Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 70 papers

Anti-idiotypic antibodies: a new approach in prion research.

  • Anja Colja Venturini‎ et al.
  • BMC immunology‎
  • 2009‎

In certain cases, anti-idiotypic antibodies that recognize an antigen-combining site of an antibody can mimic the structure and/or function of certain nominal antigens. This feature makes them particularly useful if conventional experimental approaches fail to fulfil expectations, especially when the molecule of interest is infectious, toxic or difficult to isolate and purify. We suggest the application of an anti-idiotype concept to the field of prion biology, with the aim of evoking a humoral immune response against the pathological isoform of the prion protein (PrPSc). Different ways to induce anti-idiotypic responses were studied in mice and chickens using various forms of V5B2, a PrPSc-specific monoclonal antibody we have described previously.


Anti-idiotypic antibodies elicit anti-HIV-1-specific B cell responses.

  • Pia Dosenovic‎ et al.
  • The Journal of experimental medicine‎
  • 2019‎

Human anti-HIV-1 broadly neutralizing antibodies (bNAbs) protect against infection in animal models. However, bNAbs have not been elicited by vaccination in diverse wild-type animals or humans, in part because B cells expressing the precursors of these antibodies do not recognize most HIV-1 envelopes (Envs). Immunogens have been designed that activate these B cell precursors in vivo, but they also activate competing off-target responses. Here we report on a complementary approach to expand specific B cells using an anti-idiotypic antibody, iv8, that selects for naive human B cells expressing immunoglobulin light chains with 5-amino acid complementarity determining region 3s, a key feature of anti-CD4 binding site (CD4bs)-specific VRC01-class antibodies. In mice, iv8 induced target cells to expand and mature in the context of a polyclonal immune system and produced serologic responses targeting the CD4bs on Env. In summary, the results demonstrate that an anti-idiotypic antibody can specifically recognize and expand rare B cells that express VRC01-class antibodies against HIV-1.


Anti-idiotypic Antibodies against BP-IgG Prevent Type XVII Collagen Depletion.

  • Mayumi Kamaguchi‎ et al.
  • Frontiers in immunology‎
  • 2017‎

Bullous pemphigoid (BP) mainly targets type XVII collagen (COL17). Intravenous immunoglobulin (IVIg) is used to treat numerous autoimmune diseases, including BP. The major mechanism of action for IVIG is thought to be its immunomodulatory effect. However, little is known about the precise mechanisms of IVIg in BP. We investigate the cellular effects of IVIg, toward treatments for BP. Keratinocytes were treated with IgG from BP patients (BP-IgG) and with IVIg, and then the COL17 expression was detected by Western blotting. Cell adhesion and ex vivo dermal-epidermal separation were also investigated for the condition with BP-IgG and IVIg. BP-IgG targeting the non-collagenous 16A domain induces the depletion of COL17 in cultured keratinocytes (DJM-1 cells). The COL17 levels in DJM-1 cells were decreased by 50% after 4 h of BP-IgG stimulation as determined by Western blotting. By contrast, BP-IgG with IVIg was found to result in 70-90% increases in COL17 and to restore adhesion to the plate. Interestingly, IVIg significantly inhibited the binding of BP-IgG to the COL17-enzyme-linked immunosorbent assay plate, and this was due to anti-idiotypic antibodies against BP-IgG. When anti-idiotypic antibodies against BP-IgG in 0.02% of IVIg were depleted from IVIg, those antibodies did not exhibit inhibitory effects on COL17 depletion. When cryosections of human skin were incubated with BP-IgG in the presence of leukocytes, dermal-epidermal separation was observed. BP-IgG treatment with IVIg or anti-idiotypic antibodies did not induce such separation. These findings strongly suggest the presence of anti-idiotypic antibodies against anti-COL17 IgG in IVIg. This mechanism of IVIg could be a target for therapies against BP.


Semi-synthetic vNAR libraries screened against therapeutic antibodies primarily deliver anti-idiotypic binders.

  • Doreen Könning‎ et al.
  • Scientific reports‎
  • 2017‎

Anti-idiotypic binders which specifically recognize the variable region of monoclonal antibodies have proven to be robust tools for pharmacokinetic studies of antibody therapeutics and for the development of cancer vaccines. In the present investigation, we focused on the identification of anti-idiotypic, shark-derived IgNAR antibody variable domains (vNARs) targeting the therapeutic antibodies matuzumab and cetuximab for the purpose of developing specific capturing ligands. Using yeast surface display and semi-synthetic, CDR3-randomized libraries, we identified several highly specific binders targeting both therapeutic antibodies in their corresponding variable region, without applying any counter selections during screening. Importantly, anti-idiotypic vNAR binders were not cross-reactive towards cetuximab or matuzumab, respectively, and comprised good target recognition in the presence of human and mouse serum. When coupled to magnetic beads, anti-idiotypic vNAR variants could be used as efficient capturing tools. Moreover, a two-step procedure involving vNAR-functionalized beads was employed for the enrichment of potentially bispecific cetuximab × matuzumab antibody constructs. In conclusion, semi-synthetic and CDR3-randomized vNAR libraries in combination with yeast display enable the fast and facile identification of anti-idiotypic vNAR domains targeting monoclonal antibodies primarily in an anti-idiotypic manner.


Generation of anti-idiotypic antibodies to detect anti-spacer antibody idiotopes in acute thrombotic thrombocytopenic purpura patients.

  • An-Sofie Schelpe‎ et al.
  • Haematologica‎
  • 2019‎

In autoantibody-mediated autoimmune diseases, autoantibody profiling allows patients to be stratified and links autoantibodies with disease severity and outcome. However, in immune-mediated thrombotic thrombocytopenic purpura (iTTP) patients, stratification according to antibody profiles and their clinical relevance has not been fully explored. We aimed to develop a new type of autoantibody profiling assay for iTTP based on the use of anti-idiotypic antibodies. Anti-idiotypic antibodies against 3 anti-spacer autoantibodies were generated in mice and were used to capture the respective anti-spacer idiotopes from 151 acute iTTP plasma samples. We next deciphered these anti-spacer idiotope profiles in iTTP patients and investigated whether these limited idiotope profiles could be linked with disease severity. We developed 3 anti-idiotypic antibodies that recognized particular idiotopes in the anti-spacer autoantibodies II-1, TTP73 or I-9, that are involved in ADAMTS13 binding; 35%, 24% and 42% of patients were positive for antibodies with the II-1, TTP73 and I-9 idiotopes, respectively. Stratifying patients according to the corresponding 8 anti-spacer idiotope profiles provided a new insight into the anti-spacer II-1, TTP73 and I-9 idiotope profiles in these patients. Finally, these limited idiotope profiles showed no association with disease severity. We successfully developed 3 anti-idiotypic antibodies that allowed us to determine the profiles of the anti-spacer II-1, TTP73 and I-9 idiotopes in iTTP patients. Increasing the number of patients and/or future development of additional anti-idiotypic antibodies against other anti-ADAMTS13 autoantibodies might allow idiotope profiles of clinical, prognostic value to be identified.


Development of a VRC01-class germline targeting immunogen derived from anti-idiotypic antibodies.

  • Emilie Seydoux‎ et al.
  • Cell reports‎
  • 2021‎

An effective HIV-1 vaccine will likely need to elicit broadly neutralizing antibodies (bNAbs). Broad and potent VRC01-class bNAbs have been isolated from multiple infected individuals, suggesting that they could be reproducibly elicited by vaccination. Several HIV-1 envelope-derived germline-targeting immunogens have been designed to engage naive VRC01-class precursor B cells. However, they also present off-target epitopes that could hinder development of VRC01-class bNAbs. We characterize a panel of anti-idiotypic monoclonal antibodies (ai-mAbs) raised against inferred-germline (iGL) VRC01-class antibodies. By leveraging binding, structural, and B cell sorting data, we engineered a bispecific molecule derived from two ai-mAbs; one specific for VRC01-class heavy chains and one specific for VRC01-class light chains. The bispecific molecule preferentially activates iGL-VRC01 B cells in vitro and induces specific antibody responses in a murine adoptive transfer model with a diverse polyclonal B cell repertoire. This molecule represents an alternative non-envelope-derived germline-targeting immunogen that can selectively activate VRC01-class precursors in vivo.


Modulation of diabetes in NOD mice by GAD65-specific monoclonal antibodies is epitope specific and accompanied by anti-idiotypic antibodies.

  • Tyler R Hall‎ et al.
  • Immunology‎
  • 2008‎

Type 1 diabetes is caused by the autoimmune destruction of pancreatic beta cells. Here we show that administration of a human monoclonal antibody (b96.11) specific to the 65-kDa isoform of glutamate decarboxylase (GAD65) to prediabetic non-obese diabetic (NOD) mice significantly delays the onset of autoimmune diabetes. We found this effect to be epitope-specific, as only b96.11 showed this therapeutic property, while a GAD65-specific human monoclonal control antibody (b78) derived from the same patient, but specific to a different determinant of GAD65, had no significant effect on the progression of disease. Administration of b96.11 or b78 to NOD mice was accompanied by the generation of anti-idiotypic antibodies. Importantly, the induced anti-idiotypic antibodies were specific for the immunizing antibody and blocked the binding of GAD65 by the respective antibody. These findings suggest a potential role for the internal image of the GAD65 determinant recognized by b96.11 in the anti-idiotypic antibody, supporting an immunomodulatory role for GAD65-specific autoantibodies, as originally postulated by Jerne.


Naturally Occurring Anti-Idiotypic Antibodies Portray a Largely Private Repertoire in Immune-Mediated Thrombotic Thrombocytopenic Purpura.

  • Silvan R Heeb‎ et al.
  • Journal of immunology (Baltimore, Md. : 1950)‎
  • 2022‎

Rare immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a life-threatening disease resulting from a severe autoantibody-mediated ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 motifs, member 13) deficiency. Acute iTTP episodes are medical emergencies, but when treated appropriately >95% of patients survive. However, at least half of survivors will eventually experience a relapse. How remission of an initial episode is achieved and factors contributing to reemergence of anti-ADAMTS13 Abs and a relapsing course are poorly understood. In acquired hemophilia and systemic lupus erythematosus, anti-idiotypic Abs counteracting and neutralizing pathogenic autoantibodies contribute to remission. We selected and amplified the splenic anti-idiotypic IgG1 Fab κ/λ repertoire of two relapsing iTTP patients on previously generated monoclonal inhibitory anti-ADAMTS13 Fabs by phage display to explore whether anti-idiotypic Abs have a role in iTTP. We obtained 27 single anti-idiotypic Fab clones, half of which had unique sequences, although both patients shared four H chain V region genes (VH1-69*01, VH3-15*01, VH3-23*01, and VH3-49*03). Anti-idiotypic Fab pools of both patients fully neutralized the inhibitor capacity of the monoclonal anti-ADAMTS13 Abs used for their selection. Preincubation of plasma samples of 22 unrelated iTTP patients stratified according to functional ADAMTS13 inhibitor titers (>2 Bethesda units/ml, or 1-2 Bethesda units/ml), with anti-idiotypic Fab pools neutralized functional ADAMTS13 inhibitors and restored ADAMTS13 activity in 18-45% of those cases. Taken together, we present evidence for the presence of an anti-idiotypic immune response in iTTP patients. The interindividual generalizability of this response is limited despite relatively uniform pathogenic anti-ADAMTS13 Abs recognizing a dominant epitope in the ADAMTS13 spacer domain.


Anti-Idiotypic Antibodies Specific to prM Monoantibody Prevent Antibody Dependent Enhancement of Dengue Virus Infection.

  • Miao Wang‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2017‎

Dengue virus (DENV) co-circulates as four serotypes (DENV1-4). Primary infection only leads to self-limited dengue fever. But secondary infection with another serotype carries a higher risk of increased disease severity, causing life-threatening dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Serotype cross-reactive antibodies facilitate DENV infection in Fc-receptor-bearing cells by promoting virus entry via Fcγ receptors (FcγR), a process known as antibody dependent enhancement (ADE). Most studies suggested that enhancing antibodies were mainly specific to the structural premembrane protein (prM) of DENV. However, there is still no effective drugs or vaccines to prevent ADE. In this study, we firstly confirmed that both DENV-2 infected human sera (anti-DENV-2) and DENV-2 prM monoclonal antibody (prM mAb) could significantly enhance DENV-1 infection in K562 cells. Then we developed anti-idiotypic antibodies (prM-AIDs) specific to prM mAb by immunizing of Balb/c mice. Results showed that these polyclonal antibodies can dramatically reduce ADE phenomenon of DENV-1 infection in K562 cells. To further confirm the anti-ADE effect of prM-AIDs in vivo, interferon-α and γ receptor-deficient mice (AG6) were used as the mouse model for DENV infection. We found that administration of DENV-2 prM mAb indeed caused a higher DENV-1 titer as well as interleukin-10 (IL-10) and alaninea minotransferase (ALT) in mice infected with DENV-1, similar to clinical ADE symptoms. But when we supplemented prM-AIDs to DENV-1 challenged AG6 mice, the viral titer, IL-10 and ALT were obviously decreased to the negative control level. Of note, the number of platelets in peripheral blood of prM-AIDs group were significantly increased at day 3 post infection with DENV-1 compared that of prM-mAb group. These results confirmed that our prM-AIDs could prevent ADE not only in vitro but also in vivo, suggested that anti-idiotypic antibodies might be a new choice to be considered to treat DENV infection.


The Road to Personalized Myeloma Medicine: Patient-specific Single-domain Antibodies for Anti-idiotypic Radionuclide Therapy.

  • Janik Puttemans‎ et al.
  • Molecular cancer therapeutics‎
  • 2022‎

To this day, multiple myeloma remains an incurable cancer. For many patients, recurrence is unavoidably a result of lacking treatment options in the minimal residual disease stage. This is due to residual and treatment-resistant myeloma cells that can cause disease relapse. However, patient-specific membrane-expressed paraproteins could hold the key to target these residual cells responsible for disease recurrence. Here, we describe the therapeutic potential of radiolabeled, anti-idiotypic camelid single-domain antibody fragments (sdAbs) as tumor-restrictive vehicles against a membrane-bound paraprotein in the syngeneic mouse 5T33 myeloma model and analogously assess the feasibility of sdAb-based personalized medicine for patients with multiple myeloma. Llamas were immunized using extracts containing paraprotein from either murine or human sera, and selective sdAbs were retrieved using competitive phage display selections of immune libraries. An anti-5T33 idiotype sdAb was selected for targeted radionuclide therapy with the β--particle emitter 177Lu and the α-particle emitter 225Ac. sdAb-based radionuclide therapy in syngeneic mice with a low 5T33 myeloma lesion load significantly delayed tumor progression. In five of seven patients with newly diagnosed myeloma, membrane expression of the paraprotein was confirmed. Starting from serum-isolated paraprotein, for two of three selected patients anti-idiotype sdAbs were successfully generated.


Electrochemical Biochip Assays Based on Anti-idiotypic Antibodies for Rapid and Automated On-Site Detection of Low Molecular Weight Toxins.

  • Katharina Schulz‎ et al.
  • Frontiers in chemistry‎
  • 2019‎

Phycotoxins and mycotoxins, such as paralytic shellfish poisoning toxins, type A trichothecenes, and aflatoxins are among the most toxic low molecular weight toxins associated with human poisoning incidents through the consumption of naturally contaminated food. Therefore, there is an utmost need for rapid and sensitive on-site detection systems. Herein, an electrochemical biochip for fast detection of saxitoxin, T-2 toxin as well as aflatoxin M1 and their corresponding congeners, respectively, using a portable and fully automated detection platform (pBDi, portable BioDetector integrated) was developed. Toxin analysis is facilitated upon the biochip via an indirect competitive immunoassay using toxin-specific antibodies combined with anti-idiotypic antibodies. The developed biochips enable detection in the low ng/mL-range within 17 min. Moreover, the assays cover a wide linear working range of 2-3 orders of magnitude above the limit of detection with an inter-chip coefficient of variation lower than 15%. The broad specificity of the employed antibodies which react with a large number of congeners within the respective toxin group allows efficient screening of contaminated samples for the presence of these low molecular weight toxins. With respect to the analysis of human urine samples, we focused here on the detection of saxitoxin, HT-2 toxin, and aflatoxin M1, all known as biomarkers of acute toxin exposure. Overall, it was proved that the developed biochip assays can be used to rapidly and reliably identify severe intoxications caused by these low molecular weight toxins.


Screening and identification of vancomycin anti-idiotypic antibodies for against Staphylococcus aureus from a human phage display domain antibody library.

  • Chongxin Xu‎ et al.
  • Immunology letters‎
  • 2022‎

Staphylococcus aureus is a common food-borne pathogenic microorganism that poses a serious threat to food quality and safety, and can do harm to human health. In the past, researchers relied on antibiotics to control Staphylococcus aureus, though very effective, yet it was also worrying in the aspect of bio-safety. In fact, anti-idiotypic antibody (Anti-Id) shows its potential to mimic some of the structural and biological functions of antigens. Therefore, in this study, based on Anti-Id theory and technology, we expect to obtain the vancomycin Anti-Id which can mimic vancomycin against Staphylococcus aureus from a human phage display domain antibody library. After four rounds of bio-panning, a total of 18 positive Anti-Ids were obtained. Among them, two Anti-Ids named Anti-Id-2C12 and Anti-Id-1F5 were identified as "β" type Anti-Ids, and afterwards they were selected for gene cloning and protein expression in prokaryotic expression system. As a result, a concentration of purified proteins with 568.6 μg/mL (Anti-Id-2C12) and 602.3 μg/mL (Anti-Id-1F5) were successfully obtained, and their minimum inhibitory concentration (MIC) values for Staphylococcus aureus were 125 and 200 μg/mL, respectively. As they are human heavy-chain domain antibodies, which were theoretically harmless to humans, they have the potential application value as preservatives in food and edible agricultural products.


An Electrochemical Fiveplex Biochip Assay Based on Anti-Idiotypic Antibodies for Fast On-Site Detection of Bioterrorism Relevant Low Molecular Weight Toxins.

  • Katharina Schulz‎ et al.
  • Toxins‎
  • 2019‎

Modern threats of bioterrorism force the need for multiple detection of biothreat agents to determine the presence or absence of such agents in suspicious samples. Here, we present a rapid electrochemical fiveplex biochip screening assay for detection of the bioterrorism relevant low molecular weight toxins saxitoxin, microcystin-LR, T-2 toxin, roridin A and aflatoxin B1 relying on anti-idiotypic antibodies as epitope-mimicking reagents. The proposed method avoids the use of potentially harmful toxin-protein conjugates usually mandatory for competitive immunoassays. The biochip is processed and analyzed on the automated and portable detection platform pBDi within 13.4 min. The fiveplex biochip assay revealed toxin group specificity to multiple congeners. Limits of detection were 1.2 ng/mL, 1.5 ng/mL, 0.4 ng/mL, 0.5 ng/mL and 0.6 ng/mL for saxitoxin, microcystin-LR, T-2 toxin, roridin A or aflatoxin B1, respectively. The robustness of the fiveplex biochip for real samples was demonstrated by detecting saxitoxin, microcystin-LR, HT-2 toxin, roridin A and aflatoxin B1 in contaminated human blood serum without elaborate sample preparation. Recovery rates were between 52-115% covering a wide concentration range. Thus, the developed robust fiveplex biochip assay can be used on-site to quickly detect one or multiple low molecular weight toxins in a single run.


Monoclonal anti-idiotypic antibody functionally mimics the human gastrointestinal carcinoma epitope GA733.

  • H Maruyama‎ et al.
  • International journal of cancer‎
  • 1996‎

Anti-idiotypic antibodies (Ab2) that bind to the antigen-combining region of anti-tumor antibodies (Ab1) may functionally, and even structurally, mimic tumor antigen. We have previously demonstrated that polyclonal goat Ab2 directed against anti-human gastrointestinal carcinoma Ab1 GA733 induces anti-anti-idiotypic antibodies (Ab3) in animals that are Ab1-like in their binding specificity and idiotope expression. To obtain more defined Ab2 vaccines with potentially increased specificity and efficacy, a monoclonal Ab2 (FG1) was produced against Ab1 GA733 in rats. The monoclonal Ab2 FG1, similar to the polyclonal Ab2 described previously, induced Ab3 in rabbits that were Ab1-like in their idiotope expression and binding specificity to tumor cells and antigen. Antigen-specific Ab3 induced by Ab2 FG1 were easily detected in unprocessed rabbit sera, whereas the demonstration of such Ab3 after polyclonal Ab2 immunization required purification of the Ab3 from the rabbit sera. In addition, Ab2 FG1 induced antigen-specific humoral and cellular immunity in mice. Murine Ab3 bound specifically to antigen-positive tumor cells. Ab2-immunized mice showed antigen-specific delayed-type hypersensitivity (DTH) reaction, and cultured splenocytes from the immune mice demonstrated specific proliferation and cytokine (interferon-gamma and interleukin-4) secretion upon stimulation with GA733 antigen. However, immune mice were not protected against a challenge with syngeneic GA733 antigen-expressing colon carcinoma cells.


Yeast killer toxin-like candidacidal Ab6 antibodies elicited through the manipulation of the idiotypic cascade.

  • Luciano Polonelli‎ et al.
  • PloS one‎
  • 2014‎

A mouse anti-anti-anti-idiotypic (Id) IgM monoclonal antibody (mAb K20, Ab4), functionally mimicking a Wyckerhamomyces anomalus (Pichia anomala) killer toxin (KT) characterized by fungicidal activity against yeasts presenting specific cell wall receptors (KTR) mainly constituted by β-1,3-glucan, was produced from animals presenting anti-KT Abs (Ab3) following immunization with a rat IgM anti-Id KT-like mAb (mAb K10, Ab2). MAb K10 was produced by immunization with a KT-neutralizing mAb (mAb KT4, Ab1) bearing the internal image of KTR. MAb K20, likewise mAb K10, proved to be fungicidal in vitro against KT-sensitive Candida albicans cells, an activity neutralized by mAb KT4, and was capable of binding to β-1,3-glucan. MAb K20 and mAb K10 competed with each other and with KT for binding to C. albicans KTR. MAb K20 was used to identify peptide mimics of KTR by the selection of phage clones from random peptide phage display libraries. Using this strategy, four peptides (TK 1-4) were selected and used as immunogen in mice in the form of either keyhole limpet hemocyanin (KLH) conjugates or peptide-encoding minigenes. Peptide and DNA immunization could induce serum Abs characterized by candidacidal activity, which was inhibited by laminarin, a soluble β-1,3-glucan, but not by pustulan, a β-1,6-glucan. These findings show that the idiotypic cascade can not only overcome the barrier of animal species but also the nature of immunogens and the type of technology adopted.


The Molecular Engineering of an Anti-Idiotypic Antibody for Pharmacokinetic Analysis of a Fully Human Anti-Infective.

  • She Yah Lim‎ et al.
  • PloS one‎
  • 2015‎

Anti-idiotype monoclonal antibodies represent a class of reagents that are potentially optimal for analyzing the pharmacokinetics of fully human, anti-infective antibodies that have been developed as therapeutic candidates. This is particularly important where direct pathogen binding assays are complicated by requirements for biosafety level III or IV for pathogen handling. In this study, we describe the development of a recombinant, anti-idiotype monoclonal antibody termed E1 for the detection of a fully human, serotype-specific, therapeutic antibody candidate for the BSLIII pathogen Dengue virus termed 14c10 hG1. E1 was generated by naïve human Fab phage library panning technology and subsequently engineered as a monoclonal antibody. We show that E1 is highly specific for the fully-folded form of 14c10 hG1 and can be employed for the detection of this antibody in healthy human subjects' serum by enzyme linked immunosorbent assay. In addition, we show that E1 is capable of blocking the binding of 14c10 hG1 to dengue virus serotype 1. Finally, we show that E1 can detect 14c10 hG1 in mouse serum after the administration of the therapeutic antibody in vivo. E1 represents an important new form of ancillary reagent that can be utilized in the clinical development of a therapeutic human antibody candidate.


Screening of anti-idiotypic domain antibody from phage library for development of Bt Cry1A simulants.

  • Sa Dong‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

Anti-idiotypic antibody technique is a new approach for the rapid development of insecticidal protein. In this study, anti-Cry1A polyclonal antibodies were used as antigen to screen the anti-idiotypic antibody that can simulate Cry1A toxins from a phage display human domain antibody (DAB) library. After four rounds of panning, five positive clones that have binding activities with anti-Cry1A polyclonal antibodies were obtained. Indirect competitive ELISA (IC-ELISA) results showed that the positive clone D6 showed significant inhibition for the binding of Cry1A toxins with anti-Cry1A polyclonal antibodies, and the inhibition ratio increased with the increase of D6 content. While, B3, F4, G5, C7 and the controls showed no obvious inhibition to Cry1A toxins. The results suggest that D6 is the "β" subtype anti-idiotypic antibody, which can simulate Cry1A toxins and competitive binding with anti-Cry1A polyclonal antibodies. Meanwhile, D6 had certain binding activity with the brush border membrane vesicles (BBMV) of p. xylostella, which was the receptor of Cry1A toxins. The results of bioassay showed that D6 had certain insecticidal activity, and the lethal concentration of 50% (LC50) was 976 ng/cm2. This study provides basic materials and experience for the development of Cry toxin simulants.


Development of a Novel, Anti-idiotypic Monoclonal Anti-prolactin Antibody That Mimics the Physiological Functions of Prolactin.

  • Meng Wang‎ et al.
  • Asian-Australasian journal of animal sciences‎
  • 2016‎

In this work, we prepared a panel of monoclonal anti-idiotypic antibodies to ovine prolactin (oPRL) by the hybridoma technique. Among these antibodies, one anti-idotypic antibody (designated B7) was chosen for further characterization by a series of experiments. We first demonstrated that B7 behaved as a typical Ab2β based on a series of enzyme-linked immunosorbent assays. Subsequently, the results of a competitive receptor-binding assay confirmed that B7 could specifically bind to the prolactin receptor (PRLR) expressed on target cells. Finally, we examined its biological activities in CHO-PRLR and Nb2 cells and observed that B7 could activate Janus kinase 2-signal transducer and activator of transcription signalling in CHO-PRLR and Nb2 cells and induce BaF3 proliferation. The present study suggests that i) B7 can serve as a PRLR agonist or PRL mimic and has potential applications in regulating mammary gland development, milk production and maintenance of lactation in domestic animals and ii) B7 may be a biological reagent that can be used to explore the mechanism of PRLR-mediated intracellular signalling.


Anti-idiotypic antibody specific to GAD65 autoantibody prevents type 1 diabetes in the NOD mouse.

  • Xin Wang‎ et al.
  • PloS one‎
  • 2012‎

Overt autoantibodies to the smaller isoform of glutamate decarboxylase (GAD65Ab) are a characteristic in patients with Type 1 diabetes (T1D). Anti-idiotypic antibodies (anti-Id) directed to GAD65Ab effectively prevent the binding of GAD65 to GAD65Ab in healthy individuals. Levels of GAD65Ab-specific anti-Id are significantly lower in patients with T1D, leading to overt GAD65Ab in these patients. To determine the possible protective role of GAD65Ab-specific anti-Id in T1D pathogenesis, we developed the monoclonal anti-Id MAb 8E6G4 specifically targeting human monoclonal GAD65Ab b96.11. MAb 8E6G4 was demonstrated as a specific anti-Id directed to the antigen binding site of b96.11. MAb 8E6G4 recognized human antibodies in sera from healthy individuals, T2D patients, and T1D patients as established by ELISA. We confirmed these MAb 8E6G4-bound human antibodies to contain GAD65Ab by testing the eluted antibodies for binding to GAD65 in radioligand binding assays. These findings confirm that GAD65Ab are present in sera of individuals, who test GAD65Ab-negative in conventional detection assays. To test our hypothesis that GAD65Ab-specific anti-Id have an immune modulatory role in T1D, we injected young Non Obese Diabetic (NOD) mice with MAb 8E6G4. The animals were carefully monitored for development of T1D for 40 weeks. Infiltration of pancreatic islets by mononuclear cells (insulitis) was determined to establish the extent of an autoimmune attack on the pancreatic islets. Administration of MAb 8E6G4 significantly reduced the cumulative incidence rate of T1D and delayed the time of onset. Insulitis was significantly less severe in animals that received MAb 8E6G4 as compared to control animals. These results support our hypothesis that anti-Id specific to GAD65Ab have a protective role in T1D.


Dual anti-idiotypic purification of a novel, native-format biparatopic anti-MET antibody with improved in vitro and in vivo efficacy.

  • Marie Godar‎ et al.
  • Scientific reports‎
  • 2016‎

Bispecific antibodies are of great interest due to their ability to simultaneously bind and engage different antigens or epitopes. Nevertheless, it remains a challenge to assemble, produce and/or purify them. Here we present an innovative dual anti-idiotypic purification process, which provides pure bispecific antibodies with native immunoglobulin format. Using this approach, a biparatopic IgG1 antibody targeting two distinct, HGF-competing, non-overlapping epitopes on the extracellular region of the MET receptor, was purified with camelid single-domain antibody fragments that bind specifically to the correct heavy chain/light chain pairings of each arm. The purity and functionality of the anti-MET biparatopic antibody was then confirmed by mass spectrometry and binding experiments, demonstrating its ability to simultaneously target the two epitopes recognized by the parental monoclonal antibodies. The improved MET-inhibitory activity of the biparatopic antibody compared to the parental monoclonal antibodies, was finally corroborated in cell-based assays and more importantly in a tumor xenograft mouse model. In conclusion, this approach is fast and specific, broadly applicable and results in the isolation of a pure, novel and native-format anti-MET biparatopic antibody that shows superior biological activity over the parental monospecific antibodies both in vitro and in vivo.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: