for cancer research, and genetic-modified human HCC cells treated with hepatocarcinogen aristolochic acid I (AAI) were further used to reveal the possible relevance between 5-LO pathway activation and CYLD suppression. Five-LO-activating protein (FLAP), an essential partner of 5-LO, was significantly overexpressed and was parallel to CYLD depression, CD34 neovascular localization, and high Ki-67 expression in the resection tissues from HCC patients. Importantly, high hepatic FLAP transcription markedly shortened the median survival time of HCC patients after surgical resection. In the livers of AAI-treated canines, FLAP overexpression was parallel to enhanced CysLTs contents and the simultaneous attenuation of CYLD. Moreover, knock-in FLAP significantly diminished the expression of CYLD in AAI-treated human HCC cells. In summary, the hepatic FLAP/CysLTs axis is a crucial suppressor of CYLD in HCC pathogenesis, which highlights a novel mechanism in hepatocarcinogenesis and progression. FLAP therefore can be explored for the early HCC detection and a target of anti-HCC therapy.


Tetrahydrofurandiol stimulation of phospholipase A2, lipoxygenase, and cyclooxygenase gene expression and MCF-7 human breast cancer cell proliferation.

  • Barry M Markaverich‎ et al.
  • Environmental health perspectives‎
  • 2007‎

We characterized an endocrine disruptor from ground corncob bedding material that interferes with male and female sexual behavior and ovarian cyclicity in rats and stimulates estrogen receptor (ER)-positive and ER-negative breast cancer cell proliferation. The agents were identified as an isomeric mixture of tetrahydrofurandiols (THF-diols; 9,12-oxy-10,13-dihydroxy-octadecanoic acid and 10,13-oxy-9,12-dihydroxyoctadecanoic acid). Synthetic THF-diols inhibited rat male and female sexual behavior at oral concentrations of 0.5-1 ppm, and stimulated MCF-7 human breast cancer cell proliferation in vitro.


Intermittent montelukast in children aged 10 months to 5 years with wheeze (WAIT trial): a multicentre, randomised, placebo-controlled trial.

  • Chinedu Nwokoro‎ et al.
  • The Lancet. Respiratory medicine‎
  • 2014‎

The effectiveness of intermittent montelukast for wheeze in young children is unclear. We aimed to assess whether intermittent montelukast is better than placebo for treatment of wheeze in this age group. Because copy numbers of the Sp1-binding motif in the arachidonate 5-lipoxygenase (ALOX5) gene promoter (either 5/5, 5/x, or x/x, where x does not equal 5) modifies response to montelukast in adults, we stratified by this genotype.


Comparative analysis of inflammatory gene expression levels in metabolic syndrome & coronary artery disease.

  • Jiny Nair‎ et al.
  • The Indian journal of medical research‎
  • 2017‎

Metabolic syndrome (MetS) increases the likelihood of developing coronary artery disease (CAD), and inflammation is involved in the pathogenesis of both these conditions. The present work was conducted to examine the relative expression of 18 key inflammatory genes associated with MetS and incident CAD in a representative group of patients.


Genetic variation in the leukotriene pathway is associated with myocardial infarction in the Chinese population.

  • Yilan Li‎ et al.
  • Lipids in health and disease‎
  • 2019‎

Genetic variation in the genes ALOX5 (arachidonate 5-lipoxygenase), ALOX5AP (arachidonate 5-lipoxygenase-activating protein) and LTA4H (leukotriene A4 hydrolase) has previously been shown to contribute to the risk of MI (myocardial infarction) in Caucasian and African American populations. All genes encode proteins playing a role in the synthesis of the pro-inflammatory leukotriene B mediators, possibly providing a link between MI and inflammation. The aim of the present study was to investigate whether these associations could be confirmed in the study of China MI patients. The study included 401 Han Chinese MI patients and 409 controls. Six tag single nucleotide polymorphisms (SNPs)-ALOX5 rs12762303 and rs12264801, ALOX5AP rs10507391, LTA4H rs2072512, rs2540487 and rs2540477-were selected. SNP genotyping was performed by an improved multiplex ligation detection reaction assay.


Lack of association between ALOX5AP genetic polymorphisms and risk of ischemic stroke: evidence from meta-analyses.

  • Jing-Hui Zheng‎ et al.
  • Neuropsychiatric disease and treatment‎
  • 2019‎

In recent years, there has been substantial research evaluating the relationship between arachidonate 5-lipoxygenase-activating protein (ALOX5AP) polymorphisms and ischemic stroke (IS). The objective of this study was to systematically review and analyze the existing evidence.


Two dimensional difference gel electrophoresis analysis of cerebrospinal fluid in tuberculous meningitis patients.

  • Jitender Kataria‎ et al.
  • Journal of proteomics‎
  • 2011‎

Tuberculous meningitis (TBM) is a serious complication of tuberculosis that affects the central nervous system. Present methods to diagnose TBM are not suitable for early diagnosis. Molecular markers and sensitive methods to identify them in the early stage of infection of TBM are critically needed for efficient management. We have done the proteomic analysis of TBM cerebrospinal fluid (n=20) with 2-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry. We identified 11 human proteins and 8 mycobacterial proteins with changed expression levels in comparison to controls. Arachidonate 5-lipoxygenase and glial fibrillary acidic protein, two of the identified proteins, were validated with western blot technique on a larger set of disease and control samples (n=40). These two proteins were also analyzed in fungal meningitis samples. We suggest that arachidonate 5-lipoxygenase can be considered for validation as a potential marker for diagnosis of TBM.


Are ALOX5AP gene SNPs a risk or protective factor for stroke?

  • Apostolis Papapostolou‎ et al.
  • Gene‎
  • 2014‎

ALOX5AP (5-lipoxygenase) has been recognized as a susceptibility gene for stroke. Using a case-control design, the whole coding and adjoining intronic regions of ALOX5AP were sequenced to study the role of SNPs and their interplay with other risk factors in Greek patients with stroke. Patients (n=213) were classified by the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Their mean age of was 58.9 ± 14.64, comprising 145 males. The control group consisted of 210 subjects, ethnicity, sex and age matched, with no stroke history. Risk factors (hyperlipidemia, hypertension, atrial fibrillation, migraine, CAD, diabetes, smoking and alcohol consumption) were assessed as confounding factors and comparisons were done using logistic regression analysis. SNPs rs4769055, rs202068154 and rs3803277 located in intronic regions of the gene and according to in silico programs EX_SKIP and HSF possibly affecting splicing of exons 1 and 2 of ALOX5AP, showed significantly different frequencies between patients and controls. The genotype frequencies of rs4769055: AA, of rs202068154: AC and of rs3803277: CA were significantly higher (p<0.001, 0.058) in controls than in patients. The results were indicative of a protective role of the three SNPs either in homozygosity or heterozygosity for MAF and more specifically rs3803277: CA/AA genotypes were protective against SVO stroke subtype.


Exacerbation of Nanoparticle-Induced Acute Pulmonary Inflammation in a Mouse Model of Metabolic Syndrome.

  • Saeed Alqahtani‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Nanotechnology has the capacity to revolutionize numerous fields and processes, however, exposure-induced health effects are of concern. The majority of nanoparticle (NP) safety evaluations have been performed utilizing healthy models and have demonstrated the potential for pulmonary toxicity. A growing proportion of individuals suffer diseases that may enhance their susceptibility to exposures. Specifically, metabolic syndrome (MetS) is increasingly prevalent and is a risk factor for the development of chronic diseases including type-2 diabetes, cardiovascular disease, and cancer. MetS is a combination of conditions which includes dyslipidemia, obesity, hypertension, and insulin resistance. Due to the role of lipids in inflammatory signaling, we hypothesize that MetS-associated dyslipidemia may modulate NP-induced immune responses. To examine this hypothesis, mice were fed either a control diet or a high-fat western diet (HFWD) for 14-weeks. A subset of mice were treated with atorvastatin for the final 7-weeks to modulate lipids. Mice were exposed to silver NPs (AgNPs) via oropharyngeal aspiration and acute toxicity endpoints were evaluated 24-h post-exposure. Mice on the HFWD demonstrated MetS-associated alterations such as increased body weight and cholesterol compared to control-diet mice. Cytometry analysis of bronchoalveolar lavage fluid (BALF) demonstrated exacerbation of AgNP-induced neutrophilic influx in MetS mice compared to healthy. Additionally, enhanced proinflammatory mRNA expression and protein levels of monocyte chemoattractant protein-1, macrophage inflammatory protein-2, and interleukin-6 were observed in MetS mice compared to healthy following exposure. AgNP exposure reduced mRNA expression of enzymes involved in lipid metabolism, such as arachidonate 5-lipoxygenase and arachidonate 15-lipoxygenase in both mouse models. Exposure to AgNPs decreased inducible nitric oxide synthase gene expression in MetS mice. An exploratory lipidomic profiling approach was utilized to screen lipid mediators involved in pulmonary inflammation. This assessment indicates the potential for reduced levels of lipids mediators of inflammatory resolution (LMIR) in the MetS model compared to healthy mice following AgNP exposure. Statin treatment inhibited enhanced inflammatory responses as well as alterations in LMIR observed in the MetS model due to AgNP exposure. Taken together our data suggests that MetS exacerbates the acute toxicity induced by AgNPs exposure possibly via a disruption of LMIR leading to enhanced pulmonary inflammation.


ALOX5AP Predicts Poor Prognosis by Enhancing M2 Macrophages Polarization and Immunosuppression in Serous Ovarian Cancer Microenvironment.

  • Xiang Ye‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Serous ovarian cancer (SOC) is a highly lethal gynecological malignancy with poor prognosis. Given the importance of the immune-related tumor microenvironment (TME) in ovarian cancer, investigating tumor-immune interactions and identifying novel prognostic and therapeutic targets in SOC is a promising avenue of research. ALOX5AP (Arachidonate 5-Lipoxygenase Activating Protein) is a key enzyme in converting arachidonic acid to leukotriene: a crucial immune-modulating lipid mediator. However, the role of ALOX5AP in SOC has yet to be studied.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: