Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 346 papers

Proton-gated anion transport governs macropinosome shrinkage.

  • Mariia Zeziulia‎ et al.
  • Nature cell biology‎
  • 2022‎

Intracellular organelles change their size during trafficking and maturation. This requires the transport of ions and water across their membranes. Macropinocytosis, a ubiquitous form of endocytosis of particular importance for immune and cancer cells, generates large vacuoles that can be followed optically. Shrinkage of macrophage macropinosomes depends on TPC-mediated Na+ efflux and Cl- exit through unknown channels. Relieving osmotic pressure facilitates vesicle budding, positioning osmotic shrinkage upstream of vesicular sorting and trafficking. Here we identify the missing macrophage Cl- channel as the proton-activated Cl- channel ASOR/TMEM206. ASOR activation requires Na+-mediated depolarization and luminal acidification by redundant transporters including H+-ATPases and CLC 2Cl-/H+ exchangers. As corroborated by mathematical modelling, feedback loops requiring the steep voltage and pH dependencies of ASOR and CLCs render vacuole resolution resilient towards transporter copy numbers. TMEM206 disruption increased albumin-dependent survival of cancer cells. Our work suggests a function for the voltage and pH dependence of ASOR and CLCs, provides a comprehensive model for ion-transport-dependent vacuole maturation and reveals biological roles of ASOR.


Identification and characterization of the three members of the CLC family of anion transport proteins in Trypanosoma brucei.

  • Michael E Steinmann‎ et al.
  • PloS one‎
  • 2017‎

CLC type anion transport proteins are homo-dimeric or hetero-dimeric with an integrated transport function in each subunit. We have identified and partially characterized three members of this family named TbVCL1, TbVCL2 and TbVCL3 in Trypanosoma brucei. Among the human CLC family members, the T. brucei proteins display highest similarity to CLC-6 and CLC-7. TbVCL1, but not TbVCL2 and TbVCL3 is able to complement growth of a CLC-deficient Saccharomyces cerevisiae mutant. All TbVCL-HA fusion proteins localize intracellulary in procyclic form trypanosomes. TbVCL1 localizes close to the Golgi apparatus and TbVCL2 and TbVCL3 to the endoplasmic reticulum. Upon expression in Xenopus oocytes, all three proteins induce similar outward rectifying chloride ion currents. Currents are sensitive to low concentrations of DIDS, insensitive to the pH in the range 5.4 to 8.4 and larger in nitrate than in chloride medium.


Stimulatory effect on the transport mediated by organic anion transporting polypeptide 2B1.

  • Jiro Ogura‎ et al.
  • Asian journal of pharmaceutical sciences‎
  • 2020‎

Drug-drug interaction (DDI) is one of causes of adverse drug events and can result in life-threatening consequences. Organic anion-transporting polypeptide (OATP) 2B1 is a major uptake transporter in the intestine and contributes to transport various clinically used therapeutic agents. The intestine has a high risk of DDI, because it has a special propensity to be exposed to a high concentration of drugs. Thus, understanding drug interaction mediated by OATP2B1 in the absorption process is important for the prevention of adverse drug events, including decrease in the therapeutic effect of co-administered drugs. Acute drug interaction occurs through the direct inhibitory effect on transporters, including OATP2B1. Moreover, some compounds such as clinically used drugs and food components have an acute stimulatory effect on transport of co-administered drugs by OATP2B1. This review summarizes the acute stimulatory effect on the transport mediated by OATP2B1 and discusses the mechanisms of the acute stimulatory effects of compounds. There are two types of acute stimulatory effects, substrate-independent and -dependent interactions on OATP2B1 function. The facilitating translocation of OATP2B1 to the plasma membrane is one of causes for the substrate-independent acute stimulatory effect. On the contrary, the substrate-dependent effect is based on the direct binding to the substrate-binding site or allosteric progesterone-binding site of OATP2B1.


Mutational analysis of the conserved carboxylates of anion channelrhodopsin-2 (ACR2) expressed in Escherichia coli and their roles in anion transport.

  • Keiichi Kojima‎ et al.
  • Biophysics and physicobiology‎
  • 2018‎

Anion channelrhodopsin-2 (ACR2), a light-gated channel recently identified from the cryptophyte alga Guillardia theta, exhibits anion channel activity with exclusive selectivity. In addition to its novel function, ACR2 has become a focus of interest as a powerful tool for optogenetics. Here we combined experimental and computational approaches to investigate the roles of conserved carboxylates on the anion transport activity of ACR2 in Escherichia coli membrane. First, we replaced six conserved carboxylates with a neutral residue (i.e. E9Q, E56Q, E64Q, E159Q, E219Q and D230N), and measured anion transport activity using E. coli expression system. E159Q and D230N exhibited significantly lower anion transport activity compared with wild-type ACR2 (1/12~1/3.4), which suggests that E159 and D230 play important roles in the anion transport. Second, to explain its molecular aspects, we constructed a homology model of ACR2 based on the crystal structure of a cation channelrhodopsin (ChR). The model structure showed a cavity formed by four transmembrane helices (TM1, TM2, TM3 and TM7) similar to ChRs, as a putative anion conducting pathway. Although E159 is not located in the putative pathway, the model structure showed hydrogen bonds between E159 and R129 with a water molecule. D230 is located in the pathway near the protonated Schiff base (PSB) of the chromophore retinal, which suggests that there is an interaction between D230 and the PSB. Thus, we demonstrated the functional importance and the hypothetical roles of two conserved carboxylates, E159 and D230, in the anion transport activity of ACR2 in E. coli membrane.


Environmental contaminants modulate transport activity of zebrafish organic anion transporters Oat1 and Oat3.

  • Jelena Dragojević‎ et al.
  • Comparative biochemistry and physiology. Toxicology & pharmacology : CBP‎
  • 2020‎

Organic anion transporters (OATs) are transmembrane proteins which belong to SLC22 subfamily. They are responsible for the uptake of various endo- and xenobiotics into the cells of different organs and tissues. Following our previous work on characterization of zebrafish Oat1 and Oat3, in this study we analyzed interaction of various classes of environmental contaminants with these membrane transporters using the transport activity assay with HEK293 Flp-In cell line stably overexpressing zebrafish Oat1 and Oat3, respectively. Based on the initial screening of a series of 36 environmental contaminants on their ability to interact with zebrafish Oat1 and Oat3, the most potent interactors were selected, their IC50 values calculated and type of interaction determined. Finally, to further confirm the type of interaction and initially evaluate their toxic potential, the cytotoxicity assays were performed. Broad ligand selectivity and similarity of zebrafish Oat1 and Oat3 with mammalian orthologs was confirmed and potent interactors among environmental contaminants identified.


A Novel Cyclic Mobile Transporter Can Induce Apoptosis by Facilitating Chloride Anion Transport into Cells.

  • Goutam Kulsi‎ et al.
  • ACS omega‎
  • 2020‎

We report here the preparation of an aminoxy amide-based pseudopeptide-derived building block using furanoid sugar molecules. Through the cyclo-oligomerization reaction, we generate a hybrid triazole/aminoxy amide macrocycle using the as-prepared building block. The novel conformation of the macrocycle has been characterized using NMR and molecular modeling studies, which show a strong resemblance of our synthesized compound to d-,l-α-aminoxy acid-based cyclic peptides that contain uniform backbone chirality. We observe that the macrocycle can efficiently and selectively bind Cl- ion and transport Cl- ion across a lipid bilayer. 1H NMR anion binding studies suggest a coherent relationship between the acidity of aminoxy amide N-H and triazole C-H proton binding strength. Using time-based fluorescence assay, we show that the macrocycle acts as a mobile transporter and follows an antiport mechanism. Our synthesized macrocycle imposes cancer cell death by disrupting ionic homeostasis through Cl- ion transport. The macrocycle induced cytochrome c leakage and changes in mitochondrial membrane potential along with activation of family of caspases, suggesting that the cellular apoptosis occurs through a caspase-dependent intrinsic pathway. The present results suggest the possibility of using the macrocycle as a biological tool of high therapeutic value.


Ca2+ efflux facilitated by co-transport of inorganic phosphate anion in the H+/Ca2+ antiporter YfkE.

  • Wei Niu‎ et al.
  • Communications biology‎
  • 2023‎

Ca2+ is an important signaling messenger. In microorganisms, fungi, and plants, H+/Ca2+ antiporters (CAX) are known to play key roles in the homeostasis of intracellular Ca2+ by catalyzing its efflux across the cell membrane. Here, we reveal that the bacterial CAX homolog YfkE transports Ca2+ in two distinct modes: a low-flux H+/Ca2+ exchange mode and a high-flux mode in which Ca2+ and phosphate ions are co-transported (1:1) in exchange for H+. Coupling with phosphate greatly accelerates the Ca2+ efflux activity of YfkE. Our studies reveal that Ca2+ and phosphate bind to adjacent sites in a central translocation pathway and lead to mechanistic insights that explain how this CAX alters its conserved alpha-repeat motifs to adopt phosphate as a specific "transport chaperon" for Ca2+ translocation. This finding uncovers a co-transport mechanism within the CAX family that indicates this class of proteins contributes to the cellular homeostasis of both Ca2+ and phosphate.


Effects of Increased Uric Acid Intake on the Abundance of Urate-anion exchanger and Organic Anion Transporter Proteins in the Rat Kidney.

  • Sua Kim‎ et al.
  • Electrolyte & blood pressure : E & BP‎
  • 2007‎

Renal handling of uric acid mainly occurs in the proximal tubule, and bidirectional transport of urate may involve apical absorption via the urate-anion exchanger (URAT1) and basolateral uptake via organic anion transporters (OAT1 and OAT3). In rat kidneys, we investigated whether the protein abundance of URAT1, OAT1, and OAT3 is affected by the increase in uric acid intake. Male Sprague-Dawley rats were randomly divided into control and uric acid-supplemented groups, and uric acid-supplemented rats were given 0.75 g of uric acid per 180 g body weight per day for 8 days. After the animal experiment, kidneys were harvested and semi-quantitative immunoblotting was carried out from cortical homogenates using polyclonal peptide-derived antibodies to URAT1, OAT1, and OAT3. Serum uric acid level showed an increasing tendency in the uric acid-supplemented rats compared with control rats, whereas urinary uric acid excretion was not significantly different between the uric acid-supplemented rats and control rats. URAT1 protein abundance in cortical homogenates was not significantly different between the uric acid-supplemented rats and control rats. However, OAT1 protein abundance was significantly increased in the uric acid-supplemented rats compared with the control rats. OAT3 protein abundance was not significantly different between the uric acid-supplemented rats and control rats. In conclusion, OAT1 may have a regulatory role in response to the increase in uric acid intake in the rat kidney. The up-regulation of OAT1 would exert stimulation of urinary uric acid excretion and might contribute to protection from hyperuricemia.


Organic Anion Transporting Polypeptide 3A1 (OATP3A1)-Gated Bio-Orthogonal Labeling of Intracellular Proteins.

  • Krisztina Németh‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Organic anion transporting polypeptides (OATPs) were found to readily deliver membrane impermeable, tetrazine bearing fluorescent probes into cells. This feature was explored in OATP3A1 conditioned bio-orthogonal labeling schemes of various intracellular proteins in live cells. Confocal microscopy and super-resolution microscopy (STED) studies have shown that highly specific and efficient staining of the selected intracellular proteins can be achieved with the otherwise non-permeable probes when OATP3A1 is present in the cell membrane of cells. Such a transport protein linked bio-orthogonal labeling scheme is believed to be useful in OATP3A1 activity-controlled protein expression studies in the future.


Co-Poly(ionic liquid) Films via Anion Exchange for the Continuous Tunability of Ion Transport and Wettability.

  • Ian Njoroge‎ et al.
  • ACS omega‎
  • 2018‎

This manuscript details a novel and simple approach to achieve surface-tethered co-poly(ionic liquid) (coPIL) films through the exchange of the resident anion of a poly(ionic liquid) (PIL) film with two or more anions. Initially, surface-tethered PIL films were prepared by the surface-initiated ring-opening metathesis polymerization of the ionic liquid monomer 3-[(bicyclo[2.2.1]hept-5-en-2-yl)methyl]-1,2-dimethylimidazol-3-ium hexafluorophosphate ([N1-dMIm][PF6]) whose PF6 - anion was easily interchanged with aqueous solutions containing a binary mixture of the PF6 - anion, along with perchlorate (ClO4 -) or bis(fluorosulfonyl)imide (FSI-) anions. The binary mole fraction of each anion in the film was determined from the infrared spectra of the coPIL films. The thermodynamically driven anion selectivity for exchange from the liquid phase into the coPIL films was determined to follow the order ClO4 - < PF6 - < FSI-. The aqueous wettability of p[N1-dMIm] coPIL films containing both the PF6 - and ClO4 - anions (p[N1-dMIm][PF6][ClO4]) was quantified by contact angle goniometry with the observation that the surface showed an enrichment in the ClO4 - anion compared to the average binary anion mole fraction of ClO4 - in the film (y ClO4 - ). The rate of ion transport through the p[N1-dMIm][PF6][ClO4] coPIL films, quantified by electrochemical impedance spectroscopy, linearly depends on the binary anion mole fraction of ClO4 - in solution (x ClO4 - ), enabling continuous tunability by over three orders of magnitude for ion conductivity in the coPIL films.


Anion Transport Using Core Functionalized Hyperbranched Polymers and Evidence of a Dense Packed Limit Based on Molecular Weight.

  • Sozan Najib Abdullah‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Being able to bind, select, and transport species is central to a number of fields, including medicine, materials, and environmental science. In particular, recognizing a specific species from one phase and transporting it across, or into another phase, has obvious applications in environ-mental science, for example, removal of unwanted or toxic materials from an aqueous or organic phase. In this paper, we describe an approach that uses a functionalized dendritic polymer to bind and transport a small anionic molecule across an organic phase (and between two aqueous phases). The design was based on encapsulation principles borrowed from nature, where anions are bound and transported by proteins that have specific sites within their globular ordered structures. For the work reported here, a globular dendritic polymer functionalized with an isophthalamide-based receptor was used to replace the protein structure and anion-binding site. Along with control experiments, the binding and transport properties of two functionalized HBPs were assessed using a Pressman U tube experiment. Both HBPs demonstrated an enhanced ability to bind and transport anions (when compared to the anion-binding site used in isolation). Furthermore, optimum binding and transport occurred when the smaller of the two HBPs were used. This supports our previous observations regarding the existence of a dense packed limit for HBPs.


Identification of amino acids essential for estrone-3-sulfate transport within transmembrane domain 2 of organic anion transporting polypeptide 1B1.

  • Nan Li‎ et al.
  • PloS one‎
  • 2012‎

As an important structure in membrane proteins, transmembrane domains have been found to be crucial for properly targeting the protein to cell membrane as well as carrying out transport functions in transporters. Computer analysis of OATP sequences revealed transmembrane domain 2 (TM2) is among those transmembrane domains that have high amino acid identities within different family members. In the present study, we identify four amino acids (Asp70, Phe73, Glu74, and Gly76) that are essential for the transport function of OATP1B1, an OATP member that is specifically expressed in the human liver. A substitution of these four amino acids with alanine resulted in significantly reduced transport activity. Further mutagenesis showed the charged property of Asp70 and Glu74 is critical for proper function of the transporter protein. Comparison of the kinetic parameters indicated that Asp70 is likely to interact with the substrate while Glu74 may be involved in stabilizing the binding site through formation of a salt-bridge. The aromatic ring structure of Phe73 seems to play an important role because substitution of Phe73 with tyrosine, another amino acid with a similar structure, led to partially restored transport function. On the other hand, replacement of Gly76 with either alanine or valine could not recover the function of the transporter. Considering the nature of a transmembrane helix, we proposed that Gly76 may be important for maintaining the proper structure of the protein. Interestingly, when subjected to transport function analysis of higher concentration of esteone-3-sulfate (50 µM) that corresponds to the low affinity binding site of OATP1B1, mutants of Phe73, Glu74, and Gly76 all showed a transport function that is comparable to that of the wild-type, suggesting these amino acids may have less impact on the low affinity component of esteone-3-sulfate within OATP1B1, while Asp 70 seems to be involved in the interaction of both sites.


Increased Perfluorooctanesulfonate (PFOS) Toxicity and Accumulation Is Associated with Perturbed Prostaglandin Metabolism and Increased Organic Anion Transport Protein (OATP) Expression.

  • Lanie A Williams‎ et al.
  • Toxics‎
  • 2024‎

Perfluorooctanesulfonate (PFOS) is a widespread environmental pollutant with a long half-life and clearly negative outcomes on metabolic diseases such as fatty liver disease and diabetes. Male and female Cyp2b-null and humanized CYP2B6-transgenic (hCYP2B6-Tg) mice were treated with 0, 1, or 10 mg/kg/day PFOS for 21 days, and surprisingly it was found that PFOS was retained at greater concentrations in the serum and liver of hCYP2B6-Tg mice than those of Cyp2b-null mice, with greater differences in the females. Thus, Cyp2b-null and hCYP2B6-Tg mice provide new models for investigating individual mechanisms for PFOS bioaccumulation and toxicity. Overt toxicity was greater in hCYP2B6-Tg mice (especially females) as measured by mortality; however, steatosis occurred more readily in Cyp2b-null mice despite the lower PFOS liver concentrations. Targeted lipidomics and transcriptomics from PFOS-treated Cyp2b-null and hCYP2B6-Tg mouse livers were performed and compared to PFOS retention and serum markers of toxicity using PCA. Several oxylipins, including prostaglandins, thromboxanes, and docosahexaenoic acid metabolites, are associated or inversely associated with PFOS toxicity. Both lipidomics and transcriptomics indicate PFOS toxicity is associated with PPAR activity in all models. GO terms associated with reduced steatosis were sexually dimorphic with lipid metabolism and transport increased in females and circadian rhythm associated genes increased in males. However, we cannot rule out that steatosis was initially protective from PFOS toxicity. Moreover, several transporters are associated with increased retention, probably due to increased uptake. The strongest associations are the organic anion transport proteins (Oatp1a4-6) genes and a long-chain fatty acid transport protein (fatp1), enriched in female hCYP2B6-Tg mice. PFOS uptake was also reduced in cultured murine hepatocytes by OATP inhibitors. The role of OATP1A6 and FATP1 in PFOS transport has not been tested. In summary, Cyp2b-null and hCYP2B6-Tg mice provided unique models for estimating the importance of novel mechanisms in PFOS retention and toxicity.


Characterization of organic anion transporting polypeptide 1b2 knockout rats generated by CRISPR/Cas9: a novel model for drug transport and hyperbilirubinemia disease.

  • Xinrun Ma‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2020‎

Organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1/3) as important uptake transporters play a fundamental role in the transportation of exogenous drugs and endogenous substances into cells. Rat OATP1B2, encoded by the Slco1b2 gene, is homologous to human OATP1B1/3. Although OATP1B1/3 is very important, few animal models can be used to study its properties. In this report, we successfully constructed the Slco1b2 knockout (KO) rat model via using the CRISPR/Cas9 technology for the first time. The novel rat model showed the absence of OATP1B2 protein expression, with no off-target effects as well as compensatory regulation of other transporters. Further pharmacokinetic study of pitavastatin, a typical substrate of OATP1B2, confirmed the OATP1B2 function was absent. Since bilirubin and bile acids are the substrates of OATP1B2, the contents of total bilirubin, direct bilirubin, indirect bilirubin, and total bile acids in serum are significantly higher in Slco1b2 KO rats than the data of wild-type rats. These results are consistent with the symptoms caused by the absence of OATP1B1/3 in Rotor syndrome. Therefore, this rat model is not only a powerful tool for the study of OATP1B2-mediated drug transportation, but also a good disease model to study hyperbilirubinemia-related diseases.


Saccharomyces cerevisiae: First Steps to a Suitable Model System To Study the Function and Intracellular Transport of Human Kidney Anion Exchanger 1.

  • Hasib A M Sarder‎ et al.
  • mSphere‎
  • 2020‎

Saccharomyces cerevisiae has been frequently used to study biogenesis, functionality, and intracellular transport of various renal proteins, including ion channels, solute transporters, and aquaporins. Specific mutations in genes encoding most of these renal proteins affect kidney function in such a way that various disease phenotypes ultimately occur. In this context, human kidney anion exchanger 1 (kAE1) represents an important bicarbonate/chloride exchanger which maintains the acid-base homeostasis in the human body. Malfunctions in kAE1 lead to a pathological phenotype known as distal renal tubular acidosis (dRTA). Here, we evaluated the potential of baker's yeast as a model system to investigate different cellular aspects of kAE1 physiology. For the first time, we successfully expressed yeast codon-optimized full-length versions of tagged and untagged wild-type kAE1 and demonstrated their partial localization at the yeast plasma membrane (PM). Finally, pH and chloride measurements further suggest biological activity of full-length kAE1, emphasizing the potential of S. cerevisiae as a model system for studying trafficking, activity, and/or degradation of mammalian ion channels and transporters such as kAE1 in the future.IMPORTANCE Distal renal tubular acidosis (dRTA) is a common kidney dysfunction characterized by impaired acid secretion via urine. Previous studies revealed that α-intercalated cells of dRTA patients express mutated forms of human kidney anion exchanger 1 (kAE1) which result in inefficient plasma membrane targeting or diminished expression levels of kAE1. However, the precise dRTA-causing processes are inadequately understood, and alternative model systems are helpful tools to address kAE1-related questions in a fast and inexpensive way. In contrast to a previous study, we successfully expressed full-length kAE1 in Saccharomyces cerevisiae Using advanced microscopy techniques as well as different biochemical and functionality assays, plasma membrane localization and biological activity were confirmed for the heterologously expressed anion transporter. These findings represent first important steps to use the potential of yeast as a model organism for studying trafficking, activity, and degradation of kAE1 and its mutant variants in the future.


Mechanisms of anion conduction by coupled glutamate transporters.

  • Jan-Philipp Machtens‎ et al.
  • Cell‎
  • 2015‎

Excitatory amino acid transporters (EAATs) are essential for terminating glutamatergic synaptic transmission. They are not only coupled glutamate/Na(+)/H(+)/K(+) transporters but also function as anion-selective channels. EAAT anion channels regulate neuronal excitability, and gain-of-function mutations in these proteins result in ataxia and epilepsy. We have combined molecular dynamics simulations with fluorescence spectroscopy of the prokaryotic homolog GltPh and patch-clamp recordings of mammalian EAATs to determine how these transporters conduct anions. Whereas outward- and inward-facing GltPh conformations are nonconductive, lateral movement of the glutamate transport domain from intermediate transporter conformations results in formation of an anion-selective conduction pathway. Fluorescence quenching of inserted tryptophan residues indicated the entry of anions into this pathway, and mutations of homologous pore-forming residues had analogous effects on GltPh simulations and EAAT2/EAAT4 measurements of single-channel currents and anion/cation selectivities. These findings provide a mechanistic framework of how neurotransmitter transporters can operate as anion-selective and ligand-gated ion channels.


Structural insights into light-driven anion pumping in cyanobacteria.

  • R Astashkin‎ et al.
  • Nature communications‎
  • 2022‎

Transmembrane ion transport is a key process in living cells. Active transport of ions is carried out by various ion transporters including microbial rhodopsins (MRs). MRs perform diverse functions such as active and passive ion transport, photo-sensing, and others. In particular, MRs can pump various monovalent ions like Na+, K+, Cl-, I-, NO3-. The only characterized MR proposed to pump sulfate in addition to halides belongs to the cyanobacterium Synechocystis sp. PCC 7509 and is named Synechocystis halorhodopsin (SyHR). The structural study of SyHR may help to understand what makes an MR pump divalent ions. Here we present the crystal structure of SyHR in the ground state, the structure of its sulfate-bound form as well as two photoreaction intermediates, the K and O states. These data reveal the molecular origin of the unique properties of the protein (exceptionally strong chloride binding and proposed pumping of divalent anions) and sheds light on the mechanism of anion release and uptake in cyanobacterial halorhodopsins. The unique properties of SyHR highlight its potential as an optogenetics tool and may help engineer different types of anion pumps with applications in optogenetics.


Trichomonas vaginalis infection impairs anion secretion in vaginal epithelium.

  • Jian-Bang Xu‎ et al.
  • PLoS neglected tropical diseases‎
  • 2021‎

Trichomonas vaginalis is a common protozoan parasite, which causes trichomoniasis associated with severe adverse reproductive outcomes. However, the underlying pathogenesis has not been fully understood. As the first line of defense against invading pathogens, the vaginal epithelial cells are highly responsive to environmental stimuli and contribute to the formation of the optimal luminal fluid microenvironment. The cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel widely distributed at the apical membrane of epithelial cells, plays a crucial role in mediating the secretion of Cl- and HCO3-. In this study, we investigated the effect of T. vaginalis on vaginal epithelial ion transport elicited by prostaglandin E2 (PGE2), a major prostaglandin in the semen. Luminal administration of PGE2 triggered a remarkable and sustained increase of short-circuit current (ISC) in rat vaginal epithelium, which was mainly due to Cl- and HCO3- secretion mediated by the cAMP-activated CFTR. However, T. vaginalis infection significantly abrogated the ISC response evoked by PGE2, indicating impaired transepithelial anion transport via CFTR. Using a primary cell culture system of rat vaginal epithelium and a human vaginal epithelial cell line, we demonstrated that the expression of CFTR was significantly down-regulated after T. vaginalis infection. In addition, defective Cl- transport function of CFTR was observed in T. vaginalis-infected cells by measuring intracellular Cl- signals. Conclusively, T. vaginalis restrained exogenous PGE2-induced anion secretion through down-regulation of CFTR in vaginal epithelium. These results provide novel insights into the intervention of reproductive complications associated with T. vaginalis infection such as infertility and disequilibrium in vaginal fluid microenvironment.


Slc4-like anion transporters of the larval mosquito alimentary canal.

  • Paul J Linser‎ et al.
  • Journal of insect physiology‎
  • 2012‎

Mosquito larvae exhibit luminal pH extremes along the axial length of their alimentary canal that range from very alkaline (pH>10) in the anterior midgut to slightly acid in the hindgut. The principal buffer in the system is thought to be bicarbonate and/or carbonate, because the lumen is known to contain high levels of bicarbonate/carbonate and is surrounded by various epithelial cell types which express a variety of carbonic anhydrases. However, the precise mechanisms responsible for the transport of bicarbonate/carbonate into and out of the lumen are unclear. In the present study, we test the hypothesis that SLC4-like anion transporters play a role in bicarbonate/carbonate accumulation in the larval mosquito alimentary canal. Molecular, physiological and immnuohistochemical characterizations of Slc4-like transporters in the gut of larval mosquitoes (Aedes aegypti and Anopheles gambiae) demonstrate the presence of both a Na(+)-independent chloride/bicarbonate anion exchanger (AE) as well as a Na(+)-dependent anion exchanger (NDAE). Notably, immunolocalization experiments in Malpighian tubules show that the two proteins can be located in the same tissue, but to different cell types. Immunolabeling experiments in the gastric caecae show that the two proteins can be found in the same cells, but on opposite sides (basal vs. apical). In summary, our results indicate that the alimentary canal of larval mosquitoes exhibits robust expression of two SLC4-like transporters in locations that are consistent with a role in the regulation of luminal pH. The precise physiological contributions of each transporter remain to be determined.


Cryo-EM structures of human organic anion transporting polypeptide OATP1B1.

  • Ziyang Shan‎ et al.
  • Cell research‎
  • 2023‎

Members of the solute carrier organic anion transporting polypeptide (OATPs) family function as transporters for a large variety of amphipathic organic anions including endogenous metabolites and clinical drugs, such as bile salts, steroids, thyroid hormones, statins, antibiotics, antivirals, and anticancer drugs. OATP1B1 plays a vital role in transporting such substances into the liver for hepatic clearance. FDA and EMA recommend conducting in vitro testing of drug-drug interactions (DDIs) involving OATP1B1. However, the structure and working mechanism of OATPs still remains elusive. In this study, we determined cryo-EM structures of human OATP1B1 bound with representative endogenous metabolites (bilirubin and estrone-3-sulfate), a clinical drug (simeprevir), and a fluorescent indicator (2',7'-dichlorofluorescein), in both outward- and inward-open states. These structures reveal major and minor substrate binding pockets and conformational changes during transport. In combination with mutagenesis studies and molecular dynamics simulations, our work comprehensively elucidates the transport mechanism of OATP1B1 and provides the structural basis for DDI predictions involving OATP1B1, which will greatly promote our understanding of OATPs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: