Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 468 papers

Bone marrow transplantation results in human donor blood cells acquiring and displaying mouse recipient class I MHC and CD45 antigens on their surface.

  • Nobuko Yamanaka‎ et al.
  • PloS one‎
  • 2009‎

Mouse models of human disease are invaluable for determining the differentiation ability and functional capacity of stem cells. The best example is bone marrow transplants for studies of hematopoietic stem cells. For organ studies, the interpretation of the data can be difficult as transdifferentiation, cell fusion or surface antigen transfer (trogocytosis) can be misinterpreted as differentiation. These events have not been investigated in hematopoietic stem cell transplant models.


CD45-mediated control of TCR tuning in naïve and memory CD8+ T cells.

  • Jae-Ho Cho‎ et al.
  • Nature communications‎
  • 2016‎

Continuous contact with self-major histocompatibility complex (MHC) ligands is essential for survival of naïve T cells but not memory cells. This surprising finding implies that T cell subsets may vary in their relative T-cell receptor (TCR) sensitivity. Here we show that in CD8+T cells TCR sensitivity correlates inversely with levels of CD5, a marker for strong self-MHC reactivity. We also show that TCR sensitivity is lower in memory CD8+ T cells than naïve cells. In both situations, TCR hypo-responsiveness applies only to short-term TCR signalling events and not to proliferation, and correlates directly with increased expression of a phosphatase, CD45 and reciprocal decreased expression of activated LCK. Inhibition by high CD45 on CD8+ T cells may protect against overt TCR auto-MHC reactivity, while enhanced sensitivity to cytokines ensures strong responses to foreign antigens.


Nanoscale kinetic segregation of TCR and CD45 in engaged microvilli facilitates early T cell activation.

  • Yair Razvag‎ et al.
  • Nature communications‎
  • 2018‎

T cells have a central function in mounting immune responses. However, mechanisms of their early activation by cognate antigens remain incompletely understood. Here we use live-cell multi-colour single-molecule localization microscopy to study the dynamic separation between TCRs and CD45 glycoprotein phosphatases in early cell contacts under TCR-activating and non-activating conditions. Using atomic force microscopy, we identify these cell contacts with engaged microvilli and characterize their morphology, rigidity and dynamics. Physical modelling and simulations of the imaged cell interfaces quantitatively capture the TCR-CD45 separation. Surprisingly, TCR phosphorylation negatively correlates with TCR-CD45 separation. These data support a refined kinetic-segregation model. First, kinetic-segregation occurs within seconds from TCR activation in engaged microvilli. Second, TCRs should be segregated, yet not removed too far, from CD45 for their optimal and localized activation within clusters. Our combined imaging and computational approach prove an important tool in the study of dynamic protein organization in cell interfaces.


B cells drive lymphocyte activation and expansion in mice with the CD45 wedge mutation and Fas deficiency.

  • Vikas A Gupta‎ et al.
  • The Journal of experimental medicine‎
  • 2008‎

CD45 and Fas regulate tyrosine phosphorylation and apoptotic signaling pathways, respectively. Mutation of an inhibitory wedge motif in CD45 (E613R) results in hyperresponsive thymocytes and B cells on the C57BL/6 background, but no overt autoimmunity, whereas Fas deletion results in a mild autoimmune disease on the same genetic background. In this study, we show that these two mutations cooperate in mice, causing early lethality, autoantibody production, and substantial lymphoproliferation. In double-mutant mice, this phenotype was dependent on both T and B cells. T cell activation required signaling in response to endogenous or commensal antigens, demonstrated by the introduction of a transgenic T cell receptor. Genetic deletion of B cells also prevented T cell activation. Similarly, T cells were necessary for B cell autoantibody production. However, B cells appeared to be intrinsically activated even in the absence of T cells, suggesting that they may drive the phenotype of these mice. These results reveal a requirement for careful control of B cell signaling and cell death in preventing inappropriate lymphocyte activation and autoimmunity.


CD56, HLA-DR, and CD45 recognize a subtype of childhood AML harboring CBFA2T3-GLIS2 fusion transcript.

  • Andrea Zangrando‎ et al.
  • Cytometry. Part A : the journal of the International Society for Analytical Cytology‎
  • 2021‎

The presence of CBFA2T3-GLIS2 fusion gene has been identified in childhood Acute Myeloid Leukemia (AML). In view of the genomic studies indicating a distinct gene expression profile, we evaluated the role of immunophenotyping in characterizing a rare subtype of AML-CBFA2T3-GLIS2 rearranged. Immunophenotypic data were obtained by studying a cohort of 20 pediatric CBFA2T3-GLIS2-AML and 77 AML patients not carrying the fusion transcript. Enrolled cases were included in the Associazione Italiana di Ematologia Oncologia Pediatrica (AIEOP) AML trials and immunophenotypes were compared using different statistical approaches. By multiple computational procedures, we identified two main core antigens responsible for the identification of the CBFA2T3-GLIS2-AML. CD56 showed the highest performance in single marker evaluation (AUC = 0.89) and granted the most accurate prediction when used in combination with HLA-DR (AUC = 0.97) displaying a 93% sensitivity and 99% specificity. We also observed a weak-to-negative CD45 expression, being exceptional in AML. We here provide evidence that the combination of HLA-DR negativity and intense bright CD56 expression detects a rare and aggressive pediatric AML genetic lesion improving the diagnosis performance.


Bone marrow stromal cells (BMSCs CD45- /CD44+ /CD73+ /CD90+ ) isolated from osteoporotic mice SAM/P6 as a novel model for osteoporosis investigation.

  • Mateusz Sikora‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Available therapies aimed at treating age-related osteoporosis are still insufficient. Therefore, designing reliable in vitro model for the analysis of molecular mechanisms underlying senile osteoporosis is highly required. We have isolated and characterized progenitor cells isolated from bone marrow (BMSCs) of osteoporotic mice strain SAM/P6 (BMSCSAM/P6 ). The cytophysiology of BMSCSAM/P6 was for the first time compared with BMSCs isolated from healthy BALB/c mice (BMSCBALB/c ). Characterization of the cells included evaluation of their multipotency, morphology and determination of specific phenotype. Viability of BMSCs cultures was determined in reference to apoptosis profile, metabolic activity, oxidative stress, mitochondrial membrane potential and caspase activation. Additionally, expression of relevant biomarkers was determined with RT-qPCR. Obtained results indicated that BMSCSAM/P6 and BMSCBALB/c show the typical phenotype of mesenchymal stromal cells (CD44+, CD73+, CD90+) and do not express CD45. Further, BMSCSAM/P6 were characterized by deteriorated multipotency, decreased metabolic activity and increased apoptosis occurrence, accompanied by elevated oxidative stress and mitochondria depolarisation. The transcriptome analyses showed that BMSCSAM/P6 are distinguished by lowered expression of molecules crucial for proper osteogenesis, including Coll-1, Opg and Opn. However, the expression of Trap, DANCR1 and miR-124-3p was significantly up-regulated. Obtained results show that BMSCSAM/P6 present features of progenitor cells with disturbed metabolism and could serve as appropriate model for in vitro investigation of age-dependent osteoporosis.


Visualizing Synaptic Transfer of Tumor Antigens among Dendritic Cells.

  • Megan K Ruhland‎ et al.
  • Cancer cell‎
  • 2020‎

Generation of tumor-infiltrating lymphocytes begins when tumor antigens reach the lymph node (LN) to stimulate T cells, yet we know little of how tumor material is disseminated among the large variety of antigen-presenting dendritic cell (DC) subsets in the LN. Here, we demonstrate that tumor proteins are carried to the LN within discrete vesicles inside DCs and are then transferred among DC subsets. A synapse is formed between interacting DCs and vesicle transfer takes place in the absence of free exosomes. DCs -containing vesicles can uniquely activate T cells, whereas DCs lacking them do not. Understanding this restricted sharing of tumor identity provides substantial room for engineering better anti-tumor immunity.


Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens.

  • Matthew M Gubin‎ et al.
  • Nature‎
  • 2014‎

The immune system influences the fate of developing cancers by not only functioning as a tumour promoter that facilitates cellular transformation, promotes tumour growth and sculpts tumour cell immunogenicity, but also as an extrinsic tumour suppressor that either destroys developing tumours or restrains their expansion. Yet, clinically apparent cancers still arise in immunocompetent individuals in part as a consequence of cancer-induced immunosuppression. In many individuals, immunosuppression is mediated by cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and programmed death-1 (PD-1), two immunomodulatory receptors expressed on T cells. Monoclonal-antibody-based therapies targeting CTLA-4 and/or PD-1 (checkpoint blockade) have yielded significant clinical benefits-including durable responses--to patients with different malignancies. However, little is known about the identity of the tumour antigens that function as the targets of T cells activated by checkpoint blockade immunotherapy and whether these antigens can be used to generate vaccines that are highly tumour-specific. Here we use genomics and bioinformatics approaches to identify tumour-specific mutant proteins as a major class of T-cell rejection antigens following anti-PD-1 and/or anti-CTLA-4 therapy of mice bearing progressively growing sarcomas, and we show that therapeutic synthetic long-peptide vaccines incorporating these mutant epitopes induce tumour rejection comparably to checkpoint blockade immunotherapy. Although mutant tumour-antigen-specific T cells are present in progressively growing tumours, they are reactivated following treatment with anti-PD-1 and/or anti-CTLA-4 and display some overlapping but mostly treatment-specific transcriptional profiles, rendering them capable of mediating tumour rejection. These results reveal that tumour-specific mutant antigens are not only important targets of checkpoint blockade therapy, but they can also be used to develop personalized cancer-specific vaccines and to probe the mechanistic underpinnings of different checkpoint blockade treatments.


Murine Norovirus Infection Induces TH1 Inflammatory Responses to Dietary Antigens.

  • Romain Bouziat‎ et al.
  • Cell host & microbe‎
  • 2018‎

Intestinal reovirus infection can trigger T helper 1 (TH1) immunity to dietary antigen, raising the question of whether other viruses can have a similar impact. Here we show that the acute CW3 strain of murine norovirus, but not the persistent CR6 strain, induces TH1 immunity to dietary antigen. This property of CW3 is dependent on its major capsid protein, a virulence determinant. Transcriptional profiling of mesenteric lymph nodes following infection reveals an immunopathological signature that does not segregate with protective immunity but with loss of oral tolerance, in which interferon regulatory factor 1 is critical. These data show that viral capacity to trigger specific inflammatory pathways at sites where T cell responses to dietary antigens take place interferes with the development of tolerance to an oral antigen. Collectively, these data provide a foundation for the development of therapeutic strategies to prevent TH1-mediated complex immune disorders triggered by viral infections.


CD56+, NKp46+ cell line (MZ93) expressing T-cell and myeloid antigens.

  • Shigeo Hashimoto‎ et al.
  • Leukemia research‎
  • 2002‎

The MZ93 cell line, established from a patient with CML, expressed CD4, CD7, CD13, CD25, CD33, CD34, CD56 and NKp46. The additional karyotype abnormality of the Ph-positive leukemia cells in vivo, 6p+, was also observed in MZ93. The early passages of MZ93 expressed CD3 in the cytoplasm, but the late passages did not. The cells did not express mature NK-markers as expected. The messenger RNAs of CD2 and NKp46 were detected and those of CD3varepsilon and CD3zeta were absent in the cells. Therefore, the cell line has the immunophenotype likely to NK and/or T cell precursor.


S100A4 exerts robust mucosal adjuvant activity for co-administered antigens in mice.

  • Arka Sen Chaudhuri‎ et al.
  • Mucosal immunology‎
  • 2022‎

The lack of clinically applicable mucosal adjuvants is a major hurdle in designing effective mucosal vaccines. We hereby report that the calcium-binding protein S100A4, which regulates a wide range of biological functions, is a potent mucosal adjuvant in mice for co-administered antigens, including the SARS-CoV-2 spike protein, with comparable or even superior efficacy as cholera toxin but without causing any adverse reactions. Intranasal immunization with recombinant S100A4 elicited antigen-specific antibody and pulmonary cytotoxic T cell responses, and these responses were remarkably sustained for longer than 6 months. As a self-protein, S100A4 did not stimulate antibody responses against itself, a quality desired of adjuvants. S100A4 prolonged nasal residence of intranasally delivered antigens and promoted migration of antigen-presenting cells. S100A4-pulsed dendritic cells potently activated cognate T cells. Furthermore, S100A4 induced strong germinal center responses revealed by both microscopy and mass spectrometry, a novel label-free technique for measuring germinal center activity. Importantly, S100A4 did not induce olfactory bulb inflammation after nasal delivery, which is often a safety concern for nasal vaccination. In conclusion, S100A4 may be a promising adjuvant in formulating mucosal vaccines, including vaccines against pathogens that infect via the respiratory tract, such as SARS-CoV-2.


Cladribine and Fludarabine Nucleoside Change the Levels of CD Antigens on B-Lymphoproliferative Disorders.

  • Carlos Cassano‎ et al.
  • International journal of proteomics‎
  • 2010‎

The purine analogs, fludarabine nucleoside (FdA), and cladribine (CdA) (1 μM, 24 hours), significantly changed the levels of some surface antigens on the human B-cell lines MEC2 and Raji. Changes in the surface proteins were identified using a Cluster of Differentiation (CD) antibody microarray that captures live cells and confirmed by flow cytometry. For Raji cells, CdA up-regulated CD10, CD54, CD80, and CD86, with repression of CD22, while FdA up-regulated CD20, CD54, CD80, CD86 and CD95. For MEC2 cells, CdA up-regulated CD11a, CD20, CD43, CD45, CD52, CD54, CD62L, CD80, CD86, and CD95, but FdA had no effect. Up-regulation of particular CD antigens induced on a B-cell lymphoproliferative disorder by a purine analog could provide targets for therapeutic antibodies with synergistic cell killing.


Fractional Laser Releases Tumor-Associated Antigens in Poorly Immunogenic Tumor and Induces Systemic Immunity.

  • Masayoshi Kawakubo‎ et al.
  • Scientific reports‎
  • 2017‎

Currently ablative fractional photothermolysis (aFP) with CO2 laser is used for a wide variety of dermatological indications. This study presents and discusses the utility of aFP for treating oncological indications. We used a fractional CO2 laser and anti-PD-1 inhibitor to treat a tumor established unilaterally by the CT26 wild type (CT26WT) colon carcinoma cell line. Inoculated tumors grew significantly slower in aFP-treated groups (aFP and aFP + anti-PD-1 groups) and complete remission was observed in the aFP-treated groups. Flow cytometric analysis showed aFP treatment elicited an increase of CD3+, CD4+, CD8+ vand epitope specific CD8+ T cells. Moreover, the ratio of CD8+ T cells to Treg increased in the aFP-treated groups. Additionally, we established a bilateral CT26WT-inoculated mouse model, treating tumors on one-side and observing both tumors. Interestingly, tumors grew significantly slower in the aFP + anti-PD-1 groups and complete remission was observed for tumors on both aFP-treated and untreated sides. This study has demonstrated a potential role of aFP treatments in oncology.


Selective deletion of human leukocyte antigens protects stem cell-derived islets from immune rejection.

  • Audrey V Parent‎ et al.
  • Cell reports‎
  • 2021‎

Stem cell-based replacement therapies hold the promise to restore function of damaged or degenerated tissue such as the pancreatic islets in people with type 1 diabetes. Wide application of these therapies requires overcoming the fundamental roadblock of immune rejection. To address this issue, we use genetic engineering to create human pluripotent stem cells (hPSCs) in which the majority of the polymorphic human leukocyte antigens (HLAs), the main drivers of allogeneic rejection, are deleted. We retain the common HLA class I allele HLA-A2 and less polymorphic HLA-E/F/G to allow immune surveillance and inhibition of natural killer (NK) cells. We employ a combination of in vitro assays and humanized mouse models to demonstrate that these gene manipulations significantly reduce NK cell activity and T-cell-mediated alloimmune response against hPSC-derived islet cells. In summary, our approach produces hypoimmunogenic hPSCs that can be readily matched with recipients to avoid alloimmune rejection.


CD169(+) macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes.

  • Patricia Barral‎ et al.
  • Nature immunology‎
  • 2010‎

Invariant natural killer T cells (iNKT cells) are involved in the host defense against microbial infection. Although it is known that iNKT cells recognize glycolipids presented by CD1d, how and where they encounter antigen in vivo remains unclear. Here we used multiphoton microscopy to visualize the dynamics and activation of iNKT cells in lymph nodes. After antigen administration, iNKT cells became confined in a CD1d-dependent manner in close proximity to subcapsular sinus CD169(+) macrophages. These macrophages retained, internalized and presented lipid antigen and were required for iNKT cell activation, cytokine production and population expansion. Thus, CD169(+) macrophages can act as true antigen-presenting cells controlling early iNKT cell activation and favoring the fast initiation of immune responses.


Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction.

  • Sherin J Rouhani‎ et al.
  • Nature communications‎
  • 2015‎

Lymphatic endothelial cells (LECs) directly express peripheral tissue antigens and induce CD8 T-cell deletional tolerance. LECs express MHC-II molecules, suggesting they might also tolerize CD4 T cells. We demonstrate that when β-galactosidase (β-gal) is expressed in LECs, β-gal-specific CD8 T cells undergo deletion via the PD-1/PD-L1 and LAG-3/MHC-II pathways. In contrast, LECs do not present endogenous β-gal in the context of MHC-II molecules to β-gal-specific CD4 T cells. Lack of presentation is independent of antigen localization, as membrane-bound haemagglutinin and I-Eα are also not presented by MHC-II molecules. LECs express invariant chain and cathepsin L, but not H2-M, suggesting that they cannot load endogenous antigenic peptides onto MHC-II molecules. Importantly, LECs transfer β-gal to dendritic cells, which subsequently present it to induce CD4 T-cell anergy. Therefore, LECs serve as an antigen reservoir for CD4 T-cell tolerance, and MHC-II molecules on LECs are used to induce CD8 T-cell tolerance via LAG-3.


Expression of tumor antigens on primary ovarian cancer cells compared to established ovarian cancer cell lines.

  • Kamila Kloudová‎ et al.
  • Oncotarget‎
  • 2016‎

In order to select a suitable combination of cancer cell lines as an appropriate source of antigens for dendritic cell-based immunotherapy of ovarian cancer, we analyzed the expression level of 21 tumor associated antigens (BIRC5, CA125, CEA, DDX43, EPCAM, FOLR1, Her-2/neu, MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, MUC-1, NY-ESO-1, PRAME, p53, TPBG, TRT, WT1) in 4 established ovarian cancer cell lines and in primary tumor cells isolated from the high-grade serous epithelial ovarian cancer tissue. More than 90% of tumor samples expressed very high levels of CA125, FOLR1, EPCAM and MUC-1 and elevated levels of Her-2/neu, similarly to OVCAR-3 cell line. The combination of OV-90 and OVCAR-3 cell lines showed the highest overlap with patients' samples in the TAA expression profile.


Immune Surveillance of Acute Myeloid Leukemia Is Mediated by HLA-Presented Antigens on Leukemia Progenitor Cells.

  • Annika Nelde‎ et al.
  • Blood cancer discovery‎
  • 2023‎

Therapy-resistant leukemia stem and progenitor cells (LSC) are a main cause of acute myeloid leukemia (AML) relapse. LSC-targeting therapies may thus improve outcome of patients with AML. Here we demonstrate that LSCs present HLA-restricted antigens that induce T-cell responses allowing for immune surveillance of AML. Using a mass spectrometry-based immunopeptidomics approach, we characterized the antigenic landscape of patient LSCs and identified AML- and AML/LSC-associated HLA-presented antigens absent from normal tissues comprising nonmutated peptides, cryptic neoepitopes, and neoepitopes of common AML driver mutations of NPM1 and IDH2. Functional relevance of shared AML/LSC antigens is illustrated by presence of their cognizant memory T cells in patients. Antigen-specific T-cell recognition and HLA class II immunopeptidome diversity correlated with clinical outcome. Together, these antigens shared among AML and LSCs represent prime targets for T cell-based therapies with potential of eliminating residual LSCs in patients with AML.


Identification of Anti-tumor Cells Carrying Natural Killer (NK) Cell Antigens in Patients With Hematological Cancers.

  • Ewelina Krzywinska‎ et al.
  • EBioMedicine‎
  • 2015‎

Natural killer (NK) cells, a cytotoxic lymphocyte lineage, are able to kill tumor cells in vitro and in mouse models. However, whether these cells display an anti-tumor activity in cancer patients has not been demonstrated. Here we have addressed this issue in patients with several hematological cancers. We found a population of highly activated CD56(dim)CD16(+) NK cells that have recently degranulated, evidence of killing activity, and it is absent in healthy donors. A high percentage of these cells expressed natural killer cell p46-related protein (NKp46), natural-killer group 2, member D (NKG2D) and killer inhibitory receptors (KIRs) and a low percentage expressed NKG2A and CD94. They are also characterized by a high metabolic activity and active proliferation. Notably, we found that activated NK cells from hematological cancer patients have non-NK tumor cell antigens on their surface, evidence of trogocytosis during tumor cell killing. Finally, we found that these activated NK cells are distinguished by their CD45RA(+)RO(+) phenotype, as opposed to non-activated cells in patients or in healthy donors displaying a CD45RA(+)RO(-) phenotype similar to naïve T cells. In summary, we show that CD45RA(+)RO(+) cells, which resemble a unique NK population, have recognized tumor cells and degranulate in patients with hematological neoplasias.


Early developing B cells undergo negative selection by central nervous system-specific antigens in the meninges.

  • Yan Wang‎ et al.
  • Immunity‎
  • 2021‎

Self-reactive B cell progenitors are eliminated through central tolerance checkpoints, a process thought to be restricted to the bone marrow in mammals. Here, we identified a consecutive trajectory of B cell development in the meninges of mice and non-human primates. The meningeal B cells were located predominantly at the dural sinuses, where endothelial cells expressed essential niche factors to support B cell development. Parabiosis experiments together with lineage tracing showed that meningeal developing B cells were replenished continuously from hematopoietic stem cell (HSC)-derived progenitors via a circulation-independent route. Autoreactive immature B cells that recognized myelin oligodendrocyte glycoprotein (MOG), a central nervous system-specific antigen, were eliminated specifically from the meninges. Furthermore, genetic deletion of the Mog gene restored the self-reactive B cell population in the meninges. These findings identify the meninges as a distinct reservoir for B cell development, allowing in situ negative selection to ensure a locally non-self-reactive immune repertoire.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: