Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,470 papers

Pyrazoles and Pyrazolines as Anti-Inflammatory Agents.

  • Martha Mantzanidou‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

The five-membered heterocyclic group of pyrazoles/pyrazolines plays important role in drug discovery. Pyrazoles and pyrazolines present a wide range of biological activities. The synthesis of the pyrazolines and pyrazole derivatives was accomplished via the condensation of the appropriate substituted aldehydes and acetophenones, suitable chalcones and hydrazine hydrate in absolute ethanol in the presence of drops of glacial acetic acid. The compounds are obtained in good yields 68-99% and their structure was confirmed using IR, 1H-NMR, 13C-NMR and elemental analysis. The novel derivatives were studied in vitro for their antioxidant, anti-lipid peroxidation (AAPH) activities and inhibitory activity of lipoxygenase. Both classes strongly inhibit lipid peroxidation. Compound 2g was the most potent lipoxygenase inhibitor (IC50 = 80 µM). The inhibition of the carrageenin-induced paw edema (CPE) and nociception was also determined, with compounds 2d and 2e being the most potent. Compound 2e inhibited nociception higher than 2d. Pyrazoline 2d was found to be active in a preliminary test, for the investigation of anti-adjuvant-induced disease (AID) activity. Pyrazoline derivatives were found to be more potent than pyrazoles. Docking studies of the most potent LOX inhibitor 2g highlight hydrophobic interactions with VAL126, PHE143, VAL520 and LYS526 and a halogen bond between the chlorine atom and ARG182.


Pharmacokinetics of oxicam nonsteroidal anti-inflammatory agents.

  • K T Olkkola‎ et al.
  • Clinical pharmacokinetics‎
  • 1994‎

Oxicam nonsteroidal anti-inflammatory drugs (NSAIDs) are a group of structurally closely related substances with anti-inflammatory, analgesic and antipyretic activities. They have a weakly acidic character and are extensively bound to plasma proteins. Piroxicam, the most widely used oxicam, is well absorbed after oral administration. Peak plasma concentrations (Cmax) of the drug are reached within 2 to 4 hours. Piroxicam has a small volume of distribution and a low plasma clearance. It undergoes hepatic metabolism and only 5 to 10% is excreted unchanged in urine. The elimination half-life varies between 30 and 70 hours. Age of the patient and renal or hepatic dysfunction do not seem to have any major effect on the pharmacokinetics of piroxicam. The drug reduces the renal excretion of lithium to a clinically significant extent, but the clinical significance of piroxicam-aspirin (acetylsalicylic-acid) and piroxicam-acenocoumarol interaction has not been established. Ampiroxicam, droxicam and pivoxicam are prodrugs of piroxicam that have been synthesised to reduce piroxicam-related gastrointestinal irritation. All prodrugs are well absorbed, but Cmax values are reached later than those following administration of piroxicam. Tenoxicam is used in the management of rheumatic and inflammatory diseases. Mean Cmax values are achieved 2 hours postdose. Food reduces the rate but not the extent of absorption. The oral bioavailability of tenoxicam is 100% and rectal bioavailability is 80%. Like piroxicam, tenoxicam has a low volume of distribution and low plasma clearance. It is eliminated through hepatic metabolism. The mean elimination half-life is 60 to 75 hours. The pharmacokinetics of tenoxicam are independent of patient age, or concurrent liver or renal diseases. High doses of aspirin have been shown to increase the elimination of tenoxicam, but this has little clinical significance. Isoxicam was in widespread clinical use until its worldwide marketing was suspended because of fatal skin reactions. Isoxicam is completely absorbed, but Cmax values are not reached until 10 hours postdose. It has a low plasma clearance, approximately 5 ml/min (0.3 L/h), and low volume of distribution. The mean elimination half-life is 30 hours and does not appear to be affected by the age of the patient. Isoxicam potentiated the anticoagulant effect of warfarin, necessitating a 20% dosage reduction. Lornoxicam differs from other oxicam NSAIDs because it has a short elimination half-life of 3 to 4 hours. On the basis of limited data, some individuals seem to eliminate lornoxicam very slowly, suggesting the presence of polymorphic metabolism. The pharmacokinetics of cinnoxicam and sudoxicam have not been studied thoroughly.(ABSTRACT TRUNCATED AT 400 WORDS)


Repositioning drugs for inflammatory disease - fishing for new anti-inflammatory agents.

  • Christopher J Hall‎ et al.
  • Disease models & mechanisms‎
  • 2014‎

Inflammation is an important and appropriate host response to infection or injury. However, dysregulation of this response, with resulting persistent or inappropriate inflammation, underlies a broad range of pathological processes, from inflammatory dermatoses to type 2 diabetes and cancer. As such, identifying new drugs to suppress inflammation is an area of intense interest. Despite notable successes, there still exists an unmet need for new effective therapeutic approaches to treat inflammation. Traditional drug discovery, including structure-based drug design, have largely fallen short of satisfying this unmet need. With faster development times and reduced safety and pharmacokinetic uncertainty, drug repositioning - the process of finding new uses for existing drugs - is emerging as an alternative strategy to traditional drug design that promises an improved risk-reward trade-off. Using a zebrafish in vivo neutrophil migration assay, we undertook a drug repositioning screen to identify unknown anti-inflammatory activities for known drugs. By interrogating a library of 1280 approved drugs for their ability to suppress the recruitment of neutrophils to tail fin injury, we identified a number of drugs with significant anti-inflammatory activity that have not previously been characterized as general anti-inflammatories. Importantly, we reveal that the ten most potent repositioned drugs from our zebrafish screen displayed conserved anti-inflammatory activity in a mouse model of skin inflammation (atopic dermatitis). This study provides compelling evidence that exploiting the zebrafish as an in vivo drug repositioning platform holds promise as a strategy to reveal new anti-inflammatory activities for existing drugs.


Discovery of talmapimod analogues as polypharmacological anti-inflammatory agents.

  • Wandong Liu‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2020‎

Twenty novel talmapimod analogues were designed, synthesised and evaluated for the in vivo anti-inflammatory activities. Among them, compound 6n, the most potent one, was selected for exploring the mechanisms underlying its anti-inflammatory efficacy. In RAW264.7 cells, it effectively suppressed lipopolysaccharides-induced (LPS-induced) expressions of iNOS and COX-2. As illustrated by the western blot analysis, 6n downregulated both the NF-κB signalling and p38 MAPK phosphorylation. Further enzymatic assay identified 6n as a potent inhibitor against both p38α MAPK (IC50=1.95 µM) and COX-2 (IC50=0.036 µM). By virtue of the concomitant inhibition of p38α MAPK, its upstream effector, and COX-2, along with its capability to downregulate NF-κB and MAPK-signalling pathways, 6n, a polypharmacological anti-inflammatory agent, deserves further development as a novel anti-inflammatory drug.


Drug-Bearing Supramolecular Filament Hydrogels as Anti-Inflammatory Agents.

  • Zhipeng Chen‎ et al.
  • Theranostics‎
  • 2017‎

We report here on the covalent conversion of the anti-inflammatory agent ketoprofen into self-assembling prodrugs that enable the effective purification of ketoprofen enantiomers, the improved selectivity and potency of ketoprofen, as well as the formation of one-component drug-bearing supramolecular hydrogels. We found that the ketoprofen hydrogelator could exhibit much-enhanced selectivity for cyclooxygenase 2 (COX-2) over COX-1, reduce the concentration of inflammatory cytokines (IL-1 and TNFα), and induce apoptosis in fibroblast-like synoviocytes while maintaining biocompatibility with healthy chondrocytes. In addition, these anti-inflammatory agent-containing hydrogels demonstrated the ability to retain the therapeutic within a joint cavity after intra-articular injection, exhibiting a slow, steady release into the plasma. We believe that upon further optimization these drug-based injectable supramolecular hydrogels could provide the basis for a local treatment strategy for rheumatoid arthritis and similar conditions.


Sponge-Derived 24-Homoscalaranes as Potent Anti-Inflammatory Agents.

  • Bo-Rong Peng‎ et al.
  • Marine drugs‎
  • 2020‎

Scalarane-type sesterterpenoids are known for their therapeutic potential in cancer treatments. However, the anti-inflammatory properties of this class of metabolites remain elusive. Our current work aimed to investigate the anti-inflammatory scalaranes from marine sponge Lendenfeldia sp., resulting in the isolation of six new 24-homoscalaranes, lendenfeldaranes E-J (1-6). The structures of the new metabolites were determined by extensive spectroscopic analyses, and the absolute configuration of 1 was established by electronic circular dichroism (ECD) calculations. Compounds 2 and 3 were discovered to individually reduce the generation of superoxide anions, and compound 1 displayed an inhibitor effect on the release of elastase. These three compounds were proven to be the first anti-neutrophilic scalaranes.


Flavonoid-Conjugated Gadolinium Complexes as Anti-Inflammatory Theranostic Agents.

  • Byeong Woo Yang‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2022‎

In this study, we designed, synthesized, and evaluated gadolinium compounds conjugated with flavonoids as potential theranostic agents for the treatment of inflammation. These novel theranostic agents combine a molecular imaging agent and one of three flavonoids (galangin, chrysin, and 7-hydroxyflavone) as anti-inflammatory drugs as a single integrated platform. Using these agents, MR imaging showed contrast enhancement (>10 in CNR) at inflamed sites in an animal inflammation model, and subsequent MR imaging used to monitor the therapeutic efficacy of these integrated agents revealed changes in inflamed regions. The anti-inflammatory effects of these agents were demonstrated both in vitro and in vivo. Furthermore, the antioxidant efficacy of the agents was evaluated by measuring their reactive oxygen species scavenging properties. For example, Gd-galangin at 30 μM showed a three-fold higher ROS scavenging of DPPH. Taken together, our findings provide convincing evidence to indicate that flavonoid-conjugated gadolinium compounds can be used as potentially efficient theranostic agents for the treatment of inflammation.


Benzimidazole derivatives: search for GI-friendly anti-inflammatory analgesic agents.

  • Monika Gaba‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2015‎

Non-steroidal anti-inflammatory drugs (NSAIDs) have been successfully used for the alleviation of pain and inflammation in the past and continue to be used daily by millions of patients worldwide. However, gastrointestinal (GI) toxicity associated with NSAIDs is an important medical and socioeconomic problem. Local generation of various reactive oxygen species plays a significant role in the formation of gastric ulceration associated with NSAIDs therapy. Co-medication of antioxidants along with NSAIDs has been found to be beneficial in the prevention of GI injury. This paper describes the synthesis and biological evaluation of N-1-(phenylsulfonyl)-2-methylamino-substituted-1H-benzimidazole derivatives as anti-inflammatory analgesic agents with lower GI toxicity. Studies in vitro and in vivo demonstrated that the antioxidant activity of the test compounds decreased GI toxicity.


Diclofenac N-Derivatives as Therapeutic Agents with Anti-Inflammatory and Anti-Cancer Effect.

  • Alberto Galisteo‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

A series of diclofenac N-derivatives (2, 4, 6, 8c, 9c, 10a-c) were synthesized in order to test their anti-cancer and anti-inflammatory effects. The anticarcinogen activity has been assayed against three cancer cell lines: HT29, human colon cancer cells; Hep-G2, human hepatic cells; and B16-F10, murine melanoma cells. First, we determined the cytotoxicity of the different compounds, finding that the most effective compound was compound 8c against all cell lines and both compounds 4 and 6 in human Hep-G2 and HT29 cell lines. Compounds 4 and 8c were selected for the percentage of apoptosis determination, cell cycle distribution, and mitochondrial membrane potential measure because these products presented the lowest IC50 values in two of the three cancer cell lines assayed (B16-F10 and HepG2), and were two of the three products with lowest IC50 in HT29 cell line. Moreover, the percentages of apoptosis induction were determined for compounds 4 and 8c, showing that the highest values were between 30 to 60%. Next, the effects of these two compounds were observed on the cellular cycle, resulting in an increase in the cell population in G2/M cell cycle phase after treatment with product 8c, whereas compound 4 increased the cells in phase G0/G1, by possible differentiation process induction. Finally, to determine the possible apoptosis mechanism triggered by these compounds, mitochondrial potential was evaluated, indicating the possible activation of extrinsic apoptotic mechanism. On the other hand, we studied the anti-inflammatory effects of these diclofenac (DCF) derivatives on lipopolysaccharide (LPS) activated RAW 264.7 macrophages-monocytes murine cells by inhibition of nitric oxide (NO) production. As a first step, we determined the cytotoxicity of the synthesized compounds, as well as DCF, against these cells. Then, sub-cytotoxic concentrations were used to determine NO release at different incubation times. The greatest anti-inflammatory effect was observed for products 2, 4, 8c, 10a, 10b, and 9c at 20 µg·mL-1 concentration after 48 h of treatment, with inhibition of produced NO between 60 to 75%, and a concentration that reduces to the 50% the production of NO (IC50 NO) between 2.5 to 25 times lower than that of DCF. In this work, we synthesized and determined for the first time the anti-cancer and anti-inflammatory potential of eight diclofenac N-derivatives. In agreement with the recent evidences suggesting that inflammation may contribute to all states of tumorigenesis, the development of these new derivatives capable of inducing apoptosis and anti-inflammatory effects at very low concentrations represent new effective therapeutic strategies against these diseases.


Dexamethasone-conjugated DNA nanotubes as anti-inflammatory agents in vivo.

  • Sabine Sellner‎ et al.
  • Biomaterials‎
  • 2017‎

The biopolymer DNA allows to create nanoscale, biocompatible structures, which can be designed in a target-specific and stimuli-responsive manner. DNA carrier systems with these characteristics hold a great potential for nanomedical applications, such as for the treatment of inflammatory diseases. Here we used a DNA-based drug carrier system for the pH-dependent delivery of the glucocorticoid dexamethasone into macrophages, a cell type with a key role in the regulation of inflammation. Dexamethasone (Dex) nanotubes were internalized within minutes by MH-S macrophages in vitro and by tissue resident macrophages in the mouse cremaster muscle in vivo and localized in their endosomes. Treatment with Dex nanotubes in vitro significantly reduced the LPS-induced TNF secretion by macrophages, as compared to equivalent amounts of free dexamethasone without affecting cell viability. Microinjection of Dex nanotubes into postischemic muscle tissue of anesthetized mice resulted in a marked reduction of ischemia-reperfusion-elicited leukocyte transmigration and diminished vascular expression of the endothelial adhesion molecules VCAM-1 and ICAM-1. Taken together, our results demonstrate that DNA nanotubes can be used as a platform for the targeted delivery of glucocorticoids and could thus foster the development of nanomedical therapeutics with reduced off-target effects.


Novel marine phenazines as potential cancer chemopreventive and anti-inflammatory agents.

  • Tamara P Kondratyuk‎ et al.
  • Marine drugs‎
  • 2012‎

Two new (1 and 2) and one known phenazine derivative (lavanducyanin, 3) were isolated and identified from the fermentation broth of a marine-derived Streptomyces sp. (strain CNS284). In mammalian cell culture studies, compounds 1, 2 and 3 inhibited TNF-α-induced NFκB activity (IC₅₀ values of 4.1, 24.2, and 16.3 μM, respectively) and LPS-induced nitric oxide production (IC₅₀ values of >48.6, 15.1, and 8.0 μM, respectively). PGE₂ production was blocked with greater efficacy (IC₅₀ values of 7.5, 0.89, and 0.63 μM, respectively), possibly due to inhibition of cyclooxygenases in addition to the expression of COX-2. Treatment of cultured HL-60 cells led to dose-dependent accumulation in the subG1 compartment of the cell cycle, as a result of apoptosis. These data provide greater insight on the biological potential of phenazine derivatives, and some guidance on how various substituents may alter potential anti-inflammatory and anti-cancer effects.


Polyamines: Potential anti-inflammatory agents and their possible mechanism of action.

  • Chakradhar V Lagishetty‎ et al.
  • Indian journal of pharmacology‎
  • 2008‎

To evaluate the anti-inflammatory activity of exogenously administered polyamines on experimentally induced acute and chronic inflammation in wistar rats and to elucidate their possible mechanism of action.


Fluorinated Benzofuran and Dihydrobenzofuran as Anti-Inflammatory and Potential Anticancer Agents.

  • Abeer J Ayoub‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Benzofuran and 2,3-dihydrobenzofuran scaffolds are heterocycles of high value in medicinal chemistry and drug synthesis. Targeting inflammation in cancer associated with chronic inflammation is a promising therapy. In the present study, we investigated the anti-inflammatory effects of fluorinated benzofuran and dihydrobenzofuran derivatives in macrophages and in the air pouch model of inflammation, as well as their anticancer effects in the human colorectal adenocarcinoma cell line HCT116. Six of the nine compounds suppressed lipopolysaccharide-stimulated inflammation by inhibiting the expression of cyclooxygenase-2 and nitric oxide synthase 2 and decreased the secretion of the tested inflammatory mediators. Their IC50 values ranged from 1.2 to 9.04 µM for interleukin-6; from 1.5 to 19.3 µM for Chemokine (C-C) Ligand 2; from 2.4 to 5.2 µM for nitric oxide; and from 1.1 to 20.5 µM for prostaglandin E2. Three novel synthesized benzofuran compounds significantly inhibited cyclooxygenase activity. Most of these compounds showed anti-inflammatory effects in the zymosan-induced air pouch model. Because inflammation may lead to tumorigenesis, we tested the effects of these compounds on the proliferation and apoptosis of HCT116. Two compounds with difluorine, bromine, and ester or carboxylic acid groups inhibited the proliferation by approximately 70%. Inhibition of the expression of the antiapoptotic protein Bcl-2 and concentration-dependent cleavage of PARP-1, as well as DNA fragmentation by approximately 80%, were described. Analysis of the structure-activity relationship suggested that the biological effects of benzofuran derivatives are enhanced in the presence of fluorine, bromine, hydroxyl, and/or carboxyl groups. In conclusion, the designed fluorinated benzofuran and dihydrobenzofuran derivatives are efficient anti-inflammatory agents, with a promising anticancer effect and a combinatory treatment in inflammation and tumorigenesis in cancer microenvironments.


Novel coumarin-benzimidazole derivatives as antioxidants and safer anti-inflammatory agents.

  • Radha Krishan Arora‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2014‎

Inspired from occurrence of anti-inflammatory activity of 3-substituted coumarins and antiulcer activity of various 2-substituted benzimidazoles, novel compounds have been designed by coupling coumarin derivatives at 3-position directly or through amide linkage with benzimidazole nucleus at 2-position. The resultant compounds are expected to exhibit both anti-inflammatory and antioxidant activities along with less gastric toxicity profile. Two series of coumarin-benzimidazole derivatives (4a-e and 5a-e) were synthesized and evaluated for anti-inflammatory activity and antioxidant activity. Compounds 4c, 4d and 5a displayed good anti-inflammatory (45.45%, 46.75% and 42.85% inhibition, respectively, versus 54.54% inhibition by indomethacin) and antioxidant (IC50 of 19.7, 13.9 and 1.2 µmol/L, respectively, versus 23.4 µmol/L for butylatedhydroxytoluene) activities. Evaluation of ulcer index and in vivo biochemical estimations for oxidative stress revealed that compounds 4d and 5a remain safe on gastric mucosa and did not induce oxidative stress in tissues. Calculation of various molecular properties suggests the compounds to be sufficiently bioavailable.


Betulinic Acid-Azaprostanoid Hybrids: Synthesis and Pharmacological Evaluation as Anti-inflammatory Agents.

  • Tatyana S Khlebnicova‎ et al.
  • Anti-inflammatory & anti-allergy agents in medicinal chemistry‎
  • 2020‎

Prevention and treatment of chronic inflammatory diseases require effective and low-toxic medicines. Molecular hybridization is an effective strategy to enhance the biological activity of new compounds. Triterpenoid scaffolds are in the focus of attention owing to their anti-inflammatory, antiviral, antiproliferative, and immunomodulatory activities. Heteroprostanoids have different pleiotropic effects in acute and chronic inflammatory processes.


Synthesis of N-arylidene-2-(2-Phenoxyphenyl) Acetohydrazides as Anti-Inflammatory Agents.

  • Maral Shekarchi‎ et al.
  • Iranian journal of pharmaceutical research : IJPR‎
  • 2011‎

Diclofenac sodium has been used for its anti-inflammatory actions for about 28 years, but since all the non-steroidal anti-inflammatory drugs (NSAIDs) suffer from the lethal gastro intestinal (GI) toxicities, diclofenac sodium is not an exception. The free -COOH group is thought to be responsible for the GI toxicity associated with all traditional NSAIDs. In the present research, the main motto was to develop new chemical entities as potential anti-inflammatory agents with no GI toxicities. A new type of 2-(2-phenoxyphenyl) acetohydrazide possessing N-arylidene substituents, was synthesized for evaluation as anti-inflammatory agents. The starting material 2-(2-Phenoxyphenyl) acetohydrazide was synthesized from 2-phenoxybenzoic acid in several steps according to the previous published method. Various substituted arylidene-2-phenoxynicotinic acid hydrazide derivatives were synthesized by the reaction of hydrazide 17 with selected aldehydes and screened for their potential anti-inflammatory activity. The structure of synthesized compounds was confirmed by different nuclear magnetic resonance technique, Fourier transform infrared spectroscopy (FTIR) and Mass-spectrometry data format. Qualitative structure-activity relationship data, acquired using the carrageenan-induced rat paw edema assay, showed that this group of arylidene-2-phenoxybenzoic acid hydrazides exhibit anti-inflammatory activity with significant reduction of rat paw edema (17-58% reduction in inflammation at different time intervals) in comparison with control group and a moderate to good activity range in comparison with diclofenac as the reference drug. Compounds 9a, 9d and 9e exhibited the most prominent and consistent anti-inflammatory activity. The compound, N-(4-Chlorobenzylidene)-2-(2-phenoxyphenyl) acetohydrazide (9d), exhibited the most in-vivo activity (32-58% reduction in inflammation) compared to the reference drug diclofenac (35-74% reduction in inflammation) in a carrageenan induced rat paw-edema assay.


Design, synthesis, and biological evaluation of morpholinopyrimidine derivatives as anti-inflammatory agents.

  • Sadaf Fatima‎ et al.
  • RSC advances‎
  • 2023‎

Here, we outline the synthesis of a few 2-methoxy-6-((4-(6-morpholinopyrimidin-4-yl)piperazin-1-yl)(phenyl)methyl)phenol derivatives and assess their anti-inflammatory activity in macrophage cells that have been stimulated by LPS. Among these newly synthesized morpholinopyrimidine derivatives, 2-methoxy-6-((4-methoxyphenyl)(4-(6-morpholinopyrimidin-4-yl)piperazin-1-yl)methyl)phenol (V4) and 2-((4-fluorophenyl)(4-(6-morpholinopyrimidin-4-yl)piperazin-1-yl)methyl)-6-methoxyphenol (V8) are two of the most active compounds which can inhibit the production of NO at non-cytotoxic concentrations. Our findings also showed that compounds V4 and V8 dramatically reduced iNOS and cyclooxygenase mRNA expression (COX-2) in LPS-stimulated RAW 264.7 macrophage cells; western blot analysis showed that the test compounds decreased the amount of iNOS and COX-2 protein expression, hence inhibiting the inflammatory response. We find through molecular docking studies that the chemicals had a strong affinity for the iNOS and COX-2 active sites and formed hydrophobic interactions with them. Therefore, use of these compounds could be suggested as a novel therapeutic strategy for inflammation-associated disorders.


Novel NADPH Oxidase-2 Inhibitors as Potential Anti-Inflammatory and Neuroprotective Agents.

  • Matea Juric‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2023‎

A family of seven NADPH oxidase enzymes (Nox1-5, Duox1-2) has been implicated in a variety of diseases, including inflammatory lung diseases, neurodegenerative diseases, cardiovascular diseases, and cancer. Here, we report the results of our studies aimed at developing novel brain-permeable Nox2 inhibitors with potential application as neuroprotective agents. Using cell-based assays, we identified a novel Nox2 inhibitor, TG15-132, that prevents PMA-stimulated oxygen consumption and reactive oxygen species (superoxide radical anion and hydrogen peroxide) formation upon acute treatment in differentiated HL60 cells. Long-term treatment with TG15-132 attenuates the induction of genes encoding Nox2 subunits, several inflammatory cytokines, and iNOS in differentiated THP-1 cells. Moreover, TG15-132 shows a relatively long plasma half-life (5.6 h) and excellent brain permeability, with a brain-to-plasma ratio (>5-fold) in rodent models. Additionally, TG15-132 does not cause any toxic effects on vital organs or blood biomarkers of toxicity in mice upon chronic dosing for seven days. We propose that TG15-132 may be used as a Nox2 inhibitor and a potential neuroprotective agent, with possible further structural modifications to increase its potency.


Sinapic Acid Derivatives as Potential Anti-Inflammatory Agents: Synthesis and Biological Evaluation.

  • Qiongyu Zhang‎ et al.
  • Iranian journal of pharmaceutical research : IJPR‎
  • 2017‎

Transcription factor NF-κB and relevant cytokines IL-6 and IL-8 play a pivotal role in the pathogenesis of inflammation. Sinapic acid is a natural product and was demonstrated to possess anti-inflammatory activity. In this paper, we synthesized a series of sinapic acid derivatives and evaluated their anti-inflammatory effects. The result suggested that all of the targets compounds 7a-j inhibit NF-κB activation and decrease IL-6 and IL-8 expression in BEAS-2B cells. By our biological assays, we found that all of the prepared compounds displayed stronger anti-inflammatory activities than their precursor sinapic acid. Especially, compounds 7g and 7i, with electron-drawing groups (nitro and fluoro moieties) in the benzimidazole ring, exhibited remarkable anti-inflammation activity, which was even stronger than the reference drug dexamethasone.


Organosilicon-containing thiazole derivatives as potential lipoxygenase inhibitors and anti-inflammatory agents.

  • Athina Geronikaki‎ et al.
  • Bioinorganic chemistry and applications‎
  • 2007‎

A number of trimethylsiloxyalkyl and trialkylsilylalkyl thiazole derivatives have been evaluated for their anti-inflammatory activity, lipoxygenase inhibiting properties, and cytotoxicity. The investigated compounds have been found to protect in vivo against carrageenin-induced edema, especially 3-(4-trimethylsiloxypiperidin-1-yl)-N-(thiazol-2-yl)-propionamide (21) and 2-amino-3-(gamma-trimethylsilylpropyl)thiazolium iodide (22), which exhibited good anti-inflammatory activity: 57.2% CPE inhibition in dose of 0.2 mmol/kg for compound 21 and 55.0% in dose of 0.01 mmol/kg for compound 22. All the compounds tested inhibited soybean lipoxygenase activity. 2-(4-Trimethylsilyloxypiperidin-1-yl)-N-[4-(p-methoxyphenyl)-thiazol-2-yl]-acetamide (19) was the most potent displaying inhibition against lipoxygenase (ID(50) = 0.01 mmol). It also possessed moderate cytotoxic effect (LC(50) = 13 microg/mL, 3 x 10(-8) mmol/mL) concerning MG-22A cell lines.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: