Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Tetramisole is a new IK1 channel agonist and exerts IK1 -dependent cardioprotective effects in rats.

  • Qinghua Liu‎ et al.
  • Pharmacology research & perspectives‎
  • 2022‎

Cardiac ischemia, hypoxia, arrhythmias, and heart failure share the common electrophysiological changes featured by the elevation of intracellular Ca2+ (Ca2+ overload) and inhibition of the inward rectifier potassium (IK1 ) channel. IK1 channel agonists have been considered a new type of anti-arrhythmia and cardioprotective agents. We predicted using a drug repurposing strategy that tetramisole (Tet), a known anthelminthic agent, was a new IK1 channel agonist. The present study aimed to experimentally identify the above prediction and further demonstrate that Tet has cardioprotective effects. Results of the whole-cell patch clamp technique showed that Tet at 1-100 μmol/L enhanced IK1 current, hyperpolarized resting potential (RP), and shortened action potential duration (APD) in isolated rat cardiomyocytes, while without effects on other ion channels or transporters. In adult Sprague-Dawley (SD) rats in vivo, Tet showed anti-arrhythmia and anticardiac remodeling effects, respectively, in the coronary ligation-induced myocardial infarction model and isoproterenol (Iso, i.p., 3 mg/kg/day, 10 days) infusion-induced cardiac remodeling model. Tet also showed anticardiomyocyte remodeling effect in Iso (1 μmol/L) infused adult rat ventricular myocytes or cultured H9c2 (2-1) cardiomyocytes. Tet at 0.54 mg/kg in vivo or 30 μmol/L in vitro showed promising protections on acute ischemic arrhythmias, myocardial hypertrophy, and fibrosis. Molecular docking was performed and identified the selective binding of Tet with Kir2.1. The cardioprotection of Tet was associated with the facilitation of IK1 channel forward trafficking, deactivation of PKA signaling, and inhibition of intracellular calcium overload. Enhancing IK1 may play dual roles in anti-arrhythmia and antiventricular remodeling mediated by restoration of Ca2+ homeostasis.


Multiple antiarrhythmic transplacental treatments for fetal supraventricular tachyarrhythmia: A protocol for systematic review and meta analysis.

  • Tingting Chen‎ et al.
  • Medicine‎
  • 2020‎

Fetal supraventricular tachyarrhythmia is a common reason for referral to fetal cardiology. Multiple antiarrhythmic transplacental medications can be used to treat these diseases. Debates remain regarding the standardized therapy.


Prediction and verification of potential lead analgesic and antiarrhythmic components in Corydalis yanhusuo W. T. Wang based on voltage-gated sodium channel proteins.

  • Jianfang Sun‎ et al.
  • International journal of biological macromolecules‎
  • 2022‎

Corydalis yanhusuo W. T. Wang, a traditional Chinese herbal medicine, has been used as an analgesic for thousands of years and it also promotes blood circulation. In this study, 33 Corydalis yanhusuo alkaloid active components were acquired from Traditional Chinese Medicine Database and Analysis Platform (TCMSP). A total of 543 pain-related targets, 1774 arrhythmia targets, and 642 potential targets of these active components were obtained using Swiss Target Prediction, GeneCards, Open Target Platform, and Therapeutic Target Database. Fifty intersecting targets were visualized through a Venn diagram, KEGG and GO pathway enrichment analysis. The analysis proposed that sodium ion channels are likely potential targets of Corydalis yanhusuo active components as analgesia and anti-arrhythmia agents. Molecular docking showed that the 33 components could bind to Nav1.7 and Nav1.5 (two subtypes of ion channel proteins) with different binding energies. In a patch clamp study, dihydrosanguinarine and dihydrochelerythrine, two monomers with the strongest binding effects, could inhibit the peak currents and promote both activation and inactivation phases of Nav1.5. Meanwhile, dihydrosanguinarine and dihydrochelerythrine could also inhibit peak currents and promote the activation phase of Nav1.7. Therefore, the findings from this study provide valuable information for future uses of traditional Chinese medicines to treat pain and cardiovascular disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: