Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 60,761 papers

Monoclonal antibodies in surgery.

  • D A Clark‎ et al.
  • The Australian and New Zealand journal of surgery‎
  • 1987‎

No abstract available


Monoclonal antibodies to phosphotyrosine.

  • J R Glenney‎ et al.
  • Journal of immunological methods‎
  • 1988‎

Phosphotyrosine coupled to KLH, BSA, and OVA was used for the production and screening of antibodies to phosphotyrosine. 800 hybridomas secreting antibodies that bound to phosphotyrosine were detected by ELISA. The most reactive 100 of these 800 were tested subsequently for their ability to bind phosphotyrosine-containing proteins on Western blots. Eight stable hybridoma cell lines were selected for further study, cloned by limiting dilution, and grown as ascites. These antibodies were purified by three different methods, and it was found that affinity chromatography on phosphotyrosine-affigel provided the most rapid and effective method. Many phosphotyrosine-containing proteins were detected by using these antibodies in Western blotting and immunoaffinity purification procedures. Binding of anti-phosphotyrosine antibody could be competed by phosphotyrosine or phenylphosphate but not by phosphoserine, phosphothreonine, or free phosphate. These antibodies should be useful for the identification and purification of proteins phosphorylated on tyrosine residues in transformed and growth factor-treated cells.


Monoclonal antibodies for malaria prevention.

  • Maya Aleshnick‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2022‎

Monoclonal antibodies are highly specific proteins that are cloned from a single B cell and bind to a single epitope on a pathogen. These laboratory-made molecules can serve as prophylactics or therapeutics for infectious diseases and have an impressive capacity to modulate the progression of disease, as demonstrated for the first time on a large scale during the COVID-19 pandemic. The high specificity and natural starting point of monoclonal antibodies afford an encouraging safety profile, yet the high cost of production remains a major limitation to their widespread use. While a monoclonal antibody approach to abrogating malaria infection is not yet available, the unique life cycle of the malaria parasite affords many opportunities for such proteins to act, and preliminary research into the efficacy of monoclonal antibodies in preventing malaria infection, disease, and transmission is encouraging. This review examines the current status and future outlook for monoclonal antibodies against malaria in the context of the complex life cycle and varied antigenic targets expressed in the human and mosquito hosts, and provides insight into the strengths and limitations of this approach to curtailing one of humanity's oldest and deadliest diseases.


Monoclonal antibodies in urologic oncology.

  • N H Bander‎
  • Cancer‎
  • 1987‎

The sensitivity and specificity of immune reactions have long been recognized. However, since the description of the monoclonal antibody technique certain technical hurdles have been overcome. Monoclonal antibody (mAb) technology allows far more precise understanding of the humoral immune response by allowing dissection of this response into its individual B-lymphocyte populations. Furthermore, the ability to select and expand a particular B-cell clone allows for production of unlimited amounts of a pure antibody "reagent." Each of these reagents may be readily used as a "probe" for its respective antigenic determinant. Panels of these reagents may be used to probe complex biologic structures (e.g., neoplastic cells) and thereby "dissect" them at a molecular level. Murine mAbs are produced by hyperimmunizing a mouse with the antigen of interest. The spleen provides a rich source of B-lymphocytes. These normal B-lymphocytes are incapable of surviving in culture. However, mouse B-lymphocyte tumor cell lines (myelomas) have been previously immortalized in tissue culture. A hybridoma is formed by fusing the normal immunized B-cells with myeloma cells. The hybridoma combines the best features of its parent cells. The immunoglobulin product of each resulting clone is screened against a panel of antigens. This allows selection of those clones producing antibody to the desired antigens. The mAb may be used to purify and/or characterize its respective antigen including definition of the chromosomal site of its gene and factors involved in the regulation of its expression. A large number of mAbs have been produced against renal, bladder, and prostate cancer antigens. These mAbs are allowing a more precise, molecular subclassification of these cancers and providing improved predictability of the natural history of each patient's cancer. Evidence in experimental animals demonstrates that mAbs accumulate at the site of tumor and can lead to the destruction of tumor cells. These encouraging results have prompted clinical trials in patients with metastatic cancer. Such a clinical trial in patients with metastatic renal cancer is currently underway at New York Hospital and Memorial Sloan-Kettering Cancer Center.


Technological Advancements in Monoclonal Antibodies.

  • José F Santos-Neto‎ et al.
  • TheScientificWorldJournal‎
  • 2021‎

Biopharmaceuticals are innovative solutions that have revolutionized the treatment of important chronic diseases and malignancies. The approval of biosimilar products has become a complex and balanced process, and there are versions of drugs with established biosimilarity that can offer a more accessible treatment option to patients. The objective of this work was to identify the advancement of these technologies by means of patent and article analysis based on technological and scientific prospection. In patent document recovery, Derwent Innovation Index (DWPI) and PatentInspiration databases were used. The research was based on the search of the selected terms in the title, summary, and claims of the documents through a search strategy containing IPC code and keywords. In articles recovery, the Web of Science tool was used in the search of scientific publications dated from the last 5 years. The search resulted in a total of 2295 individual patent documents and 467 families using DWPI database, 769 individual patents and 205 families using PatentInspiration, and 2602 articles using Web of Science database. Additionally, this work describes the number of organizations that contribute to this area, where they are, how much development they have undergone, and the inventors/authors involved. Based on the number of publications registered, there is an important prominence for scientific research in mAbs. In terms of innovation, it is expected that several therapeutic drugs are already under regulatory review, which will allow drugs to be approved over the next few years and will thus generate a continuous flow of new products based on immunotherapies, mAbs, and biosimilar drugs. These drugs have become essential weapons for the treatment of significant diseases, and the increasing trend in the number of related scientific and technological publications contributes to making these therapies available to the greatest number of people.


Establishment of anti-mesothelioma monoclonal antibodies.

  • Natsuko Mizutani‎ et al.
  • BMC research notes‎
  • 2016‎

Mesotheliomas are aggressive, therapy-resistant tumors that are predicted to increase in incidence at least until 2020. The prognosis of patients with mesothelioma is generally poor because they are typically diagnosed at a late stage and their tumors are resistant to current conventional therapies. For these reasons, improved diagnosis and therapy are urgently required. To address these issues, the aim of our research was to develop novel mesothelioma-specific monoclonal antibodies (mAbs) as diagnostic and therapeutic agents.


Mechanically interlocked functionalization of monoclonal antibodies.

  • Krzysztof P Bzymek‎ et al.
  • Nature communications‎
  • 2018‎

Because monoclonal antibodies (mAbs) have exceptional specificity and favorable pharmacology, substantial efforts have been made to functionalize them, either with potent cytotoxins, biologics, radionuclides, or fluorescent groups for therapeutic benefit and/or use as theranostic agents. To exploit our recently discovered meditope-Fab interaction as an alternative means to efficiently functionalize mAbs, we used insights from the structure to enhance the affinity and lifetime of the interaction by four orders of magnitude. To further extend the lifetime of the complex, we created a mechanical bond by incorporating an azide on the meditope, threading the azide through the Fab, and using click chemistry to add a steric group. The mechanically interlocked, meditope-Fab complex retains antigen specificity and is capable of imaging tumors in mice. These studies indicate it is possible to "snap" functionality onto mAbs, opening the possibility of rapidly creating unique combinations of mAbs with an array of cytotoxins, biologics, and imaging agents.


Development of Vasoinhibin-Specific Monoclonal Antibodies.

  • Nils Müller‎ et al.
  • Frontiers in endocrinology‎
  • 2021‎

Vasoinhibin is a protein hormone with antiangiogenic, antivasodilatatory, and antivasopermeability effects generated by the proteolytic cleavage of prolactin. The discovery of its role in diabetic retinopathy and peripartum cardiomyopathy led to the evaluation of new pharmacological treatments in clinical interventional trials. However, the quantitative evaluation of vasoinhibin in biological samples from patients has not been possible due to the lack of vasoinhibin-specific antibodies. Recently, loop 1 of vasoinhibin was identified to have a different three-dimensional structure compared to PRL, and thus to contain vasoinhibin-specific epitopes. Here, we report the development of two sets of vasoinhibin-specific monoclonal antibodies against two neighboring regions of the vasoinhibin loop 1. An experimental sandwich ELISA with two monoclonal anti-vasoinhibin antibodies was developed, which had no cross-reactivity to recombinant human full-length prolactin. The ELISA had a quantitation limit of 100 ng/ml, and intra-assay- and inter-assay coefficients of variation of 12.5% and 14%, respectively. The evaluation of 15 human serum samples demonstrated concentrations of below limit of detection (n=3), below limit of quantitation (n=1) and between 0.23 µg/ml (230 ng/ml) to 605 µg/ml (n=12) in the quantifiable range. Despite the high specificity of the monoclonal-monoclonal antibody sandwiches which discriminate vasoinhibin from PRL, there might be cross-reactivities by serum proteins other than vasoinhibin. A fully established vasoinhibin ELISA may support diagnostic and therapeutic measures in vascular diseases.


Molecular analysis of multicatalytic monoclonal antibodies.

  • Haggag S Zein‎ et al.
  • Molecular immunology‎
  • 2010‎

Recently, our first report demonstrated that Cucumber mosaic virus (CMV)-specific monoclonal antibodies (mAbs) possess DNase-like activity against DNA. In the present study, we show for the first time ever how one mAb (mAb-5) has polyreactive (protease, DNase, and RNase) catalytic activities (catAbs). Amino acid sequence analysis of the encoded variable-genes showed that the light chains of the hybridomas expressed the germline family genes V kappa 1A, bb1.1 and V kappa II, bd2, whose protease and DNase catalytic activities have been reported, while the heavy chain genes were expressed in several germline families (eight of V(H)1/J558, three of V(H)5/V(H)7183, and three of V(H)8/V(H)3609). Interestingly, these germline genes have been well studied in esterolytic antibodies. Here we present for the first time convincing evidence showing that highly purified mAb-5 catalyze both single- and double-stranded DNA and exhibit RNase and protease activity. The greatest therapeutic potential of catAbs could lie in selective prodrug activation. Furthermore, catAbs offer excellent or unique specificity for individual and defined antigenic targets. Therefore, the phenomenon of autoantibody catalysis can potentially be applied to isolate efficient catalytic domains directed against pathogenetically and clinically relevant autoimmune epitopes.


Monoclonal antibodies: state of the art.

  • N H Bander‎
  • The Journal of urology‎
  • 1987‎

No abstract available


Monoclonal IgA Antibodies for Aflatoxin Immunoassays.

  • Özlem Ertekin‎ et al.
  • Toxins‎
  • 2016‎

Antibody based techniques are widely used for the detection of aflatoxins which are potent toxins with a high rate of occurrence in many crops. We developed a murine monoclonal antibody of immunoglobulin A (IgA) isotype with a strong binding affinity to aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2) and aflatoxin M1 (AFM1). The antibody was effectively used in immunoaffinity column (IAC) and ELISA kit development. The performance of the IACs was compatible with AOAC performance standards for affinity columns (Test Method: AOAC 991.31). The total binding capacity of the IACs containing our antibody was 111 ng, 70 ng, 114 ng and 73 ng for AFB1, AFB2, and AFG1 andAFG2, respectively. Furthermore, the recovery rates of 5 ng of each AF derivative loaded to the IACs were determined as 104.9%, 82.4%, 85.5% and 70.7% for AFB1, AFB2, AFG1 and AFG2, respectively. As for the ELISA kit developed using non-oriented, purified IgA antibody, we observed a detection range of 2-50 µg/L with 40 min total test time. The monoclonal antibody developed in this research is hitherto the first presentation of quadruple antigen binding IgA monoclonal antibodies in mycotoxin analysis and also the first study of their utilization in ELISA and IACs. IgA antibodies are valuable alternatives for immunoassay development, in terms of both sensitivity and ease of preparation, since they do not require any orientation effort.


Monoclonal Antibodies against Plasmodium falciparum Circumsporozoite Protein.

  • Min Zhang‎ et al.
  • Antibodies (Basel, Switzerland)‎
  • 2017‎

Malaria is a mosquito-borne infectious disease caused by the parasite Plasmodium spp. Malaria continues to have a devastating impact on human health. Sporozoites are the infective forms of the parasite inside mosquito salivary glands. Circumsporozoite protein (CSP) is a major and immunodominant protective antigen on the surface of Plasmodium sporozoites. Here, we report a generation of specific monoclonal antibodies that recognize the central repeat and C-terminal regions of P. falciparum CSP. The monoclonal antibodies 3C1, 3C2, and 3D3-specific for the central repeat region-have higher titers and protective efficacies against challenge with sporozoites compared with 2A10, a gold standard monoclonal antibody that was generated in early 1980s.


Monoclonal antibodies against the Drosophila nervous system.

  • S C Fujita‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 1982‎

A panel of 148 monoclonal antibodies directed against Drosophila neural antigens has been prepared by using mice immunized with homogenates of Drosophila tissue. Antibodies were screened immunohistochemically on cryostat sections of fly heads. A large diversity of staining patterns was observed. Some antigens were broadly distributed among tissues; others were highly specific to nerve fibers, neuropil, muscle, the tracheal system, cell nuclei, photoreceptors, or other structures. The antigens for many of the antibodies have been identified on immunoblots. Monoclonal antibodies that identify specific molecules within the nervous system should prove useful in the study of the molecular genetics of neural development.


Novel Monoclonal Antibodies and Recombined Antibodies Against Variant SARS-CoV-2.

  • Jiajia Xie‎ et al.
  • Frontiers in immunology‎
  • 2021‎

The mutants resulted from the ongoing SARS-CoV-2 epidemic have showed resistance to antibody neutralization and vaccine-induced immune response. The present study isolated and identified two novel SARS-CoV-2 neutralizing antibodies (nAbs) from convalescent COVID-19 patients. These two nAbs (XG81 and XG83) were then systemically compared with nine nAbs that were reconstructed by using published data, and revealed that, even though these two nAbs shared targeting epitopes on spike protein, they were different from any of the nine nAbs. Compared with XG81, XG83 exhibited a higher RBD binding affinity and neutralization potency against wild-typed pseudovirus, variant pseudoviruses with mutated spike proteins, such as D614G, E484Q, and A475V, as well as the authentic SARS-CoV-2 virus. To explore potential broadly neutralizing antibodies, heavy and light chains from all 18 nAbs (16 published nAbs, XG81 and XG83) were cross-recombined, and some of the functional antibodies were screened and studied for RBD binding affinity, and neutralizing activity against pseudovirus and the authentic SARS-CoV-2 virus. The results demonstrated that several recombined antibodies had a more potent neutralization activity against variant pseudoviruses compared with the originally paired Abs. Taken together, the novel neutralizing antibodies identified in this study are a likely valuable addition to candidate antibody drugs for the development of clinical therapeutic agents against SARS-CoV-2 to minimize mutational escape.


Generation and diversification of recombinant monoclonal antibodies.

  • Keith F DeLuca‎ et al.
  • eLife‎
  • 2021‎

Antibodies are indispensable tools used for a large number of applications in both foundational and translational bioscience research; however, there are drawbacks to using traditional antibodies generated in animals. These include a lack of standardization leading to problems with reproducibility, high costs of antibodies purchased from commercial sources, and ethical concerns regarding the large number of animals used to generate antibodies. To address these issues, we have developed practical methodologies and tools for generating low-cost, high-yield preparations of recombinant monoclonal antibodies and antibody fragments directed to protein epitopes from primary sequences. We describe these methods here, as well as approaches to diversify monoclonal antibodies, including customization of antibody species specificity, generation of genetically encoded small antibody fragments, and conversion of single chain antibody fragments (e.g. scFv) into full-length, bivalent antibodies. This study focuses on antibodies directed to epitopes important for mitosis and kinetochore function; however, the methods and reagents described here are applicable to antibodies and antibody fragments for use in any field.


Monoclonal and Polyclonal Antibodies Specific to Human Fibromodulin.

  • Lia Farahi‎ et al.
  • Iranian journal of biotechnology‎
  • 2019‎

The unique expression of fibromodulin (FMOD) in patients with chronic lymphocytic leukemia (CLL) has been previously reported. Detecting FMOD in CLL patients using specific anti-FMOD mAbs might provide a promising method in detection, monitoring, and prognosis of CLL.


Efficient generation of human IgA monoclonal antibodies.

  • Valérie Lorin‎ et al.
  • Journal of immunological methods‎
  • 2015‎

Immunoglobulin A (IgA) is the most abundant antibody isotype produced in humans. IgA antibodies primarily ensure immune protection of mucosal surfaces against invading pathogens, but also circulate and are present in large quantities in blood. IgAs are heterogeneous at a molecular level, with two IgA subtypes and the capacity to form multimers by interacting with the joining (J) chain. Here, we have developed an efficient strategy to rapidly generate human IgA1 and IgA2 monoclonal antibodies in their monomeric and dimeric forms. Recombinant monomeric and dimeric IgA1/IgA2 counterparts of a prototypical IgG1 monoclonal antibody, 10-1074, targeting the HIV-1 envelope protein, were produced in large amounts after expression cloning and transient transfection of 293-F cells. 10-1074 IgAs were FPLC-purified using a novel affinity-based resin engrafted with anti-IgA chimeric Fabs, followed by a monomers/multimers separation using size exclusion-based FPLC. ELISA binding experiments confirmed that the artificial IgA class switching of 10-1074 did not alter its antigen recognition. In summary, our technical approach allows the very efficient production of various forms of purified recombinant human IgA molecules, which are precious tools in dissecting IgA B-cell responses in physiological and pathophysiological conditions, and studying the biology, function and therapeutic potential of IgAs.


Proteomic identification of monoclonal antibodies from serum.

  • Daniel R Boutz‎ et al.
  • Analytical chemistry‎
  • 2014‎

Characterizing the in vivo dynamics of the polyclonal antibody repertoire in serum, such as that which might arise in response to stimulation with an antigen, is difficult due to the presence of many highly similar immunoglobulin proteins, each specified by distinct B lymphocytes. These challenges have precluded the use of conventional mass spectrometry for antibody identification based on peptide mass spectral matches to a genomic reference database. Recently, progress has been made using bottom-up analysis of serum antibodies by nanoflow liquid chromatography/high-resolution tandem mass spectrometry combined with a sample-specific antibody sequence database generated by high-throughput sequencing of individual B cell immunoglobulin variable domains (V genes). Here, we describe how intrinsic features of antibody primary structure, most notably the interspersed segments of variable and conserved amino acid sequences, generate recurring patterns in the corresponding peptide mass spectra of V gene peptides, greatly complicating the assignment of correct sequences to mass spectral data. We show that the standard method of decoy-based error modeling fails to account for the error introduced by these highly similar sequences, leading to a significant underestimation of the false discovery rate. Because of these effects, antibody-derived peptide mass spectra require increased stringency in their interpretation. The use of filters based on the mean precursor ion mass accuracy of peptide-spectrum matches is shown to be particularly effective in distinguishing between "true" and "false" identifications. These findings highlight important caveats associated with the use of standard database search and error-modeling methods with nonstandard data sets and custom sequence databases.


Trial watch: Monoclonal antibodies in cancer therapy.

  • Erika Vacchelli‎ et al.
  • Oncoimmunology‎
  • 2013‎

During the past 20 years, dozens-if not hundreds-of monoclonal antibodies have been developed and characterized for their capacity to mediate antineoplastic effects, either as they activate/enhance tumor-specific immune responses, either as they interrupt cancer cell-intrinsic signal transduction cascades, either as they specifically delivery toxins to malignant cells or as they block the tumor-stroma interaction. Such an intense research effort has lead to the approval by FDA of no less than 14 distinct molecules for use in humans affected by hematological or solid malignancies. In the inaugural issue of OncoImmunology, we briefly described the scientific rationale behind the use of monoclonal antibodies in cancer therapy and discussed recent, ongoing clinical studies investigating the safety and efficacy of this approach in patients. Here, we summarize the latest developments in this exciting area of clinical research, focusing on high impact studies that have been published during the last 15 months and clinical trials launched in the same period to investigate the therapeutic profile of promising, yet hitherto investigational, monoclonal antibodies.


Arthritogenic monoclonal antibodies from K/BxN mice.

  • Mariana Maccioni‎ et al.
  • The Journal of experimental medicine‎
  • 2002‎

Arthritis in the K/BxN mouse model is provoked by pathogenic antibodies (Abs) directed against a ubiquitously expressed protein, glucose-6-phosphate isomerase (GPI). To begin dissecting the repertoire of arthritogenic immunoglobulins (Igs) in the K/BxN model, and to provide a basis for comparison with RA patients we have generated anti-GPI monoclonal Abs (mAbs) from spontaneously activated B cells in the lymphoid organs of arthritic mice. B cell clones with anti-GPI specificities were present at extraordinarily high frequencies in the spleen, and less frequently in other lymphoid organs and in the synovial fluid. None of the anti-GPI mAbs induced arthritis when injected individually into healthy recipients, but most were effective when combined in pairs or larger pools. Arthritogenic combinations depended on mAbs of the IgG1 isotype, which bound to GPI with Kd in the 10(-9) M range, with no indication of cooperative binding between complementing pairs. Pathogenicity was not associated with recognition of a particular epitope, but the ability to form mAb/GPI multimers by simultaneous recognition of different epitopes was clearly required, consistent with the known role of complement and FcRs in this model. Sequence analysis revealed structural similarities amongst the mAbs, indicating that a particular subset of B cells may evade tolerance in K/BxN mice, and that affinity maturation by somatic mutation likely takes place. These results confirm that GPI itself, rather than a cross-reactive molecule, is the target of pathogenic Igs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: