Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

CD55 Facilitates Immune Evasion by Borrelia crocidurae, an Agent of Relapsing Fever.

  • Gunjan Arora‎ et al.
  • mBio‎
  • 2022‎

Relapsing fever, caused by diverse Borrelia spirochetes, is prevalent in many parts of the world and causes significant morbidity and mortality. To investigate the pathoetiology of relapsing fever, we performed a high-throughput screen of Borrelia-binding host factors using a library of human extracellular and secretory proteins and identified CD55 as a novel host binding partner of Borrelia crocidurae and Borrelia persica, two agents of relapsing fever in Africa and Eurasia. CD55 is present on the surface of erythrocytes, carries the Cromer blood group antigens, and protects cells from complement-mediated lysis. Using flow cytometry, we confirmed that both human and murine CD55 bound to B. crocidurae and B. persica. Given the expression of CD55 on erythrocytes, we investigated the role of CD55 in pathological B. crocidurae-induced erythrocyte aggregation (rosettes), which enables spirochete immune evasion. We showed that rosette formation was partially dependent on host cell CD55 expression. Pharmacologically, soluble recombinant CD55 inhibited erythrocyte rosette formation. Finally, CD55-deficient mice infected with B. crocidurae had a lower pathogen load and elevated proinflammatory cytokine and complement factor C5a levels. In summary, our results indicate that CD55 is a host factor that is manipulated by the causative agents of relapsing fever for immune evasion. IMPORTANCE Borrelia species are causative agents of Lyme disease and relapsing fever infections in humans. B. crocidurae causes one of the most prevalent relapsing fever infections in parts of West Africa. In the endemic regions, B. crocidurae is present in ~17% of the ticks and ~11% of the rodents that serve as reservoirs. In Senegal, ~7% of patients with acute febrile illness were found to be infected with B. crocidurae. There is little information on host-pathogen interactions and how B. crocidurae manipulates host immunity. In this study, we used a high-throughput screen to identify host proteins that interact with relapsing fever-causing Borrelia species. We identified CD55 as one of the host proteins that bind to B. crocidurae and B. persica, the two causes of relapsing fever in Africa and Eurasia. We show that the interaction of B. crocidurae with CD55, present on the surface of erythrocytes, is key to immune evasion and successful infection in vivo. Our study further shows the role of CD55 in complement regulation, regulation of inflammatory cytokine levels, and innate immunity during relapsing fever infection. Overall, this study sheds light on host-pathogen interactions during relapsing fever infection in vivo.


A study on screening and antitumor effect of CD55-specific ligand peptide in cervical cancer cells.

  • Guoxiang Li‎ et al.
  • Drug design, development and therapy‎
  • 2018‎

To improve the targeting ability of antitumor drugs, we identified the antigens with high expression on the surface of tumor cells associated with tumor escape, such as the complement regulatory protein CD55 molecule, which is also known as the decay accelerating factor. In this study, phage display technology was used to screen and identify CD55-specific ligand peptide (CD55sp) bound to CD55 molecule on the surface of cervical cancer HeLa cells. We then explored the role of this peptide in inhibiting the growth of cervical cancer cells in vitro. Our characterization of CD55sp will provide implication for tumor target therapy.


CD55-deficiency in Jews of Bukharan descent is caused by the Cromer blood type Dr(a-) variant.

  • Alina Kurolap‎ et al.
  • Human genetics‎
  • 2023‎

The complement system regulator CD55 was initially found to carry the Cromer blood group system antigens, and its complete loss of function was subsequently revealed to cause a severe monogenic gastrointestinal syndrome characterized by protein-losing enteropathy and susceptibility to venous thrombosis. Here we present homozygosity to the CD55 c.596C>T; p.Ser199Leu variant, which was previously described as the Cromer Dr(a-) genotype, in two Bukharan Jewish CD55-deficiency patients with variable disease severity. We confirm that this missense variant causes aberrant splicing and deletion of 44 bp in exon 5, leading to premature termination and low expression of the CD55 protein. Furthermore, Patient 1 exhibited a mildly abnormal B cell immunophenotyping profile. By population screening we established that this variant is highly prevalent in the Bukharan Jewish population, with a carrier frequency of 1:17, suggesting that many similar patients are un- or mis-diagnosed. The phenotypic variability, ranging from abdominal pain when eating a high-fat diet to the full CD55-deficiency phenotype, is likely related to modifiers affecting the proportion of the variant that is able to escape aberrant splicing. Establishing the diagnosis of CD55-deficiency in a timely manner, even in patients with milder symptoms, may have a critical effect on their management and quality-of-life since treatment with the complement inhibitor eculizumab is highly effective in ameliorating disease manifestations. Awareness of founder mutations within certain populations can further guide genetic testing and prevent a diagnostic odyssey, by placing this CD55 variant high on the differential diagnosis.


A structure-based approach for the development of a bicyclic peptide acting as a miniaturized anti-CD55 antibody.

  • Miguel Moreira‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

CD55 is a major regulator of the complement system, a complex network of proteins that cooperate to clear tissue and blood pathogens from the organism. Indeed, overexpression of CD55 is associated with many diseases and is connected to the resistance mechanisms exhibited by several cancers towards immunotherapy approaches. High level of CD55 expression on tumour cells renders it a good target for both imaging and immunotherapy. Indeed, a conceivable approach to tackle disease is to interfere with CD55-mediated complement regulation with the use of CD55-targeting antibodies. However, the large size and poor tissue penetration together with to the high costs of antibodies often limits their widespread therapeutic use. Here, we employed bioinformatic and chemical approaches to design and synthesize molecules of small dimensions able to mimic a CD55 blocking antibody. As a result, a bicyclic peptide, named as miniAB55, proved to bind CD55 with nanomolar affinity. This molecule represents an attracting chemical scaffold for CD55-directed diagnostic tools in diseases associated with CD55 overproduction. To further support the applicative potential of miniAB55, we prove that the miniAB55 binds CD55 on the same region involved in inactivation of the complement C3 and C5 convertases, thus opening promising scenarios for the development of complement-modulating tools.


Sequence enrichment profiles enable target-agnostic antibody generation for a broad range of antigens.

  • Jenny Mattsson‎ et al.
  • Cell reports methods‎
  • 2023‎

Phenotypic drug discovery (PDD) enables the target-agnostic generation of therapeutic drugs with novel mechanisms of action. However, realizing its full potential for biologics discovery requires new technologies to produce antibodies to all, a priori unknown, disease-associated biomolecules. We present a methodology that helps achieve this by integrating computational modeling, differential antibody display selection, and massive parallel sequencing. The method uses the law of mass action-based computational modeling to optimize antibody display selection and, by matching computationally modeled and experimentally selected sequence enrichment profiles, predict which antibody sequences encode specificity for disease-associated biomolecules. Applied to a phage display antibody library and cell-based antibody selection, ∼105 antibody sequences encoding specificity for tumor cell surface receptors expressed at 103-106 receptors/cell were discovered. We anticipate that this approach will be broadly applicable to molecular libraries coupling genotype to phenotype and to the screening of complex antigen populations for identification of antibodies to unknown disease-associated targets.


Complement regulatory proteins (CD46, 55 and 59) expressed on Schwann cells: immune targets in demyelinating neuropathies?

  • Kazuki Miyaji‎ et al.
  • Journal of neuroimmunology‎
  • 2014‎

Given their localization and important role in regulating complement, complement regulatory proteins may act as target antigens and their antibodies as biomarkers in demyelinating neuropathies. We investigated the binding of autoantibodies to complement regulatory proteins (CD46, 55 and 59) in demyelinating diseases. In 42 acute inflammatory demyelinating polyneuropathy, 23 chronic inflammatory demyelinating polyneuropathy, 13 acute motor axonal neuropathy, 71 multiple sclerosis, and 19 neuromyelitis optica patients as well as 55 healthy controls, we were unable to detect significant titers of antibodies to CD46, CD55 and CD59. These autoantibodies are unlikely to be biomarkers in acute and chronic inflammatory demyelinating polyneuropathies.


Dynamic encounters with red blood cells trigger splenic marginal zone B cell retention and function.

  • Dan Liu‎ et al.
  • Nature immunology‎
  • 2024‎

Spleen marginal zone (MZ) B cells are important for antibody responses against blood-borne antigens. The signals they use to detect exposure to blood are not well defined. Here, using intravital two-photon microscopy in mice, we observe transient contacts between MZ B cells and red blood cells that are in flow. We show that MZ B cells use adhesion G-protein-coupled receptor ADGRE5 (CD97) for retention in the spleen. CD97 function in MZ B cells depends on its ability to undergo autoproteolytic cleavage and signaling via Gα13 and ARHGEF1. Red blood cell expression of the CD97 ligand CD55 is required for MZ B cell homeostasis. Applying a pulling force on CD97-transfected cells using an optical C-trap and CD55+ beads leads to accumulation of active RhoA and membrane retraction. Finally, we show that CD97 deficiency leads to a reduced T cell-independent IgM response. Thus, our studies provide evidence that MZ B cells use mechanosensing to position in a manner that enhances antibody responses against blood-borne antigens.


Protocol for the isolation and purification of human follicular dendritic cells for functional assays.

  • Martijn Breeuwsma‎ et al.
  • STAR protocols‎
  • 2023‎

In this protocol, we detail how to isolate and purify human follicular dendritic cells (FDCs) from lymphoid tissues. FDCs play a vital role in antibody development by presenting antigens to B cells in germinal centers. The assay involves enzymatic digestion and fluorescence-activated cell sorting and is successfully applied to various lymphoid tissues, including tonsils, lymph nodes, and tertiary lymphoid structures. Our robust technique enables the isolation of FDCs and facilitates downstream functional and descriptive assays. For complete details on the use and execution of this protocol, please refer to Heesters et al.1.


Impact of cell harvesting methods on detection of cell surface proteins and apoptotic markers.

  • A Nowak-Terpiłowska‎ et al.
  • Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas‎
  • 2021‎

Assays based on the flow cytometry technique allow a convenient analysis of multiple cellular parameters; however, their results should be interpreted cautiously due to a strong impact of confounding factors. Different techniques in cell culturing such as either enzymatic or mechanic detachment of adherent cells can heavily influence the structure of the cell membrane or presence of the surface antigens leading to strong false positive signals, and finally, substantial experimental bias. The aim of our study was to assess and compare the impact of cell harvesting methods (both enzymatic and non-enzymatic) on the apoptosis process and on the surface antigen cytometric analyses. We found significant differences in the quality of analysis in terms of the amount of detected surface markers determined by the detachment method. Our results demonstrated clearly how important it is to carefully choose the appropriate detachment method and may help to avoid mistakes in experiment planning. In conclusion, we recommend to adjust the detachment method to the type of analyzed markers (surface antigens or translocated phosphatidylserine).


Derivation of human decidua-like cells from amnion and menstrual blood.

  • Kana Sugawara‎ et al.
  • Scientific reports‎
  • 2014‎

We induced differentiation of human amnion-derived mesenchymal stem cells (AMCs) and menstrual blood-derived mesenchymal stem cells (MMCs) into endometrial stroma-like cells, which could be useful for cell therapy to support embryo implantation. Interestingly, the expression patterns of surface markers were similar among AMCs, MMCs, and endometrial stromal cells. In addition, whereas treatment with estrogen and progesterone was not very effective for decidualizing AMCs and MMCs, treatment with 8-Br-cAMP prompted remarkable morphological changes in these cells as well as increased expression of decidualization markers (prolactin and insulin-like growth factor binding protein-1) and attenuated expression of surface markers unique to mesenchymal stem cells. These results demonstrated that bone marrow-derived stem cells, which are considered a potential source of endometrial progenitor cells, as well as AMCs and MMCs show in vitro decidualization potential, which is characteristic of endometrial stromal cells.


Surface antigen profiles of leukocytes and melanoma cells in lymph node metastases are associated with survival in AJCC stage III melanoma patients.

  • Kimberley L Kaufman‎ et al.
  • Clinical & experimental metastasis‎
  • 2014‎

There is an urgent need to identify more accurate prognostic biomarkers in melanoma patients, particularly in those with metastatic disease. This study aimed to identify melanoma and leukocyte surface antigens predictive of survival in a prospective series of AJCC stage IIIb/c melanoma patients (n = 29). Live cell suspensions were prepared from melanoma metastases within lymph nodes (LN). The suspensions were immuno-magnetically separated into CD45(+) (leukocyte) and CD45(-) (non-hematopoietic, enriched melanoma cell) fractions. Surface antigens on CD45(-) and CD45(+) cell populations were profiled using DotScan™ microarrays (Medsaic Pty. Ltd.) and showed differential abundance levels for 52 and 78 antigens respectively. Associations of the surface profiles with clinicopathologic and outcome data (median follow-up 35.4 months post LN resection) were sought using univariate (log-rank test) and multivariate (Wald's test; modelled with patient's age, gender and AJCC staging at LN recurrence) survival models. CD9 (p = 0.036), CD39 (p = 0.004) and CD55 (p = 0.005) on CD45(+) leukocytes were independently associated with distant metastasis-free survival using multivariate analysis. Leukocytes with high CD39 levels were also significantly associated with increased overall survival (OS) in multivariate analysis (p = 0.016). LNs containing leukocytes expressing CD11b (p = 0.025), CD49d (p = 0.043) and CD79b (p = 0.044) were associated with reduced OS on univariate analysis. For enriched melanoma cells (CD45(-) cell populations), 11 surface antigens were significantly correlated with the disease-free interval (DFI) between diagnosis of culprit primary melanoma and LN metastasis resection. Nine antigens on CD45(+) leukocytes also correlated with DFI. Following validation in independent datasets, surface markers identified here should enable more accurate determination of prognosis in stage III melanoma patients and provide better risk stratification of patients entering clinical trials.


A shear stress micromodel of urinary tract infection by the Escherichia coli producing Dr adhesin.

  • Beata Zalewska-Piątek‎ et al.
  • PLoS pathogens‎
  • 2020‎

In this study, we established a dynamic micromodel of urinary tract infection to analyze the impact of UT-segment-specific urinary outflow on the persistence of E. coli colonization. We found that the adherence of Dr+ E. coli to bladder T24 transitional cells and type IV collagen is maximal at lowest shear stress and is reduced by any increase in flow velocity. The analyzed adherence was effective in the whole spectrum of physiological shear stress and was almost irreversible over the entire range of generated shear force. Once Dr+ E. coli bound to host cells or collagen, they did not detach even in the presence of elevated shear stress or of chloramphenicol, a competitive inhibitor of binding. Investigating the role of epithelial surface architecture, we showed that the presence of budding cells-a model microarchitectural obstacle-promotes colonization of the urinary tract by E. coli. We report a previously undescribed phenomenon of epithelial cell "rolling-shedding" colonization, in which the detached epithelial cells reattach to the underlying cell line through a layer of adherent Dr+ E. coli. This rolling-shedding colonization progressed continuously due to "refilling" induced by the flow-perturbing obstacle. The shear stress of fluid containing free-floating bacteria fueled the rolling, while providing an uninterrupted supply of new bacteria to be trapped by the rolling cell. The progressive rolling allows for transfer of briefly attached bacteria onto the underlying monolayer in a repeating cascading event.


Bispecific mAb2 Antibodies Targeting CD59 Enhance the Complement-Dependent Cytotoxicity Mediated by Rituximab.

  • Katharina Stadlbauer‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Inhibition of complement activation via the overexpression of complement-regulatory proteins (CRPs), most notably CD46, CD55 and CD59, is an efficient mechanism of disguise of cancer cells from a host immune system. This phenomenon extends to counteract the potency of therapeutic antibodies that could lyse target cells by eliciting complement cascade. The manifold functions and ubiquitous expression of CRPs preclude their systemic specific inhibition. We selected CD59-specific Fc fragments with a novel antigen binding site (Fcabs) from yeast display libraries using recombinant antigens expressed in bacterial or mammalian cells. To produce a bispecific antibody, we endowed rituximab, a clinically applied anti-CD20 antibody, used for therapy of various lymphoid malignancies, with an anti-CD59 Fcab. This bispecific antibody was able to induce more potent complement-dependent cytotoxicity for CD20 and CD59 expressing Raji cell line measured with lactate dehydrogenase-release assay, but had no effect on the cells with lower levels of the primary CD20 antigen or CD20-negative cells. Such molecules are promising candidates for future therapeutic development as they elicit a higher specific cytotoxicity at a lower concentration and hence cause a lower exhaustion of complement components.


Cannabidiol Modulates the Immunophenotype and Inhibits the Activation of the Inflammasome in Human Gingival Mesenchymal Stem Cells.

  • Rosaliana Libro‎ et al.
  • Frontiers in physiology‎
  • 2016‎

Human Gingival Mesenchymal Stem Cells (hGMSCs) are multipotential cells that can expand and differentiate in culture under specific and standardized conditions. In the present study, we have investigated whether in vitro pre-treatment of hGMSCs with Cannabidiol (CBD) can influence their expression profile, improving the therapeutic potential of this cell culture. Following CBD treatment (5 μM) for 24 h, gene expression analysis through Next Generation Sequencing (NGS) has revealed several genes differentially expressed between CBD-treated hGMSCs (CBD-hGMSCs) and control cells (CTR-hGMSCs) that were linked to inflammation and apoptosis. In particular, we have demonstrated that CBD treatment in hGMSCs prevented the activation of the NALP3-inflammasome pathway by suppressing the levels of NALP3, CASP1, and IL18, and in parallel, inhibited apoptosis, as demonstrated by the suppression of Bax. CBD treatment was also able to modulate the expression of the well-known mesenchymal stem cell markers (CD13, CD29, CD73, CD44, CD90, and CD166), and other surface antigens. Specifically, CBD led to the downregulation of genes codifying for antigens involved in the activation of the immune system (CD109, CD151, CD40, CD46, CD59, CD68, CD81, CD82, CD99), while it led to the upregulation of those implicated in the inhibition of the immune responses (CD47, CD55, CD276). In conclusion, the present study will provide a new simple and reproducible method for preconditioning hGMSCs with CBD, before transplantation, as an interesting strategy for improving the hGMSCs molecular phenotype, reducing the risk of immune or inflammatory reactions in the host, and in parallel, for increasing their survival and thus, their long-term therapeutic efficacy.


Comprehensive cell surface protein profiling of human mesenchymal stromal cells from peritoneal dialysis effluent and comparison with those from human bone marrow and adipose tissue.

  • Ganggang Shi‎ et al.
  • Human cell‎
  • 2023‎

Peritoneal mesenchymal stromal cells (pMSCs) are isolated from peritoneal dialysis (PD) effluent, and treatment with the pMSCs reduces peritoneal membrane injury in rat model of PD. This study was designed to verify the identity of the pMSCs. pMSCs were grown in plastic dishes for 4-7 passages, and their cell surface phenotype was examined by staining with a panel of 242 antibodies. The positive stain of each target protein was determined by an increase in fluorescence intensity as compared with isotype controls in flow cytometrical analysis. Here, we showed that pMSCs predominantly expressed CD9, CD26, CD29, CD42a, CD44, CD46, CD47, CD49b, CD49c, CD49e, CD54, CD55, CD57, CD59, CD63, CD71, CD73, CD81, CD90, CD98, CD147, CD151, CD200, CD201, β2-micoglobulin, epithelial growth factor receptor, human leukocyte antigen (HLA) class 1, and, to a lesser extent, CD31, CD45RO, CD49a, CD49f, CD50, CD58, CD61, CD105, CD164, and CD166. These cells lacked expression of most hematopoietic markers such as CD11b, CD14, CD19, CD34, CD40, CD80, CD79, CD86, and HLA-DR. There was 38.55% difference in the expression of 83 surface proteins between bone marrow (BM)-derived MSCs and pMSCs, and 14.1% in the expression of 242 proteins between adipose tissue (AT)-derived MSCs and pMSCs. The BM-MSCs but not both AT-MSCs and pMSCs express cytokine receptors (IFNγR, TNFI/IIR, IL-1R, IL-4R, IL-6R, and IL-7R). In conclusion, pMSCs exhibited a typical cell surface phenotype of MSCs, which was not the same as on BM-MSCs or AT-MSCs, suggesting that the pMSCs may represent a different MSC lineage from peritoneal cavity.


A novel bispecific antibody platform to direct complement activity for efficient lysis of target cells.

  • Jonathan W Cruz‎ et al.
  • Scientific reports‎
  • 2019‎

Harnessing complement-mediated cytotoxicity by therapeutic antibodies has been limited because of dependency on size and density of antigen, structural constraints resulting from orientation of antibody binding, and blockade of complement activation by inhibitors expressed on target cells. We developed a modular bispecific antibody platform that directs the complement-initiating protein C1q to target cells, increases local complement deposition and induces cytotoxicity against target antigens with a wide-range of expression. The broad utility of this approach to eliminate both prokaryotic and eukaryotic cells was demonstrated by pairing a unique C1q-recruiting arm with multiple targeting arms specific for Staphylococcus aureus, Pseudomonas aeruginosa, B-cells and T-cells, indicating applicability for diverse indications ranging from infectious diseases to cancer. Generation of C1q humanized mice allowed for demonstration of the efficacy of this approach to clear disease-inducing cells in vivo. In summary, we present a novel, broadly applicable, and versatile therapeutic modality for targeted cell depletion.


Dissecting Allo-Sensitization After Local Administration of Human Allogeneic Adipose Mesenchymal Stem Cells in Perianal Fistulas of Crohn's Disease Patients.

  • Alvaro Avivar-Valderas‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Adipose mesenchymal stem cells (ASC) are considered minimally immunogenic. This is due to the low expression of human leukocyte antigens I (HLA-I), lack of HLA-II expression and low expression of co-stimulatory molecules such as CD40 and CD80. The low rate of observed immunological rejection as well as the immunomodulatory qualities, position ASC as a promising cell-based therapy for the treatment of a variety of inflammatory indications. Yet, few studies have addressed relevant aspects of immunogenicity such as ASC donor-to-patient HLA histocompatibility or assessment of immune response triggered by ASC administration, particularly in the cases of presensitization. The present study aims to assess allo-immune responses in a cohort of Crohn's disease patients administered with allogeneic ASC (darvadstrocel formerly Cx601) for the treatment of complex perianal fistulas. We identified donor-specific antibodies (DSA) generation in a proportion of patients and observed that patients showing preexisting immunity were prone to generating DSA after allogeneic therapy. Noteworthy, naïve patients generating DSA at week 12 (W12) showed a significant reduction in DSA titer at week 52 (W52), whereas DSA titer was reduced in pre-sensitized patients only with no specificities against the donor administered. Remarkably, we did not observe any correlation of DSA generation with ASC therapeutic efficacy. In vitro complement-dependent cytotoxicity (CDC) studies have revealed limited cytotoxic levels based upon HLA-I expression and binding capacity even in pro-inflammatory conditions. We sought to identify CDC coping mechanisms contributing to the limited cytotoxic killing observed in ASC in vitro. We found that ASC express membrane-bound complement regulatory proteins (mCRPs) CD55, CD46, and CD59 at basal levels, with CD46 more actively expressed in pro-inflammatory conditions. We demonstrated that CD46 is a main driver of CDC signaling; its depletion significantly enhances sensitivity of ASC to CDC. In summary, despite relatively high clearance, DSA generation may represent a major challenge for allogeneic cell therapy management. Sensitization may be a significant concern when evaluating re-treatment or multi-donor trials. It is still unknown whether DSA generation could potentially be the consequence of donor-to-patient interaction and, therefore, subsequently link to efficacy or biological activity. Lastly, we propose that CDC modulators such as CD46 could be used to ultimately link CDC specificity with allogeneic cell therapy efficacy.


Monomeric agonist peptide/MHCII complexes activate T-cells in an autonomous fashion.

  • René Platzer‎ et al.
  • EMBO reports‎
  • 2023‎

Molecular crowding of agonist peptide/MHC class II complexes (pMHCIIs) with structurally similar, yet per se non-stimulatory endogenous pMHCIIs is postulated to sensitize T-cells for the recognition of single antigens on the surface of dendritic cells and B-cells. When testing this premise with the use of advanced live cell microscopy, we observe pMHCIIs as monomeric, randomly distributed entities diffusing rapidly after entering the APC surface. Synaptic TCR engagement of highly abundant endogenous pMHCIIs is low or non-existent and affects neither TCR engagement of rare agonist pMHCII in early and advanced synapses nor agonist-induced TCR-proximal signaling. Our findings highlight the capacity of single freely diffusing agonist pMHCIIs to elicit the full T-cell response in an autonomous and peptide-specific fashion with consequences for adaptive immunity and immunotherapeutic approaches.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: