Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 3,051 papers

Identification and validation of viral antigens sharing sequence and structural homology with tumor-associated antigens (TAAs).

  • Concetta Ragone‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2021‎

The host's immune system develops in equilibrium with both cellular self-antigens and non-self-antigens derived from microorganisms which enter the body during lifetime. In addition, during the years, a tumor may arise presenting to the immune system an additional pool of non-self-antigens, namely tumor antigens (tumor-associated antigens, TAAs; tumor-specific antigens, TSAs).


Inside-out assembly of viral antigens for the enhanced vaccination.

  • Fengqiang Cao‎ et al.
  • Signal transduction and targeted therapy‎
  • 2023‎

Current attempts in vaccine delivery systems concentrate on replicating the natural dissemination of live pathogens, but neglect that pathogens evolve to evade the immune system rather than to provoke it. In the case of enveloped RNA viruses, it is the natural dissemination of nucleocapsid protein (NP, core antigen) and surface antigen that delays NP exposure to immune surveillance. Here, we report a multi-layered aluminum hydroxide-stabilized emulsion (MASE) to dictate the delivery sequence of the antigens. In this manner, the receptor-binding domain (RBD, surface antigen) of the spike protein was trapped inside the nanocavity, while NP was absorbed on the outside of the droplets, enabling the burst release of NP before RBD. Compared with the natural packaging strategy, the inside-out strategy induced potent type I interferon-mediated innate immune responses and triggered an immune-potentiated environment in advance, which subsequently boosted CD40+ DC activations and the engagement of the lymph nodes. In both H1N1 influenza and SARS-CoV-2 vaccines, rMASE significantly increased antigen-specific antibody secretion, memory T cell engagement, and Th1-biased immune response, which diminished viral loads after lethal challenge. By simply reversing the delivery sequence of the surface antigen and core antigen, the inside-out strategy may offer major implications for enhanced vaccinations against the enveloped RNA virus.


PhIP-Seq Reveals Autoantibodies for Ubiquitously Expressed Antigens in Viral Myocarditis.

  • Mahima T Rasquinha‎ et al.
  • Biology‎
  • 2022‎

Enteroviruses such as group B coxsackieviruses (CVB) are commonly suspected as causes of myocarditis that can lead to dilated cardiomyopathy (DCM), and the mouse model of CVB3 myocarditis is routinely used to understand DCM pathogenesis. Mechanistically, autoimmunity is suspected due to the presence of autoantibodies for select antigens. However, their role continues to be enigmatic, which also raises the question of whether the breadth of autoantibodies is sufficiently characterized. Here, we attempted to comprehensively analyze the autoantibody repertoire using Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a versatile and high-throughput platform, in the mouse model of CVB3 myocarditis. First, PhIP-Seq analysis using the VirScan library revealed antibody reactivity only to CVB3 in the infected group but not in controls, thus validating the technique in this model. Second, using the mouse peptide library, we detected autoantibodies to 32 peptides from 25 proteins in infected animals that are ubiquitously expressed and have not been previously reported. Third, by using ELISA as a secondary assay, we confirmed antibody reactivity in sera from CVB3-infected animals to cytochrome c oxidase assembly factor 4 homolog (COA4) and phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1), indicating the specificity of antibody detection by PhIP-Seq technology. Fourth, we noted similar antibody reactivity patterns in CVB3 and CVB4 infections, suggesting that the COA4- and PIK3AP1-reactive antibodies could be common to multiple CVB infections. The specificity of the autoantibodies was affirmed with influenza-infected animals that showed no reactivity to any of the antigens tested. Taken together, our data suggest that the autoantibodies identified by PhIP-Seq may have relevance to CVB pathogenesis, with a possibility that similar reactivity could be expected in human DCM patients.


Eliciting unnatural immune responses by activating cryptic epitopes in viral antigens.

  • Young Jae Lee‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2018‎

Antigenic variation in viral surface antigens is a strategy for escaping the host's adaptive immunity, whereas regions with pivotal functions for infection are less subject to antigenic variability. We hypothesized that genetically invariable and immunologically dormant regions of a viral surface antigen could be exposed to the host immune system and activated by rendering them susceptible to antigen-processing machinery in professional antigen-presenting cells (APCs). Considering the frequent antigen drift and shift in influenza viruses, we identified and used structural modeling to evaluate the conserved regions on the influenza hemagglutinin (HA) surface as potential epitopes. Mutant viruses containing the cleavage motifs of cathepsin S within HA were generated. Immunization of mice showed that the mutant, but not the wild-type virus, elicited specific antibodies against the cryptic epitope. Those antibodies were purified, and specific binding to HA was confirmed. These results suggest that an unnatural immune response can be elicited through the processing of target antigens in APCs, followed by presentation via the major histocompatibility complex, if not subjected to regulatory pathways. By harnessing the antigen-processing machinery, our study shows a proof-of-principle for designer vaccines with increased efficacy and safety by either activating cryptic, or inactivating naturally occurring, epitopes of viral antigens.-Lee, Y. J., Yu, J. E., Kim, P., Lee, J.-Y., Cheong, Y. C., Lee, Y. J., Chang, J., Seong, B. L. Eliciting unnatural immune responses by activating cryptic epitopes in viral antigens.


Mucosal Vaccination with Heterologous Viral Vectored Vaccine Targeting Subdominant SIV Accessory Antigens Strongly Inhibits Early Viral Replication.

  • Huanbin Xu‎ et al.
  • EBioMedicine‎
  • 2017‎

Conventional HIV T cell vaccine strategies have not been successful in containing acute peak viremia, nor in providing long-term control. We immunized rhesus macaques intramuscularly and rectally using a heterologous adenovirus vectored SIV vaccine regimen encoding normally weakly immunogenic tat, vif, rev and vpr antigens fused to the MHC class II associated invariant chain. Immunizations induced broad T cell responses in all vaccinees. Following up to 10 repeated low-dose intrarectal challenges, vaccinees suppressed early viral replication (P=0.01) and prevented the peak viremia in 5/6 animals. Despite consistently undetectable viremia in 2 out of 6 vaccinees, all animals showed evidence of infection induced immune responses indicating that infection had taken place. Vaccinees, with and without detectable viremia better preserved their rectal CD4+ T cell population and had reduced immune hyperactivation as measured by naïve T cell depletion, Ki-67 and PD-1 expression on T cells. These results indicate that vaccination towards SIV accessory antigens vaccine can provide a level of acute control of SIV replication with a suggestion of beneficial immunological consequences in infected animals of unknown long-term significance. In conclusion, our studies demonstrate that a vaccine encoding subdominant antigens not normally associated with virus control can exert a significant impact on acute peak viremia.


Displaying and delivering viral membrane antigens via WW domain-activated extracellular vesicles.

  • Sengjin Choi‎ et al.
  • Science advances‎
  • 2023‎

Membrane proteins expressed on the surface of enveloped viruses are conformational antigens readily recognized by B cells of the immune system. An effective vaccine would require the synthesis and delivery of these native conformational antigens in lipid membranes that preserve specific epitope structures. We have created an extracellular vesicle-based technology that allows viral membrane antigens to be selectively recruited onto the surface of WW domain-activated extracellular vesicles (WAEVs). Budding of WAEVs requires secretory carrier-associated membrane protein 3, which through its proline-proline-alanine-tyrosine motif interacts with WW domains to recruit fused viral membrane antigens onto WAEVs. Immunization with influenza and HIV viral membrane proteins displayed on WAEVs elicits production of virus-specific neutralizing antibodies and, in the case of influenza antigens, protects mice from the lethal viral infection. WAEVs thus represent a versatile platform for presenting and delivering membrane antigens as vaccines against influenza, HIV, and potentially many other viral pathogens.


Surface-displayed porcine epidemic diarrhea viral (PEDV) antigens on lactic acid bacteria.

  • Xi-Lin Hou‎ et al.
  • Vaccine‎
  • 2007‎

In this report, for surface display of viral antigen on lactobacilli, we have developed a surface antigen display system using the poly-gamma-glutamate synthetase A protein (pgsA) of Bacillus subtilis as an anchoring matrix. Recombinant fusion proteins comprised of pgsA and neucleocapsid protein of PEDV were stably expressed in Lactobacillus casei. Surface location of fusion protein was verified by ELISA, immunofluoresence microscopy. Oral and intranasal inoculations of recombinant L. casei into pregnant sow and mice resulted in high levels of serum immunoglobuline G (IgG) and mucosal IgA, as demonstrated by rnELISA(recombinant N protein ELISA) using recombinant N protein. Absorbance of IgG in pregnant sow sera highly increased duration of the experiment. More importantly, the level of IgA in colostrum were increased significantly higher than that of IgG. The IgG levels of the piglets were increased after suckling colostrum secreted from sows previously inoculated recombinant L. casei. These results indicate that mucosal immunization with recombinant L. casei expressing PEDV N protein (neucleoprotein of PEDV) on its surface elicited high levels of mucosal IgA and circulation IgG immune responses against the antigen N of PEDV.


Monoclonal antibodies targeting nonstructural viral antigens can activate ADCC against human cytomegalovirus.

  • Virginia-Maria Vlahava‎ et al.
  • The Journal of clinical investigation‎
  • 2021‎

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that causes severe disease following congenital infection and in immunocompromised individuals. No vaccines are licensed, and there are limited treatment options. We now show that the addition of anti-HCMV antibodies (Abs) can activate NK cells prior to the production of new virions, through Ab-dependent cellular cytotoxicity (ADCC), overcoming viral immune evasins. Quantitative proteomics defined the most abundant HCMV proteins on the cell surface, and we screened these targets to identify the viral antigens responsible for activating ADCC. Surprisingly, these were not structural glycoproteins; instead, the immune evasins US28, RL11, UL5, UL141, and UL16 each individually primed ADCC. We isolated human monoclonal Abs (mAbs) specific for UL16 or UL141 from a seropositive donor and optimized them for ADCC. Cloned Abs targeting a single antigen (UL141) were sufficient to mediate ADCC against HCMV-infected cells, even at low concentrations. Collectively, these findings validated an unbiased methodological approach to the identification of immunodominant viral antigens, providing a pathway toward an immunotherapeutic strategy against HCMV and potentially other pathogens.


Increased antibodies against unfolded viral antigens in the elderly after influenza vaccination.

  • Upma Gulati‎ et al.
  • Influenza and other respiratory viruses‎
  • 2007‎

Our studies aimed to measure the quality of antibody response to influenza vaccines in the elderly. The frequency of significant rise in hemagglutination inhibition (HAI) titer in the elderly is low and although annual vaccination reduces morbidity and mortality, better correlates of vaccine efficacy in the elderly are needed.


Engineering His-Tagged Senecavirus A for One-Step Purification of Viral Antigens.

  • Junhao Fan‎ et al.
  • Vaccines‎
  • 2022‎

Senecavirus A (SVA) is a picornavirus that causes vesicular disease in swine, and the inactivated vaccine is used to prevent and control SVA infection. To develop a new chromatography strategy for the purification and concentration of SVA vaccine antigens, we inserted a 6×His-tag at the VP1 C-terminal of the SVA/HLJ/CHA/2016 in an infectious clone to rescue a His-tagged SVA. The constructed and rescued recombinant virus, named as rSVA-His, exhibited similar growth kinetics to that of its parental virus. In addition, the expression of a 6×His-tag on the surface of SVA showed genetic stability in cell passages in vitro, which allowed one-step purification of SVA antigens by Ni2+ affinity columns. Furthermore, the immunogenicity of the inactivated rSVA-His was evaluated by inoculating rabbits and detecting neutralizing antibodies. The animals receiving two doses of the inactivated rSVA-His emulsified with oil adjuvant developed a high titer of neutralizing antibodies, indicating that SVA VP1 is tolerant to His-tag insertion without detriment to its antigenicity. In summary, the constructed 6×His-tagged SVA may offer a feasible approach to the affinity purification and concentration of antigens in the process of SVA inactivated vaccine production.


Discriminating antigen and non-antigen using proteome dissimilarity II: viral and fungal antigens.

  • Kamna Ramakrishnan‎ et al.
  • Bioinformation‎
  • 2010‎

Immunogenicity arises via many synergistic mechanisms, yet the overall dissimilarity of pathogenic proteins versus the host proteome has been proposed as a key arbiter. We have previously explored this concept in relation to Bacterial antigens; here we extend our analysis to antigens of viral and fungal origin. Sets of known viral and fungal antigenic and non-antigenic protein sequences were compared to human and mouse proteomes. Both antigenic and non-antigenic sequences lacked human or mouse homologues. Observed distributions were compared using the non-parametric Mann-Whitney test. The statistical null hypothesis was accepted, indicating that antigen and non-antigens did not differ significantly. Likewise, we could not determine a threshold able meaningfully to separate non-antigen from antigen. We conclude that viral and fungal antigens cannot be predicted from pathogen genomes based solely on their dissimilarity to mammalian genomes.


Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens.

  • George Ueda‎ et al.
  • eLife‎
  • 2020‎

Multivalent presentation of viral glycoproteins can substantially increase the elicitation of antigen-specific antibodies. To enable a new generation of anti-viral vaccines, we designed self-assembling protein nanoparticles with geometries tailored to present the ectodomains of influenza, HIV, and RSV viral glycoprotein trimers. We first de novo designed trimers tailored for antigen fusion, featuring N-terminal helices positioned to match the C termini of the viral glycoproteins. Trimers that experimentally adopted their designed configurations were incorporated as components of tetrahedral, octahedral, and icosahedral nanoparticles, which were characterized by cryo-electron microscopy and assessed for their ability to present viral glycoproteins. Electron microscopy and antibody binding experiments demonstrated that the designed nanoparticles presented antigenically intact prefusion HIV-1 Env, influenza hemagglutinin, and RSV F trimers in the predicted geometries. This work demonstrates that antigen-displaying protein nanoparticles can be designed from scratch, and provides a systematic way to investigate the influence of antigen presentation geometry on the immune response to vaccination.


Utility of leucocyte antigens in distinguishing between bacterial and viral infection in children.

  • Anna Stelmaszczyk-Emmel‎ et al.
  • Central-European journal of immunology‎
  • 2018‎

Accurate diagnosis of bacterial and viral infection is very difficult. Unfortunately, there is still no quick and discriminative diagnostic test that would help clinicians in establishing the diagnosis and taking a decision on treatment. The aim of the study was to compare the expression of antigens on phagocytes, which are involved in the first defence line during bacterial and viral infections in children, as a potential tool to distinguish the etiology of the infection.


Activated human nasal epithelial cells modulate specific antibody response against bacterial or viral antigens.

  • Chiou-Yueh Yeh‎ et al.
  • PloS one‎
  • 2013‎

Nasal mucosa is an immune responsive organ evidenced by eliciting both specific local secretory IgA and systemic IgG antibody responses with intra-nasal administration of antigens. Nevertheless, the role of nasal epithelial cells in modulating such responses is unclear. Human nasal epithelial cells (hNECs) obtained from sinus mucosa of patients with chronic rhinosinusitis were cultured in vitro and firstly were stimulated by Lactococcus lactis bacterium-like particles (BLPs) in order to examine their role on antibody production. Secondly, both antigens of immunodominant protein IDG60 from oral Streptococcus mutans and hemagglutinin (HA) from influenza virus were tested to evaluate the specific antibody response. Stimulated hNECs by BLPs exhibited a significant increase in the production of interleukin-6 (IL-6), and thymic stromal lymphopoietin (TSLP). Conditioned medium of stimulated hNECs has effects on enhancing the proliferation of CD4+ T cells together with interferon-γ and IL-5 production, increasing the costimulatory molecules on dendritic cells and augmenting the production of IDG60 specific IgA, HA specific IgG, IgA by human peripheral blood lymphocytes. Such production of antigen specific IgG and IgA is significantly counteracted in the presence of IL-6 and TSLP neutralizing antibodies. In conclusion, properly stimulated hNECs may impart immuno-modulatory effects on the antigen-specific antibody response at least through the production of IL-6 and TSLP.


Targeting viral antigens to CD11c on dendritic cells induces retrovirus-specific T cell responses.

  • Asim Ejaz‎ et al.
  • PloS one‎
  • 2012‎

Dendritic cells (DC) represent the most potent antigen presenting cells and induce efficient cytotoxic T lymphocyte (CTL) responses against viral infections. Targeting antigens (Ag) to receptors on DCs is a promising strategy to enhance antitumor and antiviral immune responses induced by DCs. Here, we investigated the potential of CD11c-specific single-chain fragments (scFv) fused to an immunodominant peptide of Friend retrovirus for induction of virus-specific T cell responses by DCs. In vitro CD11c-specific scFv selectively targeted viral antigens to DCs and thereby significantly improved the activation of virus-specific T cells. In vaccination experiments DCs loaded with viral Ag targeted to CD11c provided improved rejection of FV-derived tumors and efficiently primed virus-specific CTL responses after virus challenge. Since the induction of strong virus-specific T cell responses is critical in viral infections, CD11c targeted protein vaccines might provide means to enhance the cellular immune response to prophylactic or therapeutic levels.


Priming Cross-Protective Bovine Viral Diarrhea Virus-Specific Immunity Using Live-Vectored Mosaic Antigens.

  • Shehnaz Lokhandwala‎ et al.
  • PloS one‎
  • 2017‎

Bovine viral diarrhea virus (BVDV) plays a key role in bovine respiratory disease complex, which can lead to pneumonia, diarrhea and death of calves. Current vaccines are not very effective due, in part, to immunosuppressive traits and failure to induce broad protection. There are diverse BVDV strains and thus, current vaccines contain representative genotype 1 and 2 viruses (BVDV-1 & 2) to broaden coverage. BVDV modified live virus (MLV) vaccines are superior to killed virus vaccines, but they are susceptible to neutralization and complement-mediated destruction triggered by passively acquired antibodies, thus limiting their efficacy. We generated three novel mosaic polypeptide chimeras, designated NproE2123; NS231; and NS232, which incorporate protective determinants that are highly conserved among BVDV-1a, 1b, and BVDV-2 genotypes. In addition, strain-specific protective antigens from disparate BVDV strains were included to broaden coverage. We confirmed that adenovirus constructs expressing these antigens were strongly recognized by monoclonal antibodies, polyclonal sera, and IFN-γ-secreting T cells generated against diverse BVDV strains. In a proof-of-concept efficacy study, the multi-antigen proto-type vaccine induced higher, but not significantly different, IFN-γ spot forming cells and T-cell proliferation compared to a commercial MLV vaccine. In regards to the humoral response, the prototype vaccine induced higher BVDV-1 specific neutralizing antibody titers, whereas the MLV vaccine induced higher BVDV-2 specific neutralizing antibody titers. Following BVDV type 2a (1373) challenge, calves immunized with the proto-type or the MLV vaccine had lower clinical scores compared to naïve controls. These results support the hypothesis that a broadly protective subunit vaccine can be generated using mosaic polypeptides that incorporate rationally selected and validated protective determinants from diverse BVDV strains. Furthermore, regarding biosafety of using a live vector in cattle, we showed that recombinant human adenovirus-5 was cleared within one week following intradermal inoculation.


Human thymopoiesis produces polyspecific CD8+ α/β T cells responding to multiple viral antigens.

  • Valentin Quiniou‎ et al.
  • eLife‎
  • 2023‎

T-cell receptors (TCRs) are formed by stochastic gene rearrangements, theoretically generating >1019 sequences. They are selected during thymopoiesis, which releases a repertoire of about 108 unique TCRs per individual. How evolution shaped a process that produces TCRs that can effectively handle a countless and evolving set of infectious agents is a central question of immunology. The paradigm is that a diverse enough repertoire of TCRs should always provide a proper, though rare, specificity for any given need. Expansion of such rare T cells would provide enough fighters for an effective immune response and enough antigen-experienced cells for memory. We show here that human thymopoiesis releases a large population of clustered CD8+ T cells harboring α/β paired TCRs that (i) have high generation probabilities and (ii) a preferential usage of some V and J genes, (iii) which CDR3 are shared between individuals, and (iv) can each bind and be activated by multiple unrelated viral peptides, notably from EBV, CMV, and influenza. These polyspecific T cells may represent a first line of defense that is mobilized in response to infections before a more specific response subsequently ensures viral elimination. Our results support an evolutionary selection of polyspecific α/β TCRs for broad antiviral responses and heterologous immunity.


Treating cancer as an infectious disease--viral antigens as novel targets for treatment and potential prevention of tumors of viral etiology.

  • Xing Guo Wang‎ et al.
  • PloS one‎
  • 2007‎

Nearly 20% of human cancers worldwide have an infectious etiology with the most prominent examples being hepatitis B and C virus-associated hepatocellular carcinoma and human papilloma virus-associated cervical cancer. There is an urgent need to find new approaches to treatment and prevention of virus-associated cancers.


Sequestration of Late Antigens Within Viral Factories Impairs MVA Vector-Induced Protective Memory CTL Responses.

  • Sha Tao‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Cytotoxic CD8+ T cell (CTL) responses play an essential role in antiviral immunity. Here, we focused on the activation of CTL which recognize epitopes derived from viral or recombinant antigens with either early or late expression kinetics after infection with Modified Vaccinia Virus Ankara (MVA). Late antigens but not early antigens failed to efficiently stimulate murine CTL lines in vitro and were unable to activate and expand protective memory T cell responses in mice in vivo. The reduced or absent presentation of late antigens was not due to impaired antigen presentation or delayed protein synthesis, but was caused by sequestration of late antigens within viral factories (VFs). Additionally, the trapping of late antigens in VFs conflicts with antigen processing and presentation as proteasomal activity was strongly reduced or absent in VFs, suggesting inefficient antigen degradation. This study gives for the first time a mechanistic explanation for the weak immunogenicity of late viral antigens for memory CTL activation. Since MVA is preferentially used as a boost vector in heterologous prime/boost vaccinations, this is an important information for future vaccine design.


A SISCAPA-based approach for detection of SARS-CoV-2 viral antigens from clinical samples.

  • Kiran K Mangalaparthi‎ et al.
  • Clinical proteomics‎
  • 2021‎

SARS-CoV-2, a novel human coronavirus, has created a global disease burden infecting > 100 million humans in just over a year. RT-PCR is currently the predominant method of diagnosing this viral infection although a variety of tests to detect viral antigens have also been developed. In this study, we adopted a SISCAPA-based enrichment approach using anti-peptide antibodies generated against peptides from the nucleocapsid protein of SARS-CoV-2. We developed a targeted workflow in which nasopharyngeal swab samples were digested followed by enrichment of viral peptides using the anti-peptide antibodies and targeted parallel reaction monitoring (PRM) analysis using a high-resolution mass spectrometer. This workflow was applied to 41 RT-PCR-confirmed clinical SARS-CoV-2 positive nasopharyngeal swab samples and 30 negative samples. The workflow employed was highly specific as none of the target peptides were detected in negative samples. Further, the detected peptides showed a positive correlation with the viral loads as measured by RT-PCR Ct values. The SISCAPA-based platform described in the current study can serve as an alternative method for SARS-CoV-2 viral detection and can also be applied for detecting other microbial pathogens directly from clinical samples.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: