Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 254 papers

Structural basis for inhibition of DNA replication by aphidicolin.

  • Andrey G Baranovskiy‎ et al.
  • Nucleic acids research‎
  • 2014‎

Natural tetracyclic diterpenoid aphidicolin is a potent and specific inhibitor of B-family DNA polymerases, haltering replication and possessing a strong antimitotic activity in human cancer cell lines. Clinical trials revealed limitations of aphidicolin as an antitumor drug because of its low solubility and fast clearance from human plasma. The absence of structural information hampered the improvement of aphidicolin-like inhibitors: more than 50 modifications have been generated so far, but all have lost the inhibitory and antitumor properties. Here we report the crystal structure of the catalytic core of human DNA polymerase α (Pol α) in the ternary complex with an RNA-primed DNA template and aphidicolin. The inhibitor blocks binding of dCTP by docking at the Pol α active site and by rotating the template guanine. The structure provides a plausible mechanism for the selectivity of aphidicolin incorporation opposite template guanine and explains why previous modifications of aphidicolin failed to improve its affinity for Pol α. With new structural information, aphidicolin becomes an attractive lead compound for the design of novel derivatives with enhanced inhibitory properties for B-family DNA polymerases.


Isolation and Characterization of Aphidicolin Derivatives from Tolypocladium inflatum.

  • Jie Lin‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2017‎

Inflatin G (1), a new aphidicolin analogue, together with seven known compounds inflatin A (2), inflatin B (3), aphidicolin (4), aphidicolin-17-monoacetate (5), gulypyrone A (6), pyridoxatin rotamers A (7) and B (8), were isolated from the ascomycete fungus Tolypocladium inflatum. Their structures were determined through NMR analyses and the circular dichroism data of the in situ formed [Rh₂(OCOCF₃)₄] complexes. Compounds 1, 4, 5, 7, and 8 showed modest cytotoxicity against four human cancer cell lines A549, CNE1-MP1, A375, and MCF-7.


Stability of cytoplasmic nanoviscosity during cell cycle of HeLa cells synchronized with Aphidicolin.

  • Krzysztof Szczepański‎ et al.
  • Scientific reports‎
  • 2019‎

Nanoviscosity of the cytoplasm is a key factor affecting diffusion of biomolecules and - as a consequence - rates of biochemical reactions in a cell. Nanoviscosity is an outcome of variable chemical and structural factors, which can temporarily change with cell-cycle associated changes of intracellular architecture. Thus, the question arises, whether rates of biochemical reactions depend on the point of cell cycle. In this paper we address this topic by constant observation of nanoviscosity of HeLa cells cytoplasm during S, G2 and G1 phases after Aphidicolin synchronization. For this purpose we measured diffusion rates of EGFP molecules using fluorescence correlation spectroscopy (FCS). To our surprise, a counter-intuitive stability of cytoplasmic viscosity was observed during the cell cycle. Our results hint at possible existence of robust mechanism maintaining stable physiological viscosity of the cytoplasm, despite huge structural changes during cell cycle.


Nuclear localization of endothelial nitric oxide synthase and nitric oxide production attenuates aphidicolin-induced endothelial cell death.

  • Jung-Hyun Park‎ et al.
  • Nitric oxide : biology and chemistry‎
  • 2021‎

Aphidicolin represses DNA replication by inhibiting DNA polymerase α and δ, which leads to cell cycle arrest and cell damage. Nitric oxide (NO) generated by endothelial NO synthase (eNOS) plays an essential role in maintenance of endothelial integrity including endothelial cell (EC) survival. Previously, we reported that aphidicolin increases NO production in bovine aortic ECs (BAECs). However, the role of aphidicolin-induced NO on EC viability and its molecular mechanism remain to be elucidated. Treatment with 20 μM aphidicolin for 24 h reduced BAEC viability by ~40%, which was accompanied by increased NO production, phosphorylation of eNOS at Ser1179 (p-eNOS-Ser1179), and eNOS protein expression. The aphidicolin-increased eNOS expression and p-eNOS-Ser1179 were not altered by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), a cell permeable and specific intracellular Ca2+ chelator. Co-treatment with 2-phenyl-4, 4, 5, 5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), an NO scavenger, or Nω-Nitro-l-arginine methyl ester hydrochloride (l-NAME), a NOS inhibitor, exacerbated aphidicolin-stimulated BAEC death. Knockdown of eNOS gene expression using siRNA aggravated aphidicolin-induced BAEC death. However, exogenous NO donors including S-nitroso-l-glutathione (GSNO) or diethylenetriamine NONOate (DETA NO) had no effect on aphidicolin-decreased BAEC viability and aggravated BAEC viability at higher doses. Interestingly, aphidicolin accumulated eNOS protein in the active form, p-eNOS-Ser1179, in the nucleus. When cells were ectopically transfected with a wild-type (WT)-eNOS gene, aphidicolin induced significant localization of the protein product in the nucleus. Additionally, aphidicolin-elicited cell death was significantly reversed in WT-eNOS gene-transfected BAECs. Furthermore, overexpression of the eNOS gene containing nuclear localization signal (NLS) but not nuclear export signal (NES) significantly attenuated aphidicolin-induced BAEC death. When G2A-eNOS mutant lacking myristoylation at Gly2 was transfected, its intracellular distribution became diffuse and included the nucleus. Finally, expression of N-myristoyltransferase 2 (NMT2) but not NMT1 significantly decreased in aphidicolin-treated BAECs. Taken together, our results suggest that aphidicolin attenuates BAEC death in part by increasing nuclear eNOS localization and NO production.


Activation of ATM/Akt/CREB/eNOS Signaling Axis by Aphidicolin Increases NO Production and Vessel Relaxation in Endothelial Cells and Rat Aortas.

  • Jung-Hyun Park‎ et al.
  • Biomolecules & therapeutics‎
  • 2020‎

Although DNA damage responses (DDRs) are reported to be involved in nitric oxide (NO) production in response to genotoxic stresses, the precise mechanism of DDR-mediated NO production has not been fully understood. Using a genotoxic agent aphidicolin, we investigated how DDRs regulate NO production in bovine aortic endothelial cells. Prolonged (over 24 h) treatment with aphidicolin increased NO production and endothelial NO synthase (eNOS) protein expression, which was accompanied by increased eNOS dimer/monomer ratio, tetrahydrobiopterin levels, and eNOS mRNA expression. A promoter assay using 5'-serially deleted eNOS promoters revealed that Tax-responsive element site, located at -962 to -873 of the eNOS promoter, was responsible for aphidicolin-stimulated eNOS gene expression. Aphidicolin increased CREB activity and ectopic expression of dominantnegative inhibitor of CREB, A-CREB, repressed the stimulatory effects of aphidicolin on eNOS gene expression and its promoter activity. Co-treatment with LY294002 decreased the aphidicolin-stimulated increase in p-CREB-Ser133 level, eNOS expression, and NO production. Furthermore, ectopic expression of dominant-negative Akt construct attenuated aphidicolin-stimulated NO production. Aphidicolin increased p-ATM-Ser1981 and the knockdown of ATM using siRNA attenuated all stimulatory effects of aphidicolin on p-Akt-Ser473, p-CREB-Ser133, eNOS expression, and NO production. Additionally, these stimulatory effects of aphidicolin were similarly observed in human umbilical vein endothelial cells. Lastly, aphidicolin increased acetylcholine-induced vessel relaxation in rat aortas, which was accompanied by increased p-ATM-Ser1981, p-Akt-Ser473, p-CREB-Ser133, and eNOS expression. In conclusion, our results demonstrate that in response to aphidicolin, activation of ATM/Akt/CREB/eNOS signaling cascade mediates increase of NO production and vessel relaxation in endothelial cells and rat aortas.


Inhibition of topoisomerase I prevents chromosome breakage at common fragile sites.

  • Martin F Arlt‎ et al.
  • DNA repair‎
  • 2010‎

Common fragile sites are loci that preferentially form gaps and breaks on metaphase chromosomes when DNA synthesis is perturbed, particularly after treatment with the DNA polymerase inhibitor, aphidicolin. We and others have identified several cell cycle checkpoint and DNA repair proteins that influence common fragile site stability. However, the initial events underlying fragile site breakage remain poorly understood. We demonstrate here that aphidicolin-induced gaps and breaks at fragile sites are prevented when cells are co-treated with low concentrations of the topoisomerase I inhibitor, camptothecin. This reduction in breakage is accompanied by a reduction in aphidicolin-induced RPA foci, CHK1 and RPA2 phosphorylation, and PCNA monoubiquitination, indicative of reduced levels of single stranded DNA. Furthermore, camptothecin reduces spontaneous fragile site breakage seen in cells lacking ATR, even in the absence of aphidicolin. These data from cultured human cells demonstrate that topoisomerase I activity is required for DNA common fragile site breaks and suggest that polymerase-helicase uncoupling is a key initial event in this process.


Hydrocoel morphogenesis forming the pentaradial body plan in a sea cucumber, Apostichopus japonicus.

  • Sumio Udagawa‎ et al.
  • Scientific reports‎
  • 2022‎

Echinoderms constitute an animal phylum characterized by the pentaradial body plan. During the development from bilateral larvae to pentaradial adults, the formation of the multiple of five hydrocoel lobes, i.e., the buddings from the mesodermal coelom, is the firstly emerging pentameral character. The developmental mechanism underlying the hydrocoel-lobe formation should be revealed to understand the evolutionary process of this unique and highly derived body plan of echinoderms, although the morphogenetic mechanisms of hydrocoel lobes are largely uninvestigated. In this study, using the sea cucumber Apostichopus japonicus, in which hydrocoel is easily observable, the developmental process of hydrocoel lobes was described in detail, focusing on cell proliferation and rearrangement. Cell proliferation was not specifically distributed in the growing tips of the hydrocoel lobes, and inhibition of cell proliferation did not affect lobe formation. During lobe formation, the epithelium of the hydrocoel lobes was firstly thickened and then transformed into a simple epithelium, suggesting that tissue expansion via tissue remodeling contributes to the hydrocoel-lobe formation.


The organizer of chromatin topology RIF1 ensures cellular resilience to DNA replication stress.

  • Rana Lebdy‎ et al.
  • Life science alliance‎
  • 2023‎

Eukaryotic genomes are duplicated from thousands of replication origins that fire sequentially forming a defined spatiotemporal pattern of replication clusters. The temporal order of DNA replication is determined by chromatin architecture and, more specifically, by chromatin contacts that are stabilized by RIF1. Here, we show that RIF1 localizes near newly synthesized DNA. In cells exposed to the DNA replication inhibitor aphidicolin, suppression of RIF1 markedly decreased the efficacy of isolation of proteins on nascent DNA, suggesting that the isolation of proteins on nascent DNA procedure is biased by chromatin topology. RIF1 was required to limit the accumulation of DNA lesions induced by aphidicolin treatment and promoted the recruitment of cohesins in the vicinity of nascent DNA. Collectively, the data suggest that the stabilization of chromatin topology by RIF1 limits replication-associated genomic instability.


Tailored parameter optimization methods for ordinary differential equation models with steady-state constraints.

  • Anna Fiedler‎ et al.
  • BMC systems biology‎
  • 2016‎

Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the parameters. However, implementing steady-state constraints in the optimization often results in convergence problems.


Human cyclin A is required for mitosis until mid prophase.

  • N Furuno‎ et al.
  • The Journal of cell biology‎
  • 1999‎

We have used microinjection and time-lapse video microscopy to study the role of cyclin A in mitosis. We have injected purified, active cyclin A/cyclin-dependent kinase 2 (CDK2) into synchronized cells at specific points in the cell cycle and assayed its effect on cell division. We find that cyclin A/CDK2 will drive G2 phase cells into mitosis within 30 min of microinjection, up to 4 h before control cells enter mitosis. Often this premature mitosis is abnormal; the chromosomes do not completely condense and daughter cells fuse. Remarkably, microinjecting cyclin A/CDK2 into S phase cells has no effect on progress through the following G2 phase or mitosis. In complementary experiments we have microinjected the amino terminus of p21(Cip1/Waf1/Sdi1) (p21N) into cells to inhibit cyclin A/CDK2 activity. We find that p21N will prevent S phase or G2 phase cells from entering mitosis, and will cause early prophase cells to return to interphase. These results suggest that cyclin A/CDK2 is a rate-limiting component required for entry into mitosis, and for progress through mitosis until late prophase. They also suggest that cyclin A/CDK2 may be the target of the recently described prophase checkpoint.


Chromosome association of minichromosome maintenance proteins in Drosophila endoreplication cycles.

  • T T Su‎ et al.
  • The Journal of cell biology‎
  • 1998‎

Minichromosome maintenance (MCM) proteins are essential eukaryotic DNA replication factors. The binding of MCMs to chromatin oscillates in conjunction with progress through the mitotic cell cycle. This oscillation is thought to play an important role in coupling DNA replication to mitosis and limiting chromosome duplication to once per cell cycle. The coupling of DNA replication to mitosis is absent in Drosophila endoreplication cycles (endocycles), during which discrete rounds of chromosome duplication occur without intervening mitoses. We examined the behavior of MCM proteins in endoreplicating larval salivary glands, to determine whether oscillation of MCM-chromosome localization occurs in conjunction with passage through an endocycle S phase. We found that MCMs in polytene nuclei exist in two states: associated with or dissociated from chromosomes. We demonstrate that cyclin E can drive chromosome association of DmMCM2 and that DNA synthesis erases this association. We conclude that mitosis is not required for oscillations in chromosome binding of MCMs and propose that cycles of MCM-chromosome association normally occur in endocycles. These results are discussed in a model in which the cycle of MCM-chromosome associations is uncoupled from mitosis because of the distinctive program of cyclin expression in endocycles.


Replication stress induces 53BP1-containing OPT domains in G1 cells.

  • Jeanine A Harrigan‎ et al.
  • The Journal of cell biology‎
  • 2011‎

Chromosomal deletions and rearrangements in tumors are often associated with common fragile sites, which are specific genomic loci prone to gaps and breaks in metaphase chromosomes. Common fragile sites appear to arise through incomplete DNA replication because they are induced after partial replication inhibition by agents such as aphidicolin. Here, we show that in G1 cells, large nuclear bodies arise that contain p53 binding protein 1 (53BP1), phosphorylated H2AX (γH2AX), and mediator of DNA damage checkpoint 1 (MDC1), as well as components of previously characterized OPT (Oct-1, PTF, transcription) domains. Notably, we find that incubating cells with low aphidicolin doses increases the incidence and number of 53BP1-OPT domains in G1 cells, and by chromatin immunoprecipitation and massively parallel sequencing analysis of γH2AX, we demonstrate that OPT domains are enriched at common fragile sites. These findings invoke a model wherein incomplete DNA synthesis during S phase leads to a DNA damage response and formation of 53BP1-OPT domains in the subsequent G1.


Mouse centric and pericentric satellite repeats form distinct functional heterochromatin.

  • Mounia Guenatri‎ et al.
  • The Journal of cell biology‎
  • 2004‎

Heterochromatin is thought to play a critical role for centromeric function. However, the respective contributions of the distinct repetitive sequences found in these regions, such as minor and major satellites in the mouse, have remained largely unsolved. We show that these centric and pericentric repeats on the chromosomes have distinct heterochromatic characteristics in the nucleus. Major satellites from different chromosomes form clusters associated with heterochromatin protein 1alpha, whereas minor satellites are individual entities associated with centromeric proteins. Both regions contain methylated histone H3 (Me-K9 H3) but show different micrococcal nuclease sensitivities. A dinucleosome repeating unit is found specifically associated with major satellites. These domains replicate asynchronously, and chromatid cohesion is sustained for a longer time in major satellites compared with minor satellites. Such prolonged cohesion in major satellites is lost in the absence of Suv39h histone methyltransferases. Thus, we define functionally independent centromeric subdomains, which spatio-temporal isolation is proposed to be important for centromeric cohesion and dissociation during chromosome segregation.


High-resolution mapping of mitotic DNA synthesis regions and common fragile sites in the human genome through direct sequencing.

  • Morgane Macheret‎ et al.
  • Cell research‎
  • 2020‎

DNA replication stress, a feature of human cancers, often leads to instability at specific genomic loci, such as the common fragile sites (CFSs). Cells experiencing DNA replication stress may also exhibit mitotic DNA synthesis (MiDAS). To understand the physiological function of MiDAS and its relationship to CFSs, we mapped, at high resolution, the genomic sites of MiDAS in cells treated with the DNA polymerase inhibitor aphidicolin. Sites of MiDAS were evident as well-defined peaks that were largely conserved between cell lines and encompassed all known CFSs. The MiDAS peaks mapped within large, transcribed, origin-poor genomic regions. In cells that had been treated with aphidicolin, these regions remained unreplicated even in late S phase; MiDAS then served to complete their replication after the cells entered mitosis. Interestingly, leading and lagging strand synthesis were uncoupled in MiDAS, consistent with MiDAS being a form of break-induced replication, a repair mechanism for collapsed DNA replication forks. Our results provide a better understanding of the mechanisms leading to genomic instability at CFSs and in cancer cells.


Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells.

  • Matthew E Gegg‎ et al.
  • PloS one‎
  • 2009‎

Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD). Impairment of the mitochondrial electron transport chain (ETC) and an increased frequency in deletions of mitochondrial DNA (mtDNA), which encodes some of the subunits of the ETC, have been reported in the substantia nigra of PD brains. The identification of mutations in the PINK1 gene, which cause an autosomal recessive form of PD, has supported mitochondrial involvement in PD. The PINK1 protein is a serine/threonine kinase localized in mitochondria and the cytosol. Its precise function is unknown, but it is involved in neuroprotection against a variety of stress signalling pathways.


Effect of dehydroaltenusin-C12 derivative, a selective DNA polymerase alpha inhibitor, on DNA replication in cultured cells.

  • Isoko Kuriyama‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2008‎

Dehydroaltenusin is a selective inhibitor of mammalian DNA polymerase alpha (pol alpha) from a fungus (Alternaria tennuis). We have designed, synthesized, and characterized a derivative of dehydroaltenusin conjugated with a C12-alkyl side chain (dehydroaltenusin-C12 [C12]). C12 was the strongest pol alpha inhibitor in vitro. We introduced C12 into NIH3T3 cells with the help of a hypotonic shift, that is, a transient exposure of cultured cells in hypotonic buffer with small molecules which can not penetrate cells. The cells that took in C12 by hypotonic shift showed cell growth inhibition. At a low concentration (5 microM), DNA replication was inhibited and several large replication protein A (RPA) foci, which is different from dUTP foci. Furthermore, when C12 was incubated with aphidicolin, RPA foci were not observed in cells. Finally, these findings suggest that C12 inhibited DNA replication through pol alpha inhibition, and generated single-stranded DNA, resulted in uncoupling of the leading strand and lagging strand synthesis. These findings suggest that C12 could be more interesting as a molecule probe or anticancer agent than aphidicolin. C12 might provide novel markers for the development of antiproliferative drugs.


Cell cycle inhibitors improve seed storability after priming treatments.

  • Naoto Sano‎ et al.
  • Journal of plant research‎
  • 2019‎

Seed priming is a treatment that controls seed water content to partially activate germination processes such as metabolism but prevents full germination of the seeds. The treatment is well known to enhance seed performance, including germination, but sometimes reduces seed storability or longevity as a side effect. Toward developing a novel priming technique that can maintain seed longevity for a longer time period, chemicals that suppress the seed deterioration under a controlled condition were screened from 80 known biologically active compounds contained in the RIKEN NPDepo authentic library using Arabidopsis thaliana seeds. Seeds primed with mimosine, a cell cycle inhibitor, retained higher survival rate after a controlled deterioration treatment compared to seeds primed without the chemical. In addition, other cell cycle inhibitors such as aphidicolin, hydroxyurea and oryzalin had similar effects on the seed storability after priming. Our results suggest that progression of the cell cycle during priming is an important checkpoint that determines the storability of seeds after the treatment.


High content image based analysis identifies cell cycle inhibitors as regulators of Ebola virus infection.

  • Krishna P Kota‎ et al.
  • Viruses‎
  • 2012‎

Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI) assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV) infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.


A minimal threshold of FANCJ helicase activity is required for its response to replication stress or double-strand break repair.

  • Sanjay Kumar Bharti‎ et al.
  • Nucleic acids research‎
  • 2018‎

Fanconi Anemia (FA) is characterized by bone marrow failure, congenital abnormalities, and cancer. Of over 20 FA-linked genes, FANCJ uniquely encodes a DNA helicase and mutations are also associated with breast and ovarian cancer. fancj-/- cells are sensitive to DNA interstrand cross-linking (ICL) and replication fork stalling drugs. We delineated the molecular defects of two FA patient-derived FANCJ helicase domain mutations. FANCJ-R707C was compromised in dimerization and helicase processivity, whereas DNA unwinding by FANCJ-H396D was barely detectable. DNA binding and ATP hydrolysis was defective for both FANCJ-R707C and FANCJ-H396D, the latter showing greater reduction. Expression of FANCJ-R707C or FANCJ-H396D in fancj-/- cells failed to rescue cisplatin or mitomycin sensitivity. Live-cell imaging demonstrated a significantly compromised recruitment of FANCJ-R707C to laser-induced DNA damage. However, FANCJ-R707C expressed in fancj-/- cells conferred resistance to the DNA polymerase inhibitor aphidicolin, G-quadruplex ligand telomestatin, or DNA strand-breaker bleomycin, whereas FANCJ-H396D failed. Thus, a minimal threshold of FANCJ catalytic activity is required to overcome replication stress induced by aphidicolin or telomestatin, or to repair bleomycin-induced DNA breakage. These findings have implications for therapeutic strategies relying on DNA cross-link sensitivity or heightened replication stress characteristic of cancer cells.


Interference in DNA replication can cause mitotic chromosomal breakage unassociated with double-strand breaks.

  • Mari Fujita‎ et al.
  • PloS one‎
  • 2013‎

Morphological analysis of mitotic chromosomes is used to detect mutagenic chemical compounds and to estimate the dose of ionizing radiation to be administered. It has long been believed that chromosomal breaks are always associated with double-strand breaks (DSBs). We here provide compelling evidence against this canonical theory. We employed a genetic approach using two cell lines, chicken DT40 and human Nalm-6. We measured the number of chromosomal breaks induced by three replication-blocking agents (aphidicolin, 5-fluorouracil, and hydroxyurea) in DSB-repair-proficient wild-type cells and cells deficient in both homologous recombination and nonhomologous end-joining (the two major DSB-repair pathways). Exposure of cells to the three replication-blocking agents for at least two cell cycles resulted in comparable numbers of chromosomal breaks for RAD54(-/-/)KU70(-/-) DT40 clones and wild-type cells. Likewise, the numbers of chromosomal breaks induced in RAD54(-/-/)LIG4(-/-) Nalm-6 clones and wild-type cells were also comparable. These data indicate that the replication-blocking agents can cause chromosomal breaks unassociated with DSBs. In contrast with DSB-repair-deficient cells, chicken DT40 cells deficient in PIF1 or ATRIP, which molecules contribute to the completion of DNA replication, displayed higher numbers of mitotic chromosomal breaks induced by aphidicolin than did wild-type cells, suggesting that single-strand gaps left unreplicated may result in mitotic chromosomal breaks.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: