Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 296 papers

CD28 expression in T cell aging and human longevity.

  • N Boucher‎ et al.
  • Experimental gerontology‎
  • 1998‎

Functional decrements of the immune system have a major contribution to aging and age-related diseases. Here, we further characterize the decline in proportion of CD28-positive T cells previously identified in centenarians. Cohorts of 97 centenarians, 40 subjects aged 70-90 (ELD group), and 40 young adults (under age 40) were phenotyped for T cell surface expression of CD28, CD4, and CD8 antigens. The significant decline in T cells expressing CD28 (p < 10(-4) for comparisons between adults and either ELD or centenarians) affects preferentially the CD8+ subset of T cells. This decline accounts largely for the age-related diminution of T cell responsiveness to mitogenic signals. CD28 expression is modulated in T cell cultures in a growth-related fashion and this modulation is dampened in cultures from centenarians. We propose that the decrease in CD28 expression reflects a compensatory adaptation of the immune system during aging in the face of chronic stimulation.


B7-h2 is a costimulatory ligand for CD28 in human.

  • Sheng Yao‎ et al.
  • Immunity‎
  • 2011‎

CD28 and CTLA-4 are cell surface cosignaling molecules essential for the control of T cell activation upon the engagement of their ligands B7-1 and B7-2 from antigen-presenting cells. By employing a receptor array assay, we have demonstrated that B7-H2, best known as the ligand of inducible costimulator, was a ligand for CD28 and CTLA-4 in human, whereas these interactions were not conserved in mouse. B7-H2 and B7-1 or B7-2 interacted with CD28 through distinctive domains. B7-H2-CD28 interaction was essential for the costimulation of human T cells' primary responses to allogeneic antigens and memory recall responses. Similar to B7-1 and B7-2, B7-H2 costimulation via CD28 induced survival factor Bcl-xL, downregulated cell cycle inhibitor p27(kip1), and triggered signaling cascade of ERK and AKT kinase-dependent pathways. Our findings warrant re-evaluation of CD28 and CTLA-4's functions previously attributed exclusively to B7-1 and B7-2 and have important implications in therapeutic interventions against human diseases.


41BB-based and CD28-based CD123-redirected T-cells ablate human normal hematopoiesis in vivo.

  • Matteo Libero Baroni‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2020‎

Acute myeloid leukemia (AML) is a hematopoietic malignancy which is biologically, phenotypically and genetically very heterogeneous. Outcome of patients with AML remains dismal, highlighting the need for improved, less toxic therapies. Chimeric antigen receptor T-cell (CART) immunotherapies for patients with refractory or relapse (R/R) AML are challenging because of the absence of a universal pan-AML target antigen and the shared expression of target antigens with normal hematopoietic stem/progenitor cells (HSPCs), which may lead to life-threating on-target/off-tumor cytotoxicity. CD33-redirected and CD123-redirected CARTs for AML are in advanced preclinical and clinical development, and they exhibit robust antileukemic activity. However, preclinical and clinical controversy exists on whether such CARTs are myeloablative.


CD28 Blockade Ex Vivo Induces Alloantigen-Specific Immune Tolerance but Preserves T-Cell Pathogen Reactivity.

  • Barbara Dillinger‎ et al.
  • Frontiers in immunology‎
  • 2017‎

Donor T-cells contribute to reconstitution of protective immunity after allogeneic hematopoietic stem cell transplantation (HSCT) but must acquire specific tolerance against recipient alloantigens to avoid life-threatening graft-versus-host disease (GvHD). Systemic immunosuppressive drugs may abrogate severe GvHD, but this also impedes memory responses to invading pathogens. Here, we tested whether ex vivo blockade of CD28 co-stimulation can enable selective T-cell tolerization to alloantigens by facilitating CD80/86-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) signaling. Treatment of human allogeneic dendritic cell/T-cell co-cultures with a human CD28 blocking antibody fragment (α-huCD28) significantly abrogated subsequent allospecific immune responses, seen by decreased T-cell proliferation and of type 1 cytokine (IFN-γ and IL-2) expression. Allo-tolerization persisted after discontinuation of CD28 blockade and secondary alloantigen stimulation, as confirmed by enhanced CTLA-4 and PD-1 immune checkpoint signaling. However, T-cells retained reactivity to pathogens, supported by clonotyping of neo-primed and cross-reactive T-cells specific for Candida albicans or third-party antigens using deep sequencing analysis. In an MHC-mismatched murine model, we tolerized C57BL/6 T-cells by ex vivo exposure to a murine single chain Fv specific for CD28 (α-muCD28). Infusion of these cells, after α-muCD28 washout, into bone marrow-transplanted BALB/c mice caused allo-tolerance and did not induce GvHD-associated hepatic pathology. We conclude that selective CD28 blockade ex vivo can allow the generation of stably allo-tolerized T-cells that in turn do not induce graft-versus-host reactions while maintaining pathogen reactivity. Hence, CD28 co-stimulation blockade of donor T-cells may be a useful therapeutic approach to support the immune system after HSCT.


IL-23 and IL-1β Drive Human Th17 Cell Differentiation and Metabolic Reprogramming in Absence of CD28 Costimulation.

  • Shankar Revu‎ et al.
  • Cell reports‎
  • 2018‎

Th17 cells drive autoimmune disease but also control commensal microbes. A common link among antigens from self-proteins or commensal microbiota is relatively low activation of T cell receptor (TCR) and costimulation signaling. Indeed, strong TCR/CD28 stimulation suppressed Th17 cell differentiation from human naive T cells, but not effector/memory cells. CD28 suppressed the classical Th17 transcriptional program, while inducing known Th17 regulators, and acted through an Akt-dependent mechanism. Th17 cells differentiated without CD28 were not anergic: they showed robust proliferation and maintained Th17 cytokine production following restimulation. Interleukin (IL)-23 and IL-1β promoted glucose uptake and increased glycolysis. Although modestly increased compared to CD28 costimulation, glycolysis was necessary to support Th17 differentiation, indicating that cytokine-mediated metabolic shifts were sufficient to obviate the classical requirement for CD28 in Th17 differentiation. Together, these data propose that, in humans, strength of TCR/CD28/Akt activation serves as a rheostat tuning the magnitude of Th17 development driven by IL-23 and IL-1β.


CD28 Co-Stimulus Achieves Superior CAR T Cell Effector Function against Solid Tumors Than 4-1BB Co-Stimulus.

  • Ana Textor‎ et al.
  • Cancers‎
  • 2021‎

Spacer or co-stimulatory components in chimeric antigen receptor (CAR) design influence CAR T cell effector function. Few preclinical mouse models optimally support CAR candidate pre-selection for clinical development. Here we use a model in which murine CAR T cells can be exploited with human tumor xenografts. This mouse-in-mouse approach avoids limitations caused by species-specific factors crucial for CAR T cell survival, trafficking and function. We compared trafficking, expansion and tumor control for T cells expressing different CAR construct designs targeting two antigens (L1CAM or HER2), structurally identical except for spacer (long or short) or co-stimulatory (4-1BB or CD28) domains to be evaluated. Using monoclonal, murine-derived L1CAM-specific CAR T cells in Rag-/- mice harboring established xenografted tumors from a human neuroblastoma cell line revealed a clear superiority in CAR T cell trafficking using CD28 co-stimulation. L1CAM-targeting short spacer-CD28/ζ CAR T cells expanded the most at the tumor site and induced initial tumor regression. Treating patient-derived neuroblastoma xenografts with human L1CAM-targeting CAR T cells confirmed the superiority of CD28 co-stimulus. CD28 superiority was also demonstrated with HER2-specific CAR T cells (targeting ovarian carcinoma xenografts). Our findings encourage incorporating CD28 signaling into CAR design for adoptive T cell treatment of solid tumors.


CD28 expression is required after T cell priming for helper T cell responses and protective immunity to infection.

  • Michelle A Linterman‎ et al.
  • eLife‎
  • 2014‎

The co-stimulatory molecule CD28 is essential for activation of helper T cells. Despite this critical role, it is not known whether CD28 has functions in maintaining T cell responses following activation. To determine the role for CD28 after T cell priming, we generated a strain of mice where CD28 is removed from CD4(+) T cells after priming. We show that continued CD28 expression is important for effector CD4(+) T cells following infection; maintained CD28 is required for the expansion of T helper type 1 cells, and for the differentiation and maintenance of T follicular helper cells during viral infection. Persistent CD28 is also required for clearance of the bacterium Citrobacter rodentium from the gastrointestinal tract. Together, this study demonstrates that CD28 persistence is required for helper T cell polarization in response to infection, describing a novel function for CD28 that is distinct from its role in T cell priming.


The Expression of CD28 and Its Synergism on the Immune Response of Flounder (Paralichthys olivaceus) to Thymus-Dependent Antigen.

  • Jing Xing‎ et al.
  • Frontiers in immunology‎
  • 2021‎

CD28 is well known as a critical T-cell costimulatory receptor involved in T cell activation by binding to its ligands. In this study, CD28 was cloned, and its expression profiles were characterized in flounder (Paralichthys olivaceus); variations of CD28+ cells after being stimulated with different types of antigens and the function of the CD28 costimulatory pathway on T-cell activation were investigated in vitro. fCD28 consists of four exons and three introns, and the full-length cDNA of fCD28 was 675-bp encoded 224 amino acids. The conserved motif (121TFPPPF126) binding to the CD80/86 ligand exists in the Ig-superfamily homology domain. The high expression of fCD28 is in gills, PBLs, head kidney, and spleen. CD28+ cells were co-localized with CD4+ T lymphocytes but not on IgM+ B lymphocyte cells. Moreover, the expression of CD28 was significantly varied in flounder after being stimulated by keyhole limpet hemocyanin (KLH) at both the transcriptional and cellular levels, while no significant differences were observed between lipopolysaccharide (LPS) stimulation and the control group. Notably, treatment of PBLs cultured in vitro with CD28 molecule-specific antibody (anti-CD28 Abs) and PHA produced more cell colonies and stimulated the proliferation of cultured leukocytes compared to PHA stimulation alone and the control group, and a higher level of IL-2 was detected in the culture medium. Meanwhile, anti-CD28 Abs increased the percent of CD28+ cells (10.41 ± 1.35%), CD4+ T lymphocytes (18.32 ± 2.15%), and CD28+/CD4+ double-positive cells (6.24 ± 1.52%). This effect also resulted in significant variations in the genes of cell membrane-bound molecules, cytokines, and related signaling pathways in cultured leukocytes, with significant changes in the genes of interleukin-2 (IL-2) and nuclear factor of activated T cells (NFAT) in the early stages of culture, and the expression of other molecules increased over time. These results proved the localization of the CD28 molecule on T lymphocytes in flounder, and anti-CD28 may act as the B7 ligand involved in T cell activation after antigen stimulation. These data provide a basis for a more in-depth study of the mechanism of the CD28 costimulatory pathway in T cell activation.


Cytotoxic CD8+ T cells target citrullinated antigens in rheumatoid arthritis.

  • Jae-Seung Moon‎ et al.
  • Nature communications‎
  • 2023‎

The immune mechanisms that mediate synovitis and joint destruction in rheumatoid arthritis (RA) remain poorly defined. Although increased levels of CD8+ T cells have been described in RA, their function in pathogenesis remains unclear. Here we perform single cell transcriptome and T cell receptor (TCR) sequencing of CD8+ T cells derived from anti-citrullinated protein antibodies (ACPA)+ RA blood. We identify GZMB+CD8+ subpopulations containing large clonal lineage expansions that express cytotoxic and tissue homing transcriptional programs, while a GZMK+CD8+ memory subpopulation comprises smaller clonal expansions that express effector T cell transcriptional programs. We demonstrate RA citrullinated autoantigens presented by MHC class I activate RA blood-derived GZMB+CD8+ T cells to expand, express cytotoxic mediators, and mediate killing of target cells. We also demonstrate that these clonally expanded GZMB+CD8+ cells are present in RA synovium. These findings suggest that cytotoxic CD8+ T cells targeting citrullinated antigens contribute to synovitis and joint tissue destruction in ACPA+ RA.


Combinations of anti-GITR antibody and CD28 superagonist induce permanent allograft acceptance by generating type 1 regulatory T cells.

  • Weitao Que‎ et al.
  • Science advances‎
  • 2022‎

Type 1 regulatory T (Tr1) cells represent a subset of IL-10-producing CD4+Foxp3- T cells and play key roles in promoting transplant tolerance. However, no effective pharmacological approaches have been able to induce Tr1 cells in vivo. We herein report the combined use of a CD28 superagonist (D665) and anti-glucocorticoid-induced tumor necrosis factor receptor-related protein monoclonal antibody (G3c) to induce Tr1 cells in vivo. Large amounts of IL-10/interferon-γ-co-producing CD4+Foxp3- Tr1 cells were generated by D665-G3c sequential treatment in mice. Mechanistic studies suggested that D665-G3c induced Tr1 cells via transcription factors Prdm1 and Maf. G3c contributed to Tr1 cell generation via the activation of mitogen-activated protein kinase-signal transducer and activator of transcription 3 signaling. Tr1 cells suppressed dendritic cell maturation and T cell responses and mediated permanent allograft acceptance in fully major histocompatibility complex-mismatched mice in an IL-10-dependent manner. In vivo Tr1 cell induction is a promising strategy for achieving transplant tolerance.


Atypical natural killer T-cell receptor recognition of CD1d-lipid antigens.

  • Jérôme Le Nours‎ et al.
  • Nature communications‎
  • 2016‎

Crucial to Natural Killer T (NKT) cell function is the interaction between their T-cell receptor (TCR) and CD1d-antigen complex. However, the diversity of the NKT cell repertoire and the ensuing interactions with CD1d-antigen remain unclear. We describe an atypical population of CD1d-α-galactosylceramide (α-GalCer)-reactive human NKT cells that differ markedly from the prototypical TRAV10-TRAJ18-TRBV25-1(+) type I NKT cell repertoire. These cells express a range of TCR α- and β-chains that show differential recognition of glycolipid antigens. Two atypical NKT TCRs (TRAV21-TRAJ8-TRBV7-8 and TRAV12-3-TRAJ27-TRBV6-5) bind orthogonally over the A'-pocket of CD1d, adopting distinct docking modes that contrast with the docking mode of all type I NKT TCR-CD1d-antigen complexes. Moreover, the interactions with α-GalCer differ between the type I and these atypical NKT TCRs. Accordingly, diverse NKT TCR repertoire usage manifests in varied docking strategies and specificities towards CD1d-α-GalCer and related antigens, thus providing far greater scope for diverse glycolipid antigen recognition.


CD28 deficiency leads to accumulation of germinal-center independent IgM+ experienced B cells and to production of protective IgM during experimental malaria.

  • Henrique Borges da Silva‎ et al.
  • PloS one‎
  • 2018‎

Protective immunity to blood-stage malaria is attributed to Plasmodium-specific IgG and effector-memory T helper 1 (Th1) cells. However, mice lacking the costimulatory receptor CD28 (CD28KO) maintain chronic parasitemia at low levels and do not succumb to infection, suggesting that other immune responses contribute to parasite control. We report here that CD28KO mice develop long-lasting non-sterile immunity and survive lethal parasite challenge. This protection correlated with a progressive increase of anti-parasite IgM serum levels during chronic infection. Serum IgM from chronically infected CD28KO mice recognize erythrocytes infected with mature parasites, and effectively control Plasmodium infection by promoting parasite lysis and uptake. These antibodies also recognize autoantigens and antigens from other pathogens. Chronically infected CD28KO mice have high numbers of IgM+ plasmocytes and experienced B cells, exhibiting a germinal-center independent Fas+GL7-CD38+CD73- phenotype. These cells are also present in chronically infected C57BL/6 mice although in lower numbers. Finally, IgM+ experienced B cells from cured C57BL/6 and CD28KO mice proliferate and produce anti-parasite IgM in response to infected erythrocytes. This study demonstrates that CD28 deficiency results in the generation of germinal-center independent IgM+ experienced B cells and the production of protective IgM during experimental malaria, providing evidence for an additional mechanism by which the immune system controls Plasmodium infection.


NK Receptors Replace CD28 As the Dominant Source of Signal 2 for Cognate Recognition of Cancer Cells by TAA-specific Effector CD8+ T Cells.

  • Bowen Dong‎ et al.
  • Research square‎
  • 2023‎

CD28-driven "signal 2" is critical for naïve CD8+ T cell responses to dendritic cell (DC)-presented weak antigens, including non-mutated tumor-associated antigens (TAAs). However, it is unclear how DC-primed cytotoxic T lymphocytes (CTLs) respond to the same TAAs presented by cancer cells which lack CD28 ligands. Here, we show that NK receptors (NKRs) DNAM-1 and NKG2D replace CD28 during CTL re-activation by cancer cells presenting low levels of MHC I/TAA complexes, leading to enhanced proximal TCR signaling, immune synapse formation, CTL polyfunctionality, release of cytolytic granules and antigen-specific cancer cell killing. Double-transduction of T cells with recombinant TCR and NKR constructs or upregulation of NKR-ligand expression on cancer cells by chemotherapy enabled effective recognition and killing of poorly immunogenic tumor cells by CTLs. Operational synergy between TCR and NKRs in CTL recognition explains the ability of cancer-expressed self-antigens to serve as tumor rejection antigens, helping to develop more effective therapies.


A T cell redirection platform for co-targeting dual antigens on solid tumors.

  • Leonie Enderle‎ et al.
  • mAbs‎
  • 2021‎

In order to direct T cells to specific features of solid cancer cells, we engineered a bispecific antibody format, named Dual Antigen T cell Engager (DATE), by fusing a single-chain variable fragment targeting CD3 to a tumor-targeting antigen-binding fragment. In this format, multiple novel paratopes against different tumor antigens were able to recruit T-cell cytotoxicity to tumor cells in vitro and in an in vivo pancreatic ductal adenocarcinoma xenograft model. Since unique surface antigens in solid tumors are limited, in order to enhance selectivity, we further engineered "double-DATEs" targeting two tumor antigens simultaneously. The double-DATE contains an additional autonomous variable heavy-chain domain, which binds a second tumor antigen without itself eliciting a cytotoxic response. This novel modality provides a strategy to enhance the selectivity of immune redirection through binary targeting of native tumor antigens. The modularity and use of a common, stable human framework for all components enables a pipeline approach to rapidly develop a broad repertoire of tailored DATEs and double-DATEs with favorable biophysical properties and high potencies and selectivities.


Enhancing adoptive CD8 T cell therapy by systemic delivery of tumor associated antigens.

  • Ditte E Jæhger‎ et al.
  • Scientific reports‎
  • 2021‎

Adoptive T-cell transfer (ACT) offers a curative therapeutic option for subsets of melanoma and hematological cancer patients. To increase response rates and broaden the applicability of ACT, it is necessary to improve the post-infusion performance of the transferred T cells. The design of improved treatment strategies includes transfer of cells with a less differentiated phenotype. Such T cell subsets have high proliferative potential but require stimulatory signals in vivo to differentiate into tumor-reactive effector T cells. Thus, combination strategies are needed to support the therapeutic implementation of less differentiated T cells. Here we show that systemic delivery of tumor-associated antigens (TAAs) facilitates in vivo priming and expansion of previously non-activated T cells and enhance the cytotoxicity of activated T cells. To achieve this in vivo priming, we use flexible delivery vehicles of TAAs and a TLR7/8 agonist. Contrasting subcutaneous delivery systems, these vehicles accumulate TAAs in the spleen, thereby achieving close proximity to both cross-presenting dendritic cells and transferred T cells, resulting in robust T-cell expansion and anti-tumor reactivity. This TAA delivery platform offers a strategy to safely potentiate the post-infusion performance of T cells using low doses of antigen and TLR7/8 agonist, and thereby enhance the effect of ACT.


Cytomegalovirus vectors expressing Plasmodium knowlesi antigens induce immune responses that delay parasitemia upon sporozoite challenge.

  • Scott G Hansen‎ et al.
  • PloS one‎
  • 2019‎

The development of a sterilizing vaccine against malaria remains one of the highest priorities for global health research. While sporozoite vaccines targeting the pre-erythrocytic stage show great promise, it has not been possible to maintain efficacy long-term, likely due to an inability of these vaccines to maintain effector memory T cell responses in the liver. Vaccines based on human cytomegalovirus (HCMV) might overcome this limitation since vectors based on rhesus CMV (RhCMV), the homologous virus in rhesus macaques (RM), elicit and indefinitely maintain high frequency, non-exhausted effector memory T cells in extralymphoid tissues, including the liver. Moreover, RhCMV strain 68-1 elicits CD8+ T cells broadly recognizing unconventional epitopes exclusively restricted by MHC-II and MHC-E. To evaluate the potential of these unique immune responses to protect against malaria, we expressed four Plasmodium knowlesi (Pk) antigens (CSP, AMA1, SSP2/TRAP, MSP1c) in RhCMV 68-1 or in Rh189-deleted 68-1, which additionally elicits canonical MHC-Ia-restricted CD8+ T cells. Upon inoculation of RM with either of these Pk Ag expressing RhCMV vaccines, we obtained T cell responses to each of the four Pk antigens. Upon challenge with Pk sporozoites we observed a delayed appearance of blood stage parasites in vaccinated RM consistent with a 75-80% reduction of parasite release from the liver. Moreover, the Rh189-deleted RhCMV/Pk vectors elicited sterile protection in one RM. Once in the blood, parasite growth was not affected. In contrast to T cell responses induced by Pk infection, RhCMV vectors maintained sustained T cell responses to all four malaria antigens in the liver post-challenge. The delayed appearance of blood stage parasites is thus likely due to a T cell-mediated inhibition of liver stage parasite development. As such, this vaccine approach can be used to efficiently test new T cell antigens, improve current vaccines targeting the liver stage and complement vaccines targeting erythrocytic antigens.


Dual receptor T cells mediate effective antitumor immune responses via increased recognition of tumor antigens.

  • Hyun J Jang‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2023‎

Discovery that ~16% of T cells naturally co-express two T-cell receptor (TCR) clonotypes prompts examining the role of dual TCR cells in immune functions.


Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction.

  • Sherin J Rouhani‎ et al.
  • Nature communications‎
  • 2015‎

Lymphatic endothelial cells (LECs) directly express peripheral tissue antigens and induce CD8 T-cell deletional tolerance. LECs express MHC-II molecules, suggesting they might also tolerize CD4 T cells. We demonstrate that when β-galactosidase (β-gal) is expressed in LECs, β-gal-specific CD8 T cells undergo deletion via the PD-1/PD-L1 and LAG-3/MHC-II pathways. In contrast, LECs do not present endogenous β-gal in the context of MHC-II molecules to β-gal-specific CD4 T cells. Lack of presentation is independent of antigen localization, as membrane-bound haemagglutinin and I-Eα are also not presented by MHC-II molecules. LECs express invariant chain and cathepsin L, but not H2-M, suggesting that they cannot load endogenous antigenic peptides onto MHC-II molecules. Importantly, LECs transfer β-gal to dendritic cells, which subsequently present it to induce CD4 T-cell anergy. Therefore, LECs serve as an antigen reservoir for CD4 T-cell tolerance, and MHC-II molecules on LECs are used to induce CD8 T-cell tolerance via LAG-3.


Mucosal Vaccination with Heterologous Viral Vectored Vaccine Targeting Subdominant SIV Accessory Antigens Strongly Inhibits Early Viral Replication.

  • Huanbin Xu‎ et al.
  • EBioMedicine‎
  • 2017‎

Conventional HIV T cell vaccine strategies have not been successful in containing acute peak viremia, nor in providing long-term control. We immunized rhesus macaques intramuscularly and rectally using a heterologous adenovirus vectored SIV vaccine regimen encoding normally weakly immunogenic tat, vif, rev and vpr antigens fused to the MHC class II associated invariant chain. Immunizations induced broad T cell responses in all vaccinees. Following up to 10 repeated low-dose intrarectal challenges, vaccinees suppressed early viral replication (P=0.01) and prevented the peak viremia in 5/6 animals. Despite consistently undetectable viremia in 2 out of 6 vaccinees, all animals showed evidence of infection induced immune responses indicating that infection had taken place. Vaccinees, with and without detectable viremia better preserved their rectal CD4+ T cell population and had reduced immune hyperactivation as measured by naïve T cell depletion, Ki-67 and PD-1 expression on T cells. These results indicate that vaccination towards SIV accessory antigens vaccine can provide a level of acute control of SIV replication with a suggestion of beneficial immunological consequences in infected animals of unknown long-term significance. In conclusion, our studies demonstrate that a vaccine encoding subdominant antigens not normally associated with virus control can exert a significant impact on acute peak viremia.


Involvement of different CD4(+) T cell subsets producing granzyme B in the immune response to Leishmania major antigens.

  • Ikbel Naouar‎ et al.
  • Mediators of inflammation‎
  • 2014‎

The nature of effector cells and the potential immunogenicity of Leishmania major excreted/secreted proteins (LmES) were evaluated using peripheral blood mononuclear cells (PBMCs) from healed zoonotic cutaneous leishmaniasis individuals (HZCL) and healthy controls (HC). First, we found that PBMCs from HZCL individuals proliferate and produce high levels of IFN-γ and granzyme B (GrB), used as a marker of activated cytotoxic T cells, in response to the parasite antigens. IFN-γ is produced by CD4(+) T cells, but unexpectedly GrB is also produced by CD4(+) T cells in response to stimulation with LmES, which were found to be as effective as soluble Leishmania antigens to induce proliferation and cytokine production by PBMCs from immune individuals. To address the question of regulatory T cell (Tregs) involvement, the frequency of circulating Tregs was assessed and found to be higher in HZCL individuals compared to that of HC. Furthermore, both CD4(+)CD25(+) and CD4(+)CD25(-) T cells, purified from HZCL individuals, produced IFN-γ and GrB when stimulated with LmES. Additional experiments showed that CD4(+)CD25(+)CD127(dim/-) Tregs were involved in GrB production. Collectively, our data indicate that LmES are immunogenic in humans and emphasize the involvement of CD4(+) T cells including activated and regulatory T cells in the immune response against parasite antigens.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: