Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 229 papers

Organ Specific Differences in Alteration of Aquaporin Expression in Rats Treated with Sennoside A, Senna Anthraquinones and Rhubarb Anthraquinones.

  • Zhaoyang Wang‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Senna and rhubarb are often used as routine laxatives, but there are differences in mechanism of action and potential side effects. Here, we studied metabolites of senna anthraquinones (SAQ), rhubarb anthraquinones (RAQ) and their chemical marker, sennoside A (SA), in a rat diarrhea model. In in vitro biotransformation experiments, SAQ, RAQ and SA were incubated with rat fecal flora solution and the metabolites produced were analyzed using HPLC. In in vivo studies, the same compounds were investigated for purgation induction, with measurement of histopathology and Aqps gene expression in six organs. The results indicated that SAQ and RAQ had similar principal constituents but could be degraded into different metabolites. A similar profile of Aqps down-regulation for all compounds was seen in the colon, suggesting a similar mechanism of action for purgation. However, in the kidneys and livers of the diarrhea-rats, down-regulation of Aqps was found in the RAQ-rats whereas up-regulation of Aqps was seen in the SAQ-rats. Furthermore, the RAQ-rats showed lower Aqp2 protein expression in the kidneys, whilst the SA-rats and SAQ-rats had higher Aqp2 protein expression in the kidneys. This may have implications for side effects of SAQ or RAQ in patients with chronic kidney or liver diseases.


Anthraquinones of the roots of Pentas micrantha.

  • Milkyas Endale‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2012‎

Pentas micrantha is used in the East African indigenous medicine to treat malaria. In the first investigation of this plant, the crude methanol root extract showed moderate antiplasmodial activity against the W2- (3.37 μg/mL) and D6-strains (4.00 μg/mL) of Plasmodium falciparum and low cytotoxicity (>450 μg/mL, MCF-7 cell line). Chromatographic separation of the extract yielded nine anthraquinones, of which 5,6-dihydroxylucidin-11-O-methyl ether is new. Isolation of a munjistin derivative from the genus Pentas is reported here for the first time. The isolated constituents were identified by NMR and mass spectrometric techniques and showed low antiplasmodial activities.


Anthraquinones as Inhibitors of SOS RAS-GEF Activity.

  • Alberto Fernández-Medarde‎ et al.
  • Biomolecules‎
  • 2021‎

Recent breakthroughs have reignited interest in RAS GEFs as direct therapeutic targets. To search for new inhibitors of SOS GEF activity, a repository of known/approved compounds (NIH-NACTS) and a library of new marine compounds (Biomar Microbial Technologies) were screened by means of in vitro RAS-GEF assays using purified, bacterially expressed SOS and RAS constructs. Interestingly, all inhibitors identified in our screenings (two per library) shared related chemical structures belonging to the anthraquinone family of compounds. All our anthraquinone SOS inhibitors were active against the three canonical RAS isoforms when tested in our SOS GEF assays, inhibited RAS activation in mouse embryonic fibroblasts, and were also able to inhibit the growth of different cancer cell lines harboring WT or mutant RAS genes. In contrast to the commercially available anthraquinone inhibitors, our new marine anthraquinone inhibitors did not show in vivo cardiotoxicity, thus providing a lead for future discovery of stronger, clinically useful anthraquinone SOS GEF blockers.


Anthraquinones as Potential Antibiofilm Agents Against Methicillin-Resistant Staphylococcus aureus.

  • Zhi-Man Song‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA) are one of the contributing factors to recurrent nosocomial infection in humans. There is currently no specific treatment targeting on biofilms in clinical trials approved by FDA, and antibiotics remain the primary therapeutic strategy. In this study, two anthraquinone compounds isolated from a rare actinobacterial strain Kitasatospora albolonga R62, 3,8-dihydroxy-l-methylanthraquinon-2-carboxylic acid (1) and 3,6,8-trihydroxy-1-methylanthraquinone-2-carboxylic acid (2), together with their 10 commercial analogs 3-12 were evaluated for antibacterial and antibiofilm activities against MRSA, which led to the discovery of two potential antibiofilm anthraquinone compounds anthraquinone-2-carboxlic acid (6) and rhein (12). The structure-activity relationship analysis of these anthraquinones indicated that the hydroxyl group at the C-2 position of the anthraquinone skeleton played an important role in inhibiting biofilm formation at high concentrations, while the carboxyl group at the same C-2 position had a great influence on the antibacterial activity and biofilm eradication activity. The results of crystal violet and methyl thiazolyl tetrazolium staining assays, as well as scanning electron microscope and confocal scanning laser microscopy imaging of compounds 6 and 12 treatment groups showed that both compounds could disrupt preformed MRSA biofilms possibly by killing or dispersing biofilm cells. RNA-Seq was subsequently used for the preliminary elucidation of the mechanism of biofilm eradication, and the results showed upregulation of phosphate transport-related genes in the overlapping differentially expressed genes of both compound treatment groups. Herein, we propose that anthraquinone compounds 6 and 12 could be considered promising candidates for the development of antibiofilm agents.


Characterization of the genotoxicity of anthraquinones in mammalian cells.

  • S O Mueller‎ et al.
  • Biochimica et biophysica acta‎
  • 1999‎

Naturally occurring 1,8-dihydroxyanthraquinones are under consideration as possible carcinogens. Here we wanted to elucidate a possible mechanism of their genotoxicity. All three tested anthraquinones, emodin, aloe-emodin, and danthron, showed capabilities to inhibit the non-covalent binding of bisbenzimide Hoechst 33342 to isolated DNA and in mouse lymphoma L5178Y cells comparable to the topoisomerase II inhibitor and intercalator m-amsacrine. In a cell-free decatenation assay, emodin exerted a stronger, danthron a similar and aloe-emodin a weaker inhibition of topoisomerase II activity than m-amsacrine. Analysis of the chromosomal extent of DNA damage induced by these anthraquinones was performed in mouse lymphoma L5178Y cells. Anthraquinone-induced mutant cell clones showed similar chromosomal lesions when compared to the topoisomerase II inhibitors etoposide and m-amsacrine, but were different from mutants induced by the DNA alkylator ethyl methanesulfonate. These data support the idea that inhibition of the catalytic activity of topoisomerase II contributes to anthraquinone-induced genotoxicity and mutagenicity.


Four New Anthraquinones with Histone Deacetylase Inhibitory Activity from Ventilago denticulata Roots.

  • Nattika Hangsamai‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Chromatographic separation of the crude extracts from the roots of Ventilago denticulata led to the isolation of four new anthraquinones, ventilanones L-O (1-4), together with eight known anthraquinones (5-12). Their structures were elucidated by spectroscopic methods (UV, IR, 1H NMR, 13C NMR, and 2D NMR) and mass spectrometry (MS), as well as comparison of their spectroscopic data with those reported in the literature. HDACs inhibitory activity evaluation resulted that compound 2 exhibited moderate antiproliferative activity against HeLa and A549 cell lines but nontoxic to normal cell. Molecular docking indicated the phenolic functionality of 2 plays crucial interactions with class II HDAC4 enzyme.


Antitumor Anthraquinones from an Easter Island Sea Anemone: Animal or Bacterial Origin?

  • Ignacio Sottorff‎ et al.
  • Marine drugs‎
  • 2019‎

The presence of two known anthraquinones, Lupinacidin A and Galvaquinone B, which have antitumor activity, has been identified in the sea anemone (Gyractis sesere) from Easter Island. So far, these anthraquinones have been characterized from terrestrial and marine Actinobacteria only. In order to identify the anthraquinones producer, we isolated Actinobacteria associated with the sea anemone and obtained representatives of seven actinobacterial genera. Studies of cultures of these bacteria by HPLC, NMR, and HRLCMS analyses showed that the producer of Lupinacidin A and Galvaquinone B indeed was one of the isolated Actinobacteria. The producer strain, SN26_14.1, was identified as a representative of the genus Verrucosispora. Genome analysis supported the biosynthetic potential to the production of these compounds by this strain. This study adds Verrucosispora as a new genus to the anthraquinone producers, in addition to well-known species of Streptomyces and Micromonospora. By a cultivation-based approach, the responsibility of symbionts of a marine invertebrate for the production of complex natural products found within the animal's extracts could be demonstrated. This finding re-opens the debate about the producers of secondary metabolites in sea animals. Finally, it provides valuable information about the chemistry of bacteria harbored in the geographically-isolated and almost unstudied, Easter Island.


Rhubarb Anthraquinones Protect Rats against Mercuric Chloride (HgCl₂)-Induced Acute Renal Failure.

  • Dan Gao‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

Mercury (Hg) causes severe nephrotoxicity in subjects with excess exposure. This work attempted to identify whether a natural medicine--rhubarb--has protective effects against mercuric chloride (HgCl₂)-induced acute renal failure (ARF), and which of its components contributed most to the treatment. Total rhubarb extract (TR) were separated to the total anthraquinones (TA), the total tannins (TT) and remaining component extract (RC). Each extract was orally pre-administered to rats for five successive days followed by HgCl₂ injection to induce kidney injury. Subsequently, renal histopathology and biochemical examinations were performed in vitro to evaluate the protective effects. Pharmacological studies showed that TR and TA, but not TT or RC manifested significant protection activity against HgCl₂-induced ARF. There were also significant declines of serum creatine, urea nitrogen values and increases of total protein albumin levels in TR and TA treated groups compared to HgCl₂ alone (p < 0.05). At last, the major components in TA extract were further identified as anthraquinones by liquid chromatography coupled mass spectroscopy. This study thus provides observational evidences that rhubarb could ameliorate HgCl₂-induced ARF and its anthraquinones in particular are the effective components responsible for this activity in rhubarb extract.


Xanthones and anthraquinones from the soil fungus Penicillium sp. DWS10-P-6.

  • Ya-Jing Wang‎ et al.
  • RSC advances‎
  • 2021‎

Two new xanthones, oxisterigmatocystins J and K (1-2), and two new anthraquinones, versicolorins D and E (3-4), were isolated from solid cultures of the fungus Penicillium sp. DWS10-P-6, together with twelve known compounds (5-16). Their structures, including their absolute configurations, were characterized on the basis of extensive 1D NMR, 2D NMR, MS and CD spectral data. The cytotoxic activities of compounds 1-12 against HL-60, MDA-MB-231 and PC-3 cells were also evaluated. Compounds 4 and 5 showed significant cytotoxic activity against the HL-60 cell line with IC50 values of 1.65 μM and 1.05 μM, respectively.


Brominated thiophenes as precursors in the preparation of brominated and arylated anthraquinones.

  • Thies Thiemann‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2009‎

Brominated anthraquinones can be synthesized directly from bromothiophenes when these are reacted with 1,4-naphthoquinones in the presence of meta-chloroperoxybenzoic acid. The bromoanthraquinones are versatile building blocks in the preparation of arylated anthraquinones and of extended pi-systems with interspersed anthraquinone units.


Interaction of anthraquinones of Cassia occidentalis seeds with DNA and Glutathione.

  • Gati Krushna Panigrahi‎ et al.
  • Toxicology reports‎
  • 2018‎

Consumption of Cassia occidentalis (CO) seeds has been associated with the hepatomyoencephalopathy (HME) in children. Recently, we have characterized the toxic anthraquinones (AQs) such as Emodin, Rhein, Aloe-emodin, Chrysophanol and Physcion in CO seeds and detected these moieties in the bio fluids of CO poisoning cases. As AQs were detected in the serum of HME patients, their interaction with key biomolecules including protein, DNA and glutathione (GSH) is imperative. In this regard, we have previously reported the interaction of these AQs with serum albumin protein and their subsequent biological effects. However, the interaction of these AQs with DNA and GSH remained unexplored. In the present work, we have studied the binding of these AQs of CO seeds with DNA and GSH by fluorescence spectroscopy, UV-vis spectral analysis, molecular docking, and biochemical studies. Results indicated a higher binding affinity for Emodin (Ka = 3.854 × 104 L mol-1 S-1), Aloe-emodin (Ka = 0.961 × 104 L mol-1 S-1) and Rhein (Ka = 0.034 × 104 L mol-1 S-1) towards calf thymus DNA may be associated with their higher cytotoxicity. Alternatively, Physcion and Chrysophanol which showed less cytotoxicity in our earlier studies exhibited very low DNA binding. The binding pattern of all these AQs is consistent with the in-silico data. Absorption spectroscopy studies indicated the possible formation of GSH conjugate with Aloe-emodin and Physcion. Further biochemical measurement of GSH and GSSG (Glutathione disulfide) following incubation with AQs indicated that Aloe-emodin (28%) and Rhein (30%) oxidizes GSH to GSSG more as compared to other AQs. Taken together, these results suggest that the higher cytotoxicity of Rhein, Emodin and Aloe-emodin may be attributed to their potent DNA and GSH binding affinity.


Antiosteoporotic activity of anthraquinones from Morinda officinalis on osteoblasts and osteoclasts.

  • Yan-Bin Wu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2009‎

Bioactivity-guided fractionation led to the successful isolation of antiosteoporotic components, i.e. physicion (1), rubiadin-1-methyl ether (2), 2-hydroxy-1-methoxy- anthraquinone (3), 1,2-dihydroxy-3-methylanthraquinone (4), 1,3,8-trihydroxy-2-methoxy- anthraquinone (5), 2-hydroxymethyl-3-hydroxyanthraquinone (6), 2-methoxyanthraquinone (7) and scopoletin (8) from an ethanolic extract of the roots of Morinda officinalis. Compounds 4-8 are isolated for the first time from M. officinalis. Among them, compounds 2 and 3 promoted osteoblast proliferation, while compounds 4, 5 increased osteoblast ALP activity. All of the isolated compounds inhibited osteoclast TRAP activity and bone resorption, and the inhibitory effects on osteoclastic bone resorption of compounds 1 and 5 were stronger than that of other compounds. Taken together, antiosteoporotic activity of M. officinalis and its anthraquinones suggest therapeutic potential against osteoporosis.


A convenient separation strategy for fungal anthraquinones by centrifugal partition chromatography.

  • Fabian Hammerle‎ et al.
  • Journal of separation science‎
  • 2022‎

As recently shown, some fungal pigments exhibit significant photoactivity turning them into promising agents for the photodynamic treatment of microbial infections or malignant diseases. In the present study, a separation strategy for fungal anthraquinones was developed based on centrifugal partition chromatography. A suitable method was explored employing a methanolic extract of the fruiting bodies of Cortinarius sanguineus (Agaricales, Basidiomycota). An excellent fractionation was achieved using a biphasic solvent system comprising chloroform/ethyl acetate/methanol/water/acetic acid (3:1:3:2:1, v/v/v/v/v) operating in ascending mode. Experiments on an analytical scale with extracts of closely related Cortinarius species exhibited broad applicability of the devised system. Up to six pigments could be purified directly from the crude extract. Preparative-scale fractionation of the methanol extracts of C. malicorius and C. sanguineus demonstrated that up-scaling was possible without compromising selectivity.


Rhubarb free anthraquinones improved mice nonalcoholic fatty liver disease by inhibiting NLRP3 inflammasome.

  • Chao Wu‎ et al.
  • Journal of translational medicine‎
  • 2022‎

Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases and has become a huge public health issue worldwide. Inhibition of nucleotide oligomerization domain-like receptors containing pyrin domain 3 (NLRP3) inflammasome is a potential therapeutic strategy for NAFLD. Currently, there are no drugs targeting NLRP3 inflammasome for clinical treatment of NAFLD. In this study, we explored the efficacy and mechanism of rhubarb free anthraquinones (RFAs) in treating NAFLD by inhibiting NLRP3 inflammasome.


Substituted anthraquinones represent a potential scaffold for DNA methyltransferase 1-specific inhibitors.

  • Rebecca L Switzer‎ et al.
  • PloS one‎
  • 2019‎

In humans, the most common epigenetic DNA modification is methylation of the 5-carbon of cytosines, predominantly in CpG dinucleotides. DNA methylation is an important epigenetic mark associated with gene repression. Disruption of the normal DNA methylation pattern is known to play a role in the initiation and progression of many cancers. DNA methyltransferase 1 (DNMT1), the most abundant DNA methyltransferase in humans, is primarily responsible for maintenance of the DNA methylation pattern and is considered an important cancer drug target. Recently, laccaic acid A (LCA), a highly substituted anthraquinone natural product, was identified as a direct, DNA-competitive inhibitor of DNMT1. Here, we have successfully screened a small library of simplified anthraquinone compounds for DNMT1 inhibition. Using an endonuclease-coupled DNA methylation assay, we identified two anthraquinone compounds, each containing an aromatic substituent, that act as direct DNMT1 inhibitors. These simplified anthraquinone compounds retain the DNA-competitive mechanism of action of LCA and exhibit some selectivity for DNMT1 over DNMT3a. The newly identified compounds are at least 40-fold less potent than LCA, but have significantly less complex structures. Collectively, this data indicates that substituted anthraquinone compounds could serve as a novel scaffold for developing DNMT1-specific inhibitors.


The Chemical Space of Marine Antibacterials: Diphenyl Ethers, Benzophenones, Xanthones, and Anthraquinones.

  • José X Soares‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

The emergence of multiresistant bacteria and the shortage of antibacterials in the drug pipeline creates the need to search for novel agents. Evolution drives the optimization of the structure of marine natural products to act as antibacterial agents. Polyketides are a vast and structurally diverse family of compounds that have been isolated from different marine microorganisms. Within the different polyketides, benzophenones, diphenyl ethers, anthraquinones, and xanthones have shown promising antibacterial activity. In this work, a dataset of 246 marine polyketides has been identified. In order to characterize the chemical space occupied by these marine polyketides, molecular descriptors and fingerprints were calculated. Molecular descriptors were analyzed according to the scaffold, and principal component analysis was performed to identify the relationships among the different descriptors. Generally, the identified marine polyketides are unsaturated, water-insoluble compounds. Among the different polyketides, diphenyl ethers tend to be more lipophilic and non-polar than the remaining classes. Molecular fingerprints were used to group the polyketides according to their molecular similarity into clusters. A total of 76 clusters were obtained, with a loose threshold for the Butina clustering algorithm, highlighting the large structural diversity of the marine polyketides. The large structural diversity was also evidenced by the visualization trees map assembled using the tree map (TMAP) unsupervised machine-learning method. The available antibacterial activity data were examined in terms of bacterial strains, and the activity data were used to rank the compounds according to their antibacterial potential. This potential ranking was used to identify the most promising compounds (four compounds) which can inspire the development of new structural analogs with better potency and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties.


Ultrasound-Assisted Encapsulation of Anthraquinones Extracted from Aloe-Vera Plant into Casein Micelles.

  • Uzma Sadiq‎ et al.
  • Gels (Basel, Switzerland)‎
  • 2022‎

Aloe-vera extracted anthraquinones (aloin, aloe-emodin, rhein) possess a wide range of biological activities, have poor solubility and are sensitive to processing conditions. This work investigated the ultrasound-assisted encapsulation of these extracted anthraquinones (AQ) into casein micelles (CM). The particle size and zeta potential of casein micelles loaded with aloin (CMA), aloe-emodin (CMAE), rhein (CMR) and anthraquinone powder (CMAQ) ranged between 171-179 nm and -23 to -17 mV. The AQ powder had the maximum encapsulation efficiency (EE%) (aloin 99%, aloe-emodin 98% and rhein 100%) and encapsulation yield, while the whole leaf Aloe vera gel (WLAG) had the least encapsulation efficiency. Spray-dried powder (SDP) and freeze-dried powder (FDP) of Aloe vera showed a significant increase in size and zeta potential related to superficial coating instead of encapsulation. The significant variability in size, zeta potential and EE% were related to anthraquinone type, its binding affinity, and its ratio to CM. FTIR spectra confirmed that the structure of the casein micelle remained unchanged with the binding of anthraquinones except in casein micelles loaded with whole-leaf aloe vera gel (CMWLAG), where the structure was deformed. Based on our findings, Aloe vera extracted anthraquinones powder (AQ) possessed the best encapsulation efficiency within casein micelles without affecting its structure. Overall, this study provides new insights into developing new product formulations through better utilization of exceptional properties of casein micelles.


Crosstalk of Cancer Signaling Pathways by Cyclic Hexapeptides and Anthraquinones from Rubia cordifolia.

  • Premalatha Balachandran‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

The anticancer activities of Rubia cordifolia and its constituents have been reported earlier, but their influence on the crosstalk of complex cancer-related signaling metabolic pathways (i.e., transcription factors; TF) has not yet been fully investigated. In this study, R. cordifolia root extract was subjected to the cancer signaling assay based bioactivity-guided fractionation, which yielded the following compounds viz., three anthraquinones, namely alizarin (1), purpurin (2), and emodin (3); two lignans, namely eudesmin (4) and compound 5; and two cyclic hexapeptides, namely deoxybouvardin RA-V (6), and a mixture of 6+9 (RA-XXI). The structures of the isolated compounds were determined by NMR spectroscopy and HRESIMS. The isolated compounds 1, 2, 3, 6, and a mixture of 6+9 were tested against a panel of luciferase reporter genes that assesses the activity of a wide-range of cancer-related signaling pathways. In addition, reference anthraquinones viz., chrysophanol (11), danthron (12), quinizarin (13), aloe-emodin (14), and α-lapachone (15) were also tested. Among the tested compounds, the cyclic hexapeptide 6 was found to be very active against several signaling pathways, notably Wnt, Myc, and Notch with IC50 values of 50, 75, and 93 ng/mL, respectively. Whereas, the anthraquinones exhibited very mild or no inhibition against these signaling pathways. Compound 6 being the most active, we tested it for stability in simulated intestinal (SIF) and gastric fluids (SGF), since the stability in biological fluid is a key short-coming of cyclic hexapeptides. The anticancer activity of 6 was found to remain unchanged before and after the treatment of simulated gastric/intestinal fluids, indicating that RA-V was stable. As a result, it could be bioavailable when orally used in therapeutics and possibly a drug candidate for cancer treatment. The mechanism for the preferential inhibition of these pathways and the possible crosstalk effect with other previously reported signaling pathways has been discussed.


Study of Tetrahydroxylated Anthraquinones-Potential Tool to Assess Degradation of Anthocyanins Rich Food.

  • Lukáš Kučera‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Degradation of anthocyanins involves scission of the flavonoid skeleton yielding 2,4,6-trihydroxybenzaldehyde (phloroglucinaldehyde, PGA) and a phenolic acid. However, the process is not finished with the formation of PGA, as the consequent condensation of two PGA molecules providing colored hydroxylated anthraquinones was observed for the first time. This process was studied using a combination of preparative column chromatography, nuclear magnetic resonance, liquid chromatography/high resolution tandem mass spectrometry (LC/HRMS2), and quantum calculations using density functional theory. 1,3,5,7-tetrahydroxyanthraquinone (anthrachrysone) and its isomers were found to rise during heating (95 °C) in a buffered PGA model solution (phosphate buffer, pH 7). These compounds were detected in heated red wine after an increase of its pH value. The concentration of the identified anthrachrysone in the red wine reached 0.01 mg·L-1. Presence of those compounds could therefore indicate involvement of certain steps in the processing of plant materials rich in anthocyanins (e.g., utilization of a higher temperature and/or reduction of acidity) or long-term transformation of anthocyanins (potentially, for instance, in archaeological findings such as wine or fruit residues). Additionally, measurement of wine-soil suspensions proved an increase of their pH to the values suitable for anthocyanin cleavage (neutral to slightly alkaline; reached using soil from archaeologically well-known Bull Rock Cave). Although not found in artificially prepared samples (imitations) or authentic materials so far, according to our results the above mentioned conditions are suitable for the formation of tetrahydroxylated anthraquinone derivatives and their monitoring would be beneficial.


Exploratory Quality Control Study for Polygonum multiflorum Thunb. Using Dinuclear Anthraquinones with Potential Hepatotoxicity.

  • Huiyu Gao‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

In recent years, the hepatotoxicity of Polygoni Multiflora Radix (PMR) has attracted increased research interest. Some studies suggest that anthraquinone may be the main hepatotoxic component. Most of the relevant studies have focused on the mononuclear anthraquinone component rather than binuclear anthraquinones. The hepatotoxicity of dinuclear anthraquinone (dianthrone) was investigated in a cell-based model. Next, a method for the determination of six free and total dianthonones in PMR and PMR Praeparata (PMRP) was established using ultra-high-performance liquid chromatography triple quadrupole mass spectrometry (UPLC-QQQ-MS/MS), which was then used to analyze the collected samples. The data show that four binuclear anthraquinone compounds were hepatotoxic and may be potential toxicity indicators for the safety evaluation of PMR and PMRP. Herein, we provide a theoretical basis for the improvement of PMRP quality standards.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: