Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 575 papers

Annexin A1 can inhibit the in vitro invasive ability of nasopharyngeal carcinoma cells possibly through Annexin A1/S100A9/Vimentin interaction.

  • Ying Xiao‎ et al.
  • PloS one‎
  • 2017‎

Annexin A1 is a member of a large superfamily of glucocorticoid-regulated, calcium- and phospholipid-binding proteins. Our previous studies have shown that the abnormal expression of Annexin A1 is related to the occurrence and development of nasopharyngeal carcinoma (NPC). To understand the roles of Annexin A1 in the tumorigenesis of NPC, targeted proteomic analysis was performed on Annexin A1-associated proteins from NPC cells. We identified 436 proteins associated with Annexin A1, as well as two Annexin A1-interacted key proteins, S100A9 and Vimentin, which were confirmed by co-immunoprecipitation. Gene function classification revealed that the Annexin A1-associated proteins can be grouped into 21 clusters based on their molecular functions. Protein-protein interaction analysis indicated that Annexin A1 /S100A9/Vimentin interactions may be involved in the invasion and metastasis of NPC because they can form complexes in NPC cells. The down-regulation of Annexin A1 in NPC may lead to the overexpression of S100A9/Vimentin, which may increase the possibility of the invasion ability of NPC cells by adjusting the function of cytoskeleton proteins. Results suggested that the biological functions of Annexin A1 in NPC were diverse, and that Annexin A1 can inhibit the in vitro invasive ability of NPC cells through Annexin A1 /S100A9/Vimentin interaction.


Increased adiposity in annexin A1-deficient mice.

  • Rand T Akasheh‎ et al.
  • PloS one‎
  • 2013‎

Production of Annexin A1 (ANXA1), a protein that mediates the anti-inflammatory action of glucocorticoids, is altered in obesity, but its role in modulation of adiposity has not yet been investigated. The objective of this study was to investigate modulation of ANXA1 in adipose tissue in murine models of obesity and to study the involvement of ANXA1 in diet-induced obesity in mice. Significant induction of ANXA1 mRNA was observed in adipose tissue of both C57BL6 and Balb/c mice with high fat diet (HFD)-induced obesity versus mice on chow diet. Upregulation of ANXA1 mRNA was independent of leptin or IL-6, as demonstrated by use of leptin-deficient ob/ob mice and IL-6 KO mice. Compared to WT mice, female Balb/c ANXA1 KO mice on HFD had increased adiposity, as indicated by significantly elevated body weight, fat mass, leptin levels, and adipocyte size. Whereas Balb/c WT mice upregulated expression of enzymes involved in the lipolytic pathway in response to HFD, this response was absent in ANXA1 KO mice. A significant increase in fasting glucose and insulin levels as well as development of insulin resistance was observed in ANXA1 KO mice on HFD compared to WT mice. Elevated plasma corticosterone levels and blunted downregulation of 11-beta hydroxysteroid dehydrogenase type 1 in adipose tissue was observed in ANXA1 KO mice compared to diet-matched WT mice. However, no differences between WT and KO mice on either chow or HFD were observed in expression of markers of adipose tissue inflammation. These data indicate that ANXA1 is an important modulator of adiposity in mice, with female ANXA1 KO mice on Balb/c background being more susceptible to weight gain and diet-induced insulin resistance compared to WT mice, without significant changes in inflammation.


Annexin A1 complex mediates oxytocin vesicle transport.

  • V Makani‎ et al.
  • Journal of neuroendocrinology‎
  • 2013‎

Oxytocin is a major neuropeptide that modulates the brain functions involved in social behaviour and interaction. Despite of the importance of oxytocin for the neural control of social behaviour, little is known about the molecular mechanism(s) by which oxytocin secretion in the brain is regulated. Pro-oxytocin is synthesised in the cell bodies of hypothalamic neurones in the supraoptic and paraventricular nuclei and processed to a 9-amino-acid mature form during post-Golgi transport to the secretion sites at the axon terminals and somatodendritic regions. Oxytocin secreted from the somatodendritic regions diffuses throughout the hypothalamus and its neighbouring brain regions. Some oxytocin-positive axons innervate and secrete oxytocin to the brain regions distal to the hypothalamus. Brain oxytocin binds to its receptors in the brain regions involved in social behaviour. Oxytocin is also secreted from the axon terminal at the posterior pituitary gland into the blood circulation. We have discovered a new molecular complex consisting of annexin A1 (ANXA1), A-kinase anchor protein 150 (AKAP150) and microtubule motor that controls the distribution of oxytocin vesicles between the axon and the cell body in a protein kinase A (PKA)- and protein kinase C (PKC)-sensitive manner. ANXA1 showed significant co-localisation with oxytocin vesicles. Activation of PKA enhanced the association of kinesin-2 with ANXA1, thus increasing the axon-localisation of oxytocin vesicles. Conversely, activation of PKC decreased the binding of kinesin-2 to ANXA1, thus attenuating the axon-localisation of oxytocin vesicles. The result of the present study suggest that ANXA1 complex coordinates the actions of PKA and PKC to control the distribution of oxytocin vesicles between the axon and the cell body.


Ubiquitination and SUMOylation of annexin A1 and helicase activity.

  • Fusao Hirata‎ et al.
  • Biochimica et biophysica acta‎
  • 2010‎

While annexin A1 in nuclei is proposed to be involved in cell transformation, its functions remain poorly understood. Since annexin A1 has the consensus motif, ¹⁶⁰LKRD, for SUMOylation as well as Ks, acceptors for ubiquitination that regulates localization and functions of proteins, we investigated SUMOylation and ubiquitination of annexin A1.


Annexin A1 exerts renoprotective effects in experimental crescentic glomerulonephritis.

  • Robert Labes‎ et al.
  • Frontiers in physiology‎
  • 2022‎

Non-resolving inflammation plays a critical role during the transition from renal injury towards end-stage renal disease. The glucocorticoid-inducible protein annexin A1 has been shown to function as key regulator in the resolution phase of inflammation, but its role in immune-mediated crescentic glomerulonephritis has not been studied so far. Methods: Acute crescentic glomerulonephritis was induced in annexin A1-deficient and wildtype mice using a sheep serum against rat glomerular basement membrane constituents. Animals were sacrificed at d5 and d10 after nephritis induction. Renal leukocyte abundance was studied by immunofluorescence and flow cytometry. Alterations in gene expression were determined by RNA-Seq and gene ontology analysis. Renal levels of eicosanoids and related lipid products were measured using lipid mass spectrometry. Results: Histological analysis revealed an increased number of sclerotic glomeruli and aggravated tubulointerstitial damage in the kidneys of annexin A1-deficient mice compared to the wildtype controls. Flow cytometry analysis confirmed an increased number of CD45+ leukocytes and neutrophil granulocytes in the absence of annexin A1. Lipid mass spectrometry showed elevated levels of prostaglandins PGE2 and PGD2 and reduced levels of antiinflammatory epoxydocosapentaenoic acid regioisomers. RNA-Seq with subsequent gene ontology analysis revealed induction of gene products related to leukocyte activation and chemotaxis as well as regulation of cytokine production and secretion. Conclusion: Intrinsic annexin A1 reduces proinflammatory signals and infiltration of neutrophil granulocytes and thereby protects the kidney during crescentic glomerulonephritis. The annexin A1 signaling cascade may therefore provide novel targets for the treatment of inflammatory kidney disease.


Endogenous annexin A1 counter-regulates bleomycin-induced lung fibrosis.

  • Amílcar S Damazo‎ et al.
  • BMC immunology‎
  • 2011‎

The balancing functions of pro/anti-inflammatory mediators of the complex innate responses have been investigated in a variety of experimental inflammatory settings. Annexin-A1 (AnxA1) is one mediator of endogenous anti-inflammation, affording regulation of leukocyte trafficking and activation in many contexts, yet its role in lung pathologies has been scarcely investigated, despite being highly expressed in lung cells. Here we have applied the bleomycin lung fibrosis model to AnxA1 null mice over a 21-day time-course, to monitor potential impact of this mediator on the control of the inflammatory and fibrotic phases.


Modulation of experimental autoimmune encephalomyelitis by endogenous annexin A1.

  • Nikolaos Paschalidis‎ et al.
  • Journal of neuroinflammation‎
  • 2009‎

Autoimmune diseases, like multiple sclerosis, are triggered by uncontrolled activation of cells of the immune system against self-antigen present, for instance, in the central nervous system. We have reported novel biological functions for Annexin A1, an effector of endogenous anti-inflammation, to produce positive actions on the adaptive immune system by reducing the threshold of T cell activation. In this study, we investigated the potential modulatory role of Annexin A1 in the development of experimental autoimmune encephalomyelitis, a model of multiple sclerosis.


Annexin A1 attenuates EMT and metastatic potential in breast cancer.

  • Sabine Maschler‎ et al.
  • EMBO molecular medicine‎
  • 2010‎

Metastasis is the major cause of carcinoma-induced death, but mechanisms involved are poorly understood. Metastasis crucially involves epithelial-to-mesenchymal transition (EMT), causing loss of epithelial polarity. Here we identify Annexin A1 (AnxA1), a protein with important functions in intracellular vesicle trafficking, as an efficient suppressor of EMT and metastasis in breast cancer. AnxA1 levels were strongly reduced in EMT of mammary epithelial cells, in metastatic murine and human cell lines and in metastatic mouse and human carcinomas. RNAi-mediated AnxA1 knockdown cooperated with oncogenic Ras to induce TGFβ-independent EMT and metastasis in non-metastatic cells. Strikingly, forced AnxA1 expression in metastatic mouse and human mammary carcinoma cells reversed EMT and abolished metastasis. AnxA1 knockdown stimulated multiple signalling pathways but only Tyk2/Stat3 and Erk1/2 signalling were essential for EMT.


Role of Annexin A1 in Squamous Cell Lung Cancer Progression.

  • Omar Elakad‎ et al.
  • Disease markers‎
  • 2021‎

Lung cancer remains the primary cause of cancer-related death worldwide, and its molecular mechanisms of tumor progression need further characterization to improve the clinical management of affected patients. The role of Annexin A1 (ANXA1) in tumorigenesis and cancer progression in general and especially in lung cancer remains to be controversial and seems to be highly tissue specific and inconsistent among tumor initiation, progression, and metastasis. In the current study, we investigated ANXA1 expression in 81 squamous cell lung cancer (SQCLC), 86 pulmonary adenocarcinoma (AC), and 30 small cell lung cancer (SCLC) patient-derived tissue samples and its prognostic impact on patient's survival. Mechanistically, we analyzed the impact of ANXA1 expression on proliferation and migration of SQCLC cell lines using CRISPR-Cas9 and mammalian overexpression vectors. Strong expression of ANXA1 was significantly correlated to longer overall survival only in SQCLC patients (P = 0.019). Overexpression of ANXA1 promoted proliferation in SQCLC cell lines but suppressed their migration, while knockout of ANXA1 promoted cell migration and suppressed proliferation. In conclusion, ANXA1 expression might elongate patients' survival by inhibiting tumor cell migration and subsequent metastasis.


Endogenous Annexin-A1 Negatively Regulates Mast Cell-Mediated Allergic Reactions.

  • Ajantha Sinniah‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Mast cell stabilizers like cromoglycate and nedocromil are mainstream treatments for ocular allergy. Biochemical studies in vitro suggest that these drugs prevent mast cell degranulation through the release of Annexin-A1 (Anx-A1) protein. However, the direct effect of Anx-A1 gene deletion on mast cell function in vitro and in vivo is yet to be fully investigated. Hence, we aim to elucidate the role of Anx-A1 in mast cell function, both in vivo and in vitro, using a transgenic mouse model where the Anx-A1 gene has been deleted. Bone marrow-derived mast cells (BMDMCs) were cultured from wild-type animals and compared throughout their development to BMDMCs obtained from mice lacking the Anx-A1 gene. The mast cell differentiation, maturity, mediator, and cytokine release were explored using multiple biochemical techniques, such as Western blots, ELISA, and flow cytometry analysis. Electron microscopy was used to identify metachromatic granules content of cells. For in vivo studies, Balb/C wild-type and Anx-A1-deficient mice were divided into the following groups: group 1, a control receiving only saline, and group 2, which had been sensitized by prior exposure to short ragweed (SRW) pollen by topical contact with the conjunctival mucosae. Allergic conjunctivitis was evaluated blind after 24 h by trained observers scoring clinical signs. Electron micrographs of BMDMCs from Anx-A1-null mice revealed more vacuoles overall and more fused vacuoles than wild-type cells, suggesting enhanced secretory activity. Congruent with these observations, BMDMCs lacking the Anx-A1 gene released significantly increased amounts of histamine both spontaneously as well as in response to Ig-E-FcεRI cross-linking compared to those from wild-type mice. Interestingly, the spontaneous release of IL-5, IL-6, IL-9, and monocyte chemoattractant protein-1 (MCP-1) were also markedly increased with a greater production observed upon IgE cross-linking. This latter finding is congruent with augmented calcium mobilization in BMDMCs lacking the Anx-A1 gene. In vivo, when compared to wild-type animals, Anx-A1-deficient mice exposed to SRW pollen displayed exacerbated signs and symptoms of allergic conjunctivitis. Taken together, these results suggest Anx-A1 is an important non-redundant regulator of mast cell reactivity and particularly in allergen mediated allergic reactions.


Neonatal hyperoxic exposure persistently alters lung secretoglobins and annexin A1.

  • Thomas M Raffay‎ et al.
  • BioMed research international‎
  • 2013‎

Altered functions of the lung epithelial surface likely contribute to the respiratory morbidities in infants with bronchopulmonary dysplasia (BPD). Infants with BPD exhibit decreased expressions of secretoglobins (SCGBs), including Clara cell secretory protein (CCSP). Expression of lung SCGB and annexin A1 (ANXA1) is persistently altered in CCSP knockout mice suggesting that CCSP indirectly influences innate immune responses. The present studies tested the hypothesis that neonatal hyperoxic exposure induces deficits in CCSP expression that are associated with persistent alterations in lung SCGB and ANXA1 expression. Newborn C3H/HeN mice were exposed to room air (RA) or 85% O2 from birth and were sacrificed at 14 d or returned to RA for 14 d. Neonatal hyperoxia followed by RA recovery was associated with decreased lung CCSP and SCGB3A1 protein but not mRNA expression. Hyperoxia-induced alterations in the charge characteristics of ANXA1 were unchanged by RA recovery and were associated with elevated lung macrophage numbers. These findings support a model in which hyperoxia-induced alterations in Clara cell function influence lung innate immune function through effects on immunomodulatory proteins. Studies to determine the mechanism(s) by which CCSP alterations affect SCGBs, ANXA1, and innate immune responses in BPD are warranted.


Role of Annexin A1 Secreted by Neutrophils in Melanoma Metastasis.

  • Silvana Sandri‎ et al.
  • Cells‎
  • 2023‎

Annexin A1 (AnxA1) is highly secreted by neutrophils and binds to formyl peptide receptors (FPRs) to trigger anti-inflammatory effects and efferocytosis. AnxA1 is also expressed in the tumor microenvironment, being mainly attributed to cancer cells. As recruited neutrophils are player cells at the tumor sites, the role of neutrophil-derived AnxA1 in lung melanoma metastasis was investigated here. Melanoma cells and neutrophils expressing AnxA1 were detected in biopsies from primary melanoma patients, which also presented higher levels of serum AnxA1 and augmented neutrophil-lymphocyte ratio (NLR) in the blood. Lung melanoma metastatic mice (C57BL/6; i.v. injected B16F10 cells) showed neutrophilia, elevated AnxA1 serum levels, and higher labeling for AnxA1 in neutrophils than in tumor cells at the lungs with metastasis. Peritoneal neutrophils collected from naïve mice were co-cultured with B16F10 cells or employed to obtain neutrophil-conditioned medium (NCM; 18 h incubation). B16F10 cells co-cultured with neutrophils or with NCM presented higher invasion, which was abolished if B16F10 cells were previously incubated with FPR antagonists or co-cultured with AnxA1 knockout (AnxA1-/-) neutrophils. The depletion of peripheral neutrophils during lung melanoma metastasis development (anti-Gr1; i.p. every 48 h for 21 days) reduced the number of metastases and AnxA1 serum levels in mice. Our findings show that AnxA1 secreted by neutrophils favors melanoma metastasis evolution via FPR pathways, addressing AnxA1 as a potential biomarker for the detection or progression of melanoma.


Phosphatidylserine-Exposing Annexin A1-Positive Extracellular Vesicles: Potential Cancer Biomarkers.

  • Gloria I Perez‎ et al.
  • Vaccines‎
  • 2023‎

Under physiological conditions, phosphatidylserine (PS) predominantly localizes to the cytosolic leaflet of the plasma membrane of cells. During apoptosis, PS is exposed on the cell surface and serves as an "eat-me" signal for macrophages to prevent releasing self-immunogenic cellular components from dying cells which could potentially lead to autoimmunity. However, increasing evidence indicates that viable cells can also expose PS on their surface. Interestingly, tumor cell-derived extracellular vesicles (EVs) externalize PS. Recent studies have proposed PS-exposing EVs as a potential biomarker for the early detection of cancer and other diseases. However, there are confounding results regarding subtypes of PS-positive EVs, and knowledge of PS exposure on the EV surface requires further elucidation. In this study, we enriched small EVs (sEVs) and medium/large EVs (m/lEVs) from conditioned media of breast cancer cells (MDA-MB-231, MDA-MB-468) and non-cancerous cells (keratinocytes, fibroblasts). Since several PS-binding molecules are available to date, we compared recombinant proteins of annexin A5 and the carboxylated glutamic acid domain of Protein S (GlaS), also specific for PS, to detect PS-exposing EVs. Firstly, PS externalization in each EV fraction was analyzed using a bead-based EV assay, which combines EV capture using microbeads and analysis of PS-exposing EVs by flow cytometry. The bulk EV assay showed higher PS externalization in m/lEVs derived from MDA-MB-468 cells but not from MDA-MB-231 cells, while higher binding of GlaS was also observed in m/lEVs from fibroblasts. Second, using single EV flow cytometry, PS externalization was also analyzed on individual sEVs and m/lEVs. Significantly higher PS externalization was detected in m/lEVs (annexin A1+) derived from cancer cells compared to m/lEVs (annexin A1+) from non-cancerous cells. These results emphasize the significance of PS-exposing m/lEVs (annexin A1+) as an undervalued EV subtype for early cancer detection and provide a better understanding of PS externalization in disease-associated EV subtypes.


Annexin A1 and A2: roles in retrograde trafficking of Shiga toxin.

  • Lionel Tcatchoff‎ et al.
  • PloS one‎
  • 2012‎

Annexins constitute a family of calcium and membrane binding proteins. As annexin A1 and A2 have previously been linked to various membrane trafficking events, we initiated this study to investigate the role of these annexins in the uptake and intracellular transport of the bacterial Shiga toxin (Stx) and the plant toxin ricin. Once endocytosed, both toxins are retrogradely transported from endosomes to the Golgi apparatus and the endoplasmic reticulum before being targeted to the cytosol where they inhibit protein synthesis. This study was performed to obtain new information both about toxin transport and the function of annexin A1 and annexin A2. Our data show that depletion of annexin A1 or A2 alters the retrograde transport of Stx but not ricin, without affecting toxin binding or internalization. Knockdown of annexin A1 increases Golgi transport of Stx, whereas knockdown of annexin A2 slightly decreases the same transport step. Interestingly, annexin A1 was found in proximity to cytoplasmic phospholipase A2 (cPLA(2)), and the basal as well as the increased Golgi transport of Stx upon annexin A1 knockdown is dependent on cPLA(2) activity. In conclusion, annexin A1 and A2 have different roles in Stx transport to the trans-Golgi network. The most prominent role is played by annexin A1 which normally works as a negative regulator of retrograde transport from the endosomes to the Golgi network, most likely by complex formation and inhibition of cPLA(2).


Annexin A1 attenuates cardiac diastolic dysfunction in mice with inflammatory arthritis.

  • Jianmin Chen‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

Rheumatoid arthritis (RA) carries a twofold increased incidence of heart failure with preserved ejection fraction, accompanied by diastolic dysfunction, which can lead to death. The causes of diastolic dysfunction are unknown, and there are currently no well-characterized animal models for studying these mechanisms. Current medications for RA do not have marked beneficial cardio-protective effects. K/BxN F1 progeny and KRN control mice were analyzed over time for arthritis development, monitoring left ventricular diastolic and systolic function using echocardiography. Excised hearts were analyzed by flow cytometry, qPCR, and histology. In pharmacological experiments, K/BxN F1 mice were treated with human recombinant AnxA1 (hrAnxA1, 1 μg/mouse) or vehicle daily. K/BxN F1 mice exhibited fully developed arthritis with normal cardiac function at 4 wk; however, by week 8, all mice displayed left ventricular diastolic dysfunction with preserved ejection fraction. This dysfunction was associated with cardiac hypertrophy, myocardial inflammation and fibrosis, and inflammatory markers. Daily treatment of K/BxN F1 mice with hrAnxA1 from weeks 4 to 8 halted progression of the diastolic dysfunction. The treatment reduced cardiac transcripts of proinflammatory cytokines and profibrotic markers. At the cellular level, hrAnxA1 decreased activated T cells and increased MHC IIlow macrophage infiltration in K/BxN F1 hearts. Similar effects were obtained when hrAnxA1 was administered from week 8 to week 15. We describe an animal model of inflammatory arthritis that recapitulates the cardiomyopathy of RA. Treatment with hrAnxA1 after disease onset corrected the diastolic dysfunction through modulation of both fibroblast and inflammatory cell phenotype within the heart.


The involvement of anti-inflammatory protein, annexin A1, in ocular toxoplasmosis.

  • Kallyne K Mimura‎ et al.
  • Molecular vision‎
  • 2012‎

The aim of this study was to evaluate the expression of the protein annexin A1 (ANXA1), a potent endogenous regulator of the inflammatory process, in ocular toxoplasmosis.


Augmenting Endogenous Levels of Retinal Annexin A1 Suppresses Uveitis in Mice.

  • Peter J Gardner‎ et al.
  • Translational vision science & technology‎
  • 2017‎

The purpose of this study was to examine the expression of the anti-inflammatory protein Annexin A1 (AnxA1) in mice and human retinae during uveitis and to determine whether local administration of human recombinant AnxA1 (hrAnxA1) can suppress uveitis in mice.


Urine annexin A1 as an index for glomerular injury in patients.

  • Shuk-Man Ka‎ et al.
  • Disease markers‎
  • 2014‎

We recently demonstrated high urine levels of annexin A1 (ANXA1) protein in a mouse Adriamycin-induced glomerulopathy (ADG) model.


Annexin A1 peptide and endothelial cell-conditioned medium modulate cervical tumorigenesis.

  • Laila Toniol Cardin‎ et al.
  • FEBS open bio‎
  • 2019‎

Cervical cancer is one of the leading causes of cancer death in women worldwide, and its tumorigenesis can be influenced by the microenvironment. The anti-inflammatory protein annexin A1 (ANXA1) has been reported to be associated with cancer progression and metastasis, suggesting that it plays a role in regulating tumour cell proliferation. Here, we examined the effect of the N-terminal peptide Ac2-26 of ANXA1 on the HaCaT cell line (normal) and HeLa cell line (cervical cancer) co-cultured with endothelium cell-conditioned medium (HMC). Treatment with Ac2-26 decreased proliferation and increased motility of cervical cancer cells, but did not affect cellular morphology or viability. Combined HMC stimulus and Ac2-26 treatment resulted in an increase in apoptotic HeLa cells, upregulated expression of MMP2, and downregulated expression of COX2,EP3 and EP4. In conclusion, Ac2-26 treatment may modulate cellular and molecular mechanisms underlying cervical carcinogenesis.


Role of Annexin A1 in NLRP3 Inflammasome Activation in Murine Neutrophils.

  • José Marcos Sanches‎ et al.
  • Cells‎
  • 2021‎

This study evaluated the role of endogenous and exogenous annexin A1 (AnxA1) in the activation of the NLRP3 inflammasome in isolated peritoneal neutrophils. C57BL/6 wild-type (WT) and AnxA1 knockout mice (AnxA1-/-) received 0.3% carrageenan intraperitoneally and, after 3 h, the peritoneal exudate was collected. WT and AnxA1-/- neutrophils were then stimulated with lipopolysaccharide, followed by the NLRP3 agonists nigericin or ATP. To determine the exogenous effect of AnxA1, the neutrophils were pretreated with the AnxA1-derived peptide Ac2-26 followed by the NLRP3 agonists. Ac2-26 administration reduced NLRP3-derived IL-1β production by WT neutrophils after nigericin and ATP stimulation. However, IL-1β release was impaired in AnxA1-/- neutrophils stimulated by both agonists, and there was no further impairment in IL-1β release with Ac2-26 treatment before stimulation. Despite this, ATP- and nigericin-stimulated AnxA1-/- neutrophils had increased levels of cleaved caspase-1. The lipidomics of supernatants from nigericin-stimulated WT and AnxA1-/- neutrophils showed potential lipid biomarkers of cell stress and activation, including specific sphingolipids and glycerophospholipids. AnxA1 peptidomimetic treatment also increased the concentration of phosphatidylserines and oxidized phosphocholines, which are lipid biomarkers related to the inflammatory resolution pathway. Together, our results indicate that exogenous AnxA1 negatively regulates NLRP3-derived IL-1β production by neutrophils, while endogenous AnxA1 is required for the activation of the NLRP3 machinery.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: