Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Definition of target antigens for naturally occurring CD4(+) CD25(+) regulatory T cells.

  • Hiroyoshi Nishikawa‎ et al.
  • The Journal of experimental medicine‎
  • 2005‎

The antigenic targets recognized by naturally occurring CD4(+) CD25(+) regulatory T cells (T reg cells) have been elusive. We have serologically defined a series of broadly expressed self-antigens derived from chemically induced mouse sarcomas by serological identification of antigens by recombinant expression cloning (SEREX). CD4(+) CD25(+) T cells from mice immunized with SEREX-defined self-antigens had strong suppressive activity on peptide-specific proliferation of CD4(+) CD25(-) T cells and CD8(+) T cells. The suppressive effect was observed without in vitro T cell stimulation. Foxp3 expression in these CD4(+) CD25(+) T cells from immunized mice was 5-10 times greater than CD4(+) CD25(+) T cells derived from naive mice. The suppressive effect required cellular contact and was blocked by anti-glucocorticoid-induced tumor necrosis factor receptor family-related gene antibody. In vitro suppressive activity essentially disappeared 8 wk after the last immunization. However, it was regained by in vitro restimulation with cognate self-antigen protein but not with control protein. We propose that SEREX-defined self-antigens such as those used in this study represent self-antigens that elicit naturally occurring CD4(+) CD25(+) T reg cells.


The BH3-only proteins Bim and Puma cooperate to impose deletional tolerance of organ-specific antigens.

  • Daniel H D Gray‎ et al.
  • Immunity‎
  • 2012‎

Although the proapoptotic BH3-only protein, Bim, is required for deletion of autoreactive thymocytes, Bim-deficient mice do not succumb to extensive organ-specific autoimmune disease. To determine whether other BH3-only proteins safeguard tolerance in the absence of Bim, we screened mice lacking Bim as well as other BH3-only proteins. Most strains showed no additional defects; however, mice deficient for both Puma and Bim spontaneously developed autoimmunity in multiple organs, and their T cells could transfer organ-specific autoimmunity. Puma- and Bim-double-deficient mice had a striking accumulation of mature, single-positive thymocytes, suggesting an additional defect in thymic deletion was the basis for disease. Transgenic mouse models of thymocyte deletion by peripheral neoantigens confirmed that the loss of Bim and Puma allowed increased numbers of autoreactive thymocytes to escape deletion. Our data show that Puma cooperates with Bim to impose a thymic-deletion checkpoint to peripheral self-antigens and cement the notion that defects in apoptosis alone are sufficient to cause autoimmune disease.


Sca-1 expression is associated with decreased cardiomyogenic differentiation potential of skeletal muscle-derived adult primitive cells.

  • Ewa K Zuba-Surma‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2006‎

Adult stem cells from skeletal muscle (SM) have been shown to differentiate into multiple lineages. The impact of stem cell antigen-1 (Sca-1) expression on cardiomyogenic differentiation potential of SM-derived primitive cells remains unknown. Cardiomyogenic differentiation was induced in freshly isolated or culture-expanded Sca-1+/CD45-/c-kit-/Thy-1+ (SM+) and Sca1-/CD45-/c-kit-/Thy-1+ (SM-) cells isolated from SM of C57BL/6 mice. Expression of mRNA of cardiac-specific antigens and those associated with pluripotency was examined by real-time RT-PCR. Phenotypic analysis of expanded cells was performed during each passage by flow cytometry. Cardiomyocytic differentiation in vitro was verified by morphologic analysis, immunocytochemistry, and contractile properties. In freshly isolated cells, compared with unfractionated SM-derived cells as well as SM+ cells, mRNA expression of cardiac-specific antigens and those associated with cellular pluripotency was greater in SM- cells. Compared with SM- cells, SM+ cells exhibited greater expansion capacity. Freshly isolated SM- cells exhibited greater cardiac differentiation potential compared with freshly isolated SM+ cells (21.8+/-0.3% of SM- cells positive for cardiac markers vs. 9.1+/-0.7% of SM+ cells, P=0.00009). Differentiated SM- cells acquired a cardiomyocytic phenotype and exhibited spontaneous rhythmic contractions in vitro. The number of Sca-1+ cells in the SM- population increased markedly with time (0.9+/-0.1% in freshly isolated cells vs. 11.9+/-0.9% after the first passage vs. 99.0+/-0.6% after the second passage). This increase in Sca-1 expression was associated with a marked decline in the expression of cardiac markers following differentiation induction in culture-expanded SM- cells (21.8+/-0.3% in unexpanded cells vs. 16.6+/-1.3% after the first passage vs. 6.0+/-0.5% after the second passage, P=0.00001 vs. unexpanded cells). In contrast, the SM+ cells did not exhibit any consistent pattern in either phenotypic or differentiation capability with expansion. We conclude that SM- cells are inherently predisposed to undergo cardiac differentiation and are enriched in markers of pluripotency. While both Sca-1+ and Sca-1- primitive cells from SM can undergo cardiac differentiation, Sca-1- cells exhibit greater cardiomyogenic potential, and the appearance of Sca-1 during expansion is associated with a decline in cardiac differentiation plasticity.


The Relevance of SOCS1 Methylation and Epigenetic Therapy in Diverse Cell Populations of Hepatocellular Carcinoma.

  • Loraine Kay D Cabral‎ et al.
  • Diagnostics (Basel, Switzerland)‎
  • 2021‎

The suppressor of cytokine signaling 1 (SOCS1) is a tumor suppressor gene found to be hypermethylated in cancers. It is involved in the oncogenic transformation of cirrhotic liver tissues. Here, we investigated the clinical relevance of SOCS1 methylation and modulation upon epigenetic therapy in diverse cellular populations of hepatocellular carcinoma (HCC). HCC clinical specimens were evaluated for SOCS1 methylation and mRNA expression. The effect of 5-Azacytidine (5-AZA), a demethylation agent, was assessed in different subtypes of HCC cells. We demonstrated that the presence of SOCS1 methylation was significantly higher in HCC compared to peri-HCC and non-tumoral tissues (52% vs. 13% vs. 14%, respectively, p < 0.001). In vitro treatment with a non-toxic concentration of 5-AZA significantly reduced DNMT1 protein expression for stromal subtype lines (83%, 73%, and 79%, for HLE, HLF, and JHH6, respectively, p < 0.01) compared to cancer stem cell (CSC) lines (17% and 10%, for HepG2 and Huh7, respectively), with the strongest reduction in non-tumoral IHH cells (93%, p < 0.001). 5-AZA modulated the SOCS1 expression in different extents among the cells. It was restored in CSC HCC HepG2 and Huh7 more efficiently than sorafenib. This study indicated the relevance of SOCS1 methylation in HCC and how cellular heterogeneity influences the response to epigenetic therapy.


Thymocyte glucocorticoid resistance alters positive selection and inhibits autoimmunity and lymphoproliferative disease in MRL-lpr/lpr mice.

  • E Tolosa‎ et al.
  • Immunity‎
  • 1998‎

Thymus-derived glucocorticoids antagonize T cell receptor (TCR)-induced thymocyte apoptosis, allowing the survival (positive selection) of cells bearing TCRs that recognize self antigens with low-to-moderate avidity. Here we demonstrate that expression of an antisense glucocorticoid receptor transgene in thymocytes of spontaneously autoimmune MRL-lpr/lpr mice causes the loss of specific TCR Vbeta-bearing T cells that are normally positively selected in this strain. These transgenic mice had lower autoantibody production and milder symptoms of autoimmune disease than MRL-lpr/lpr controls and had markedly reduced accumulation of the TCR+Thy-1+CD4-CD8-B220+ T cells that are the hallmark of the lpr mutation. Thus, decreased glucocorticoid signaling in thymocytes alters the T cell repertoire and greatly diminishes autoimmunity in MRL-lpr/lpr autoimmune mice.


Modulation of IL-6 Expression by KLF4-Mediated Transactivation and PCAF-Mediated Acetylation in Sublytic C5b-9-Induced Rat Glomerular Mesangial Cells.

  • Lu Xia‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Interleukin-6 (IL-6) overproduction has been considered to contribute to inflammatory damage of glomerular mesangial cells (GMCs) in human mesangial proliferative glomerulonephritis (MsPGN) and its rat model called Thy-1 nephritis (Thy-1N). However, the regulatory mechanisms of IL-6 expression in GMCs upon sublytic C5b-9 timulation remain poorly understood. We found that Krüppel-like factor 4 (KLF4) bound to the IL-6 promoter (-618 to -126 nt) and activated IL-6 gene transcription. Furthermore, lysine residue 224 of KLF4 was acetylated by p300/CBP-associated factor (PCAF), which was important for KLF4-mediated transactivation. Moreover, lysine residue 5 on histone H2B and lysine residue 9 on histone H3 at the IL-6 promoter were also acetylated by PCAF, which resulted in an increase in IL-6 transcription. Besides, NF-κB activation promoted IL-6 expression by elevating the expression of PCAF. Overall, these findings suggest that sublytic C5b-9-induced the expression of IL-6 involves KLF4-mediated transactivation, PCAF-mediated acetylation of KLF4 and histones, and NF-κB activation in GMCs.


Glutathione inhibits antibody and complement-mediated immunologic cell injury via multiple mechanisms.

  • Zhen Zhang‎ et al.
  • Redox biology‎
  • 2017‎

Antioxidant glutathione (GSH) plays an important role in the regulation of immunity. However, little is known about its effects on humoral immunity, especially its action on effector molecules like antibody and complement. Given that these molecules contain abundant disulfide bonds, we speculated that GSH might influence the action of these proteins via its thiol function. Using a model of a glomerular mesangial cell (MC) lysis induced by antibodies plus complement, we addressed this hypothesis. Exposure of rat MCs to anti-Thy-1 antibody plus complement or anti-MC rabbit serum caused a complement-dependent cell lysis, which was completely blocked by GSH. Moreover, GSH potently prevented the antibody-mediated agglutination of red blood cells and aggregation of antibody-sensitized microspheres. Further analysis revealed that GSH inhibited antibody binding to antigens and promoted the conversion of the antibodies to its reduced forms. GSH also potently inhibited the formation and deposition of C5b-9 in MCs and suppressed both the classic and alternative complement activation pathway. Lastly, GSH attenuated P38 activation, an oxidative sensitive kinase that partially mediated the antibody- and complement-dependent MC lysis. Depletion of GSH via inhibiting gamma-glutamylcysteine synthetase or xCT transporter augmented P38 activation and sensitized MCs to the cell lysis. Collectively, our results indicate that GSH protects cells from immunological cell damage via mechanisms involving inhibition of antibody binding to the antigens, suppression of complement activation and augmentation of cellular defense mechanism. Our study provides novel mechanistic insights into the actions of GSH in the regulation of immune responses and suggests that GSH might be used to treat certain immune disorders.


Novel leukocyte-depleted platelet-rich plasma-based skin equivalent as an in vitro model of chronic wounds: a preliminary study.

  • Elisa Seria‎ et al.
  • BMC molecular and cell biology‎
  • 2021‎

Chronic leg ulcerations are associated with Haemoglobin disorders, Type2 Diabetes Mellitus, and long-term venous insufficiency, where poor perfusion and altered metabolism develop into a chronic inflammation that impairs wound closure. Skin equivalent organotypic cultures can be engineered in vitro to study skin biology and wound closure by modelling the specific cellular components of the skin. This study aimed to develop a novel bioactive platelet-rich plasma (PRP) leukocyte depleted scaffold to facilitate the study of common clinical skin wounds in patients with poor chronic skin perfusion and low leukocyte infiltration. A scratch assay was performed on the skin model to mimic two skin wound conditions, an untreated condition and a condition treated with recombinant tumour necrotic factor (rTNF) to imitate the stimulation of an inflammatory state. Gene expression of IL8 and TGFA was analysed in both conditions. Statistical analysis was done through ANOVA and paired student t-test. P < 0.05 was considered significant.


Blockade of TGF-β signalling alleviates human adipose stem cell senescence induced by native ECM in obesity visceral white adipose tissue.

  • Xueya Han‎ et al.
  • Stem cell research & therapy‎
  • 2023‎

Abdominal obesity is appreciated as a major player in insulin resistance and metabolically dysfunctional adipose tissue. Inappropriate extracellular matrix (ECM) remodelling and functional alterations in human adipose stromal/stem cells (hASCs) have been linked with visceral white adipose tissue (vWAT) dysfunction in obesity. Understanding the interactions between hASCs and the native ECM environment in obese vWAT is required for the development of future therapeutic approaches for obesity-associated metabolic complications.


Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin.

  • Nithin Sam Ravi‎ et al.
  • eLife‎
  • 2022‎

Naturally occurring point mutations in the HBG promoter switch hemoglobin synthesis from defective adult beta-globin to fetal gamma-globin in sickle cell patients with hereditary persistence of fetal hemoglobin (HPFH) and ameliorate the clinical severity. Inspired by this natural phenomenon, we tiled the highly homologous HBG proximal promoters using adenine and cytosine base editors that avoid the generation of large deletions and identified novel regulatory regions including a cluster at the -123 region. Base editing at -123 and -124 bp of HBG promoter induced fetal hemoglobin (HbF) to a higher level than disruption of well-known BCL11A binding site in erythroblasts derived from human CD34+ hematopoietic stem and progenitor cells (HSPC). We further demonstrated in vitro that the introduction of -123T > C and -124T > C HPFH-like mutations drives gamma-globin expression by creating a de novo binding site for KLF1. Overall, our findings shed light on so far unknown regulatory elements within the HBG promoter and identified additional targets for therapeutic upregulation of fetal hemoglobin.


Impact of Cryopreservation on Caprine Fetal Adnexa Derived Stem Cells and Its Evaluation for Growth Kinetics, Phenotypic Characterization, and Wound Healing Potential in Xenogenic Rat Model.

  • Anjali Somal‎ et al.
  • Journal of cellular physiology‎
  • 2017‎

This study was conducted to know the impact of cryopreservation on caprine fetal adnexa derived mesenchymal stem cells (MSCs) on the basic stem cell characteristics. Gravid caprine uteri (2-3 months) were collected from local abattoir to derive (amniotic fluid [cAF], amniotic sac [cAS], Wharton's jelly [cWJ], and cord blood [cCB]) MSCs and expanded in vitro. Cells were cryopreserved at 3rd passage (P3) using 10% DMSO. Post-thaw viability and cellular properties were assessed. Cells were expanded to determine growth kinetics, tri-lineage differentiation, localization, and molecular expression of MSCs and pluripotency markers; thereafter, these cells were transplanted in the full-thickness (2 × 2cm2 ) rat skin wound to determine their wound healing potential. The post-thaw (pt) growth kinetics study suggested that cWJ MSCs expanded more rapidly with faster population doubling time (PDT) than that of other fetal adnexa MSCs. The relative mRNA expression of surface antigens (CD73, CD90, and CD 105) and pluripotency markers (Oct4, KLF, and cMyc) was higher in cWJ MSCs in comparison to cAS, cAF, and cCB MSCs post-thaw. The percent wound contraction on 7th day was more than 50% for all the MSC-treated groups (pre and post-thaw), against 39.55% in the control group. On day 28th, 99% and more wound contraction was observed in cAF, cAF-pt, cAS-pt, cWJ, cWJ-pt, and cCB, MSCs with better scores for epithelization, neovascularization, and collagen characteristics at a non-significant level. It is concluded that these MSCs could be successfully cryopreserved without altering their stemness and wound healing properties. J. Cell. Physiol. 232: 2186-2200, 2017. © 2016 Wiley Periodicals, Inc.


The effect of S53P4-based borosilicate glasses and glass dissolution products on the osteogenic commitment of human adipose stem cells.

  • Miina Ojansivu‎ et al.
  • PloS one‎
  • 2018‎

Despite the good performance of silicate bioactive glasses in bone regeneration, there is considerable potential to enhance their properties by chemical modifications. In this study, S53P4-based borosilicate glasses were synthesized and their dissolution profile was studied in simulated body fluid by assessing pH change, ion release and conversion to hydroxyapatite. The viability, proliferation, attachment, osteogenesis and endothelial marker expression of human adipose stem cells (hASCs) was evaluated upon direct culture on glass discs and in the extract medium. This is the first study evaluating cell behavior in response to borosilicate glasses based on S53P4 (commercially available as BonAlive®). Replacing silicate with borate in S53P4 increased the glass reactivity. Despite the good viability of hASCs under all conditions, direct culture of cells on borosilicate discs and in undiluted extract medium reduced cell proliferation. This was accompanied with changes in cell morphology. Regarding osteogenic commitment, alkaline phosphatase activity was significantly reduced by the borosilicate glass discs and extracts, whereas the expression of osteogenic markers RUNX2a, OSTERIX, DLX5 and OSTEOPONTIN was upregulated. There was also a borosilicate glass-induced increase in osteocalcin protein production. Moreover, osteogenic supplements containing borosilicate extracts significantly increased the mineral production in comparison to the osteogenic medium control. Interestingly, borosilicate glasses stimulated the expression of endothelial markers vWF and PECAM-1. To conclude, our results reveal that despite reducing hASC proliferation, S53P4-based borosilicate glasses and their dissolution products stimulate osteogenic commitment and upregulate endothelial markers, thus supporting their further evaluation for regenerative medicine.


Targeted Disruption of HLA Genes via CRISPR-Cas9 Generates iPSCs with Enhanced Immune Compatibility.

  • Huaigeng Xu‎ et al.
  • Cell stem cell‎
  • 2019‎

Induced pluripotent stem cells (iPSCs) have strong potential in regenerative medicine applications; however, immune rejection caused by HLA mismatching is a concern. B2M gene knockout and HLA-homozygous iPSC stocks can address this issue, but the former approach may induce NK cell activity and fail to present antigens, and it is challenging to recruit rare donors for the latter method. Here, we show two genome-editing strategies for making immunocompatible donor iPSCs. First, we generated HLA pseudo-homozygous iPSCs with allele-specific editing of HLA heterozygous iPSCs. Second, we generated HLA-C-retained iPSCs by disrupting both HLA-A and -B alleles to suppress the NK cell response while maintaining antigen presentation. HLA-C-retained iPSCs could evade T cells and NK cells in vitro and in vivo. We estimated that 12 lines of HLA-C-retained iPSCs combined with HLA-class II knockout are immunologically compatible with >90% of the world's population, greatly facilitating iPSC-based regenerative medicine applications.


Antigen presentation safeguards the integrity of the hematopoietic stem cell pool.

  • Pablo Hernández-Malmierca‎ et al.
  • Cell stem cell‎
  • 2022‎

Hematopoietic stem and progenitor cells (HSPCs) are responsible for the production of blood and immune cells. Throughout life, HSPCs acquire oncogenic aberrations that can cause hematological cancers. Although molecular programs maintaining stem cell integrity have been identified, safety mechanisms eliminating malignant HSPCs from the stem cell pool remain poorly characterized. Here, we show that HSPCs constitutively present antigens via major histocompatibility complex class II. The presentation of immunogenic antigens, as occurring during malignant transformation, triggers bidirectional interactions between HSPCs and antigen-specific CD4+ T cells, causing stem cell proliferation, differentiation, and specific exhaustion of aberrant HSPCs. This immunosurveillance mechanism effectively eliminates transformed HSPCs from the hematopoietic system, thereby preventing leukemia onset. Together, our data reveal a bidirectional interaction between HSPCs and CD4+ T cells, demonstrating that HSPCs are not only passive receivers of immunological signals but also actively engage in adaptive immune responses to safeguard the integrity of the stem cell pool.


Isolation and characterization of neural crest-like progenitor cells in human umbilical cord blood.

  • Zena Al-Bakri‎ et al.
  • Regenerative therapy‎
  • 2020‎

Neural crest (NC)-like stem/progenitor cells provide an attractive cell source for regenerative medicine because of their multipotent property and ease of isolation from adult tissue. Although human umbilical cord blood (HUCB) is known to be a rich source of stem cells, the presence of the NC-like stem/progenitor cells in HUCB remains to be elucidated. In this study, we have isolated NC-like progenitor cells using an antibody to p75 neurotrophin receptor (p75NTR) and examined their phenotype and stem cell function in vitro.


Lysosomal protein surface expression discriminates fat- from bone-forming human mesenchymal precursor cells.

  • Jiajia Xu‎ et al.
  • eLife‎
  • 2020‎

Tissue resident mesenchymal stem/stromal cells (MSCs) occupy perivascular spaces. Profiling human adipose perivascular mesenchyme with antibody arrays identified 16 novel surface antigens, including endolysosomal protein CD107a. Surface CD107a expression segregates MSCs into functionally distinct subsets. In culture, CD107alow cells demonstrate high colony formation, osteoprogenitor cell frequency, and osteogenic potential. Conversely, CD107ahigh cells include almost exclusively adipocyte progenitor cells. Accordingly, human CD107alow cells drove dramatic bone formation after intramuscular transplantation in mice, and induced spine fusion in rats, whereas CD107ahigh cells did not. CD107a protein trafficking to the cell surface is associated with exocytosis during early adipogenic differentiation. RNA sequencing also suggested that CD107alow cells are precursors of CD107ahigh cells. These results document the molecular and functional diversity of perivascular regenerative cells, and show that relocation to cell surface of a lysosomal protein marks the transition from osteo- to adipogenic potential in native human MSCs, a population of substantial therapeutic interest.


Adipose-Derived Stem Cells in Reinforced Collagen Gel: A Comparison between Two Approaches to Differentiation towards Smooth Muscle Cells.

  • Elena Filova‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Scaffolds made of degradable polymers, such as collagen, polyesters or polysaccharides, are promising matrices for fabrication of bioartificial vascular grafts or patches. In this study, collagen isolated from porcine skin was processed into a gel, reinforced with collagen particles and with incorporated adipose tissue-derived stem cells (ASCs). The cell-material constructs were then incubated in a DMEM medium with 2% of FS (DMEM_part), with added polyvinylalcohol nanofibers (PVA_part sample), and for ASCs differentiation towards smooth muscle cells (SMCs), the medium was supplemented either with human platelet lysate released from PVA nanofibers (PVA_PL_part) or with TGF-β1 + BMP-4 (TGF + BMP_part). The constructs were further endothelialised with human umbilical vein endothelial cells (ECs). The immunofluorescence staining of alpha-actin and calponin, and von Willebrand factor, was performed. The proteins involved in cell differentiation, the extracellular matrix (ECM) proteins, and ECM remodelling proteins were evaluated by mass spectrometry on day 12 of culture. Mechanical properties of the gels with ASCs were measured via an unconfined compression test on day 5. Gels evinced limited planar shrinkage, but it was higher in endothelialised TGF + BMP_part gel. Both PVA_PL_part samples and TGF + BMP_part samples supported ASC growth and differentiation towards SMCs, but only PVA_PL_part supported homogeneous endothelialisation. Young modulus of elasticity increased in all samples compared to day 0, and PVA_PL_part gel evinced a slightly higher ratio of elastic energy. The results suggest that PVA_PL_part collagen construct has the highest potential to remodel into a functional vascular wall.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: