Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 4,492 papers

Human and animal Trypanosomes in Côte d'Ivoire form a single breeding population.

  • Paul Capewell‎ et al.
  • PloS one‎
  • 2013‎

Trypanosoma brucei is the causative agent of African Sleeping Sickness in humans and contributes to the related veterinary disease, Nagana. T. brucei is segregated into three subspecies based on host specificity, geography and pathology. T. b. brucei is limited to animals (excluding some primates) throughout sub-Saharan Africa and is non-infective to humans due to trypanolytic factors found in human serum. T. b. gambiense and T. b. rhodesiense are human infective sub-species. T. b. gambiense is the more prevalent human, causing over 97% of human cases. Study of T. b. gambiense is complicated in that there are two distinct groups delineated by genetics and phenotype. The relationships between the two groups and local T. b. brucei are unclear and may have a bearing on the evolution of the human infectivity traits.


Diet Quality, Food Groups and Nutrients Associated with the Gut Microbiota in a Nonwestern Population.

  • Ángela S García-Vega‎ et al.
  • Nutrients‎
  • 2020‎

Diet plays an important role in shaping gut microbiota. However, much remains to be learned regarding this association. We analyzed dietary intake and gut microbiota in a community-dwelling cohort of 441 Colombians. Diet quality, intake of food groups and nutrient consumption were paired with microbial diversity and composition using linear regressions, Procrustes analyses and a random-forest machine-learning algorithm. Analyses were adjusted for potential confounders, including the five cities from where the participants originated, sex (male, female), age group (18-40 and 41-62 years), BMI (lean, overweight, obese) and socioeconomic status. Microbial diversity was higher in individuals with increased intake of nutrients obtained from plant-food sources, whereas the intake of food groups and nutrients correlated with microbiota structure. Random-forest regressions identified microbial communities associated with different diet components. Two remarkable results confirmed previous expectations regarding the link between diet and microbiota: communities composed of short-chain fatty acid (SCFA) producers were more prevalent in the microbiota of individuals consuming diets rich in fiber and plant-food sources, such as fruits, vegetables and beans. In contrast, an inflammatory microbiota composed of bile-tolerant and putrefactive microorganisms along with opportunistic pathogens thrived in individuals consuming diets enriched in animal-food sources and of low quality, i.e., enriched in ultraprocessed foods and depleted in dietary fiber. This study expands our understanding of the relationship between dietary intake and gut microbiota. We provide evidence that diet is strongly associated with the gut microbial community and highlight generalizable connections between them.


A novel animal model of graded neuropathic pain: utility to investigate mechanisms of population heterogeneity.

  • Peter M Grace‎ et al.
  • Journal of neuroscience methods‎
  • 2010‎

The mechanisms underlying neuropathic pain are not well understood, resulting in unsatisfactory treatment outcomes for many patients. Animal models underpin much of the current understanding of pain mechanisms due to their perceived ability to mimic pain hypersensitivities; however, are limited by their binomial approach (pain vs. control), which does not reflect the clinical heterogeneity in nociceptive hypersensitivity. We modified the chronic constriction injury model by varying the number of sciatic nerve chromic gut sutures. Each Sprague Dawley rat received 4 pieces of chromic gut to control for the inflammatory challenge posed by the gut. Treatment groups were neuronal sutures (N), subcutaneous sutures (S) N0S0, N0S4, N1S3, N2S2 and N4S0. At postoperative (PO) day 29, there was a 'dose-response' relationship between the number of perineural sutures and von Frey threshold (N0S40.9) and associated in the dorsolateral funiculus (DLF; P=0.10, r(2)>0.8) at PO day 14. Astrocyte GFAP expression was positively associated with graded allodynia in the ipsilateral dorsal horn (P=0.18, r(2)>0.6) and ipsilateral DLF (P<0.05, r(2)>0.9). DLF glial activation may represent a contributor to contralateral pain. Our novel graded model has a dynamic range, allowing sensitive detection of interactions and subtle influences on neuropathic pain processing.


Association Between Erectile Dysfunction and Subsequent Prostate Cancer Development: A Population-Based Cohort Study With Double Concurrent Comparison Groups.

  • Victor C Kok‎ et al.
  • American journal of men's health‎
  • 2018‎

Recent studies indicate that erectile dysfunction (ED) and prostate cancer share common potential risk factors such as chronic inflammation, prostatitis, cigarette smoking, obesity, a high animal fat diet, sedentarism, and depression. There is great interest in knowing if ED is associated with prostate cancer. This study aimed to investigate if men afflicted with ED harbor an increased risk of prostate cancer, utilizing two concurrent comparison groups, constructed from the Taiwan NHIRD, with up to 8 years' follow-up. Among men with no preexisting prostate cancer, an ED group of 3,593 men ≥ 40 years of age and two non-ED comparison groups of 14,372 men from the general population, 1:4 matched by age and index date (GENPOP); and 3,594 men with clinical benign prostatic hyperplasia (BPH), matched by similar criteria were assembled. A Cox model was constructed to calculate the adjusted hazard ratio (aHR) after controlling for age, socioeconomic factors, and various medical comorbidities. During the 11,449 person-year follow-up for the ED group, 24 incident prostate cancer developed. During the 44,486 and 11,221 person-year follow-up for the GENPOP and the BPH group, respectively, there were 33 and 25 incidents of prostate cancer. The ED group demonstrated a 2.6-fold greater risk of prostate cancer than that by the GENPOP with an aHR of 2.63 (95% confidence interval [CI] [1.51, 4.59], p < .001). There was no significant difference in risk between ED and BPH group (aHR = 0.83, 95% CI [0.46, 1.48]). This concurrent, double comparison, longitudinal study revealed a positive association between ED and subsequent prostate cancer incidence.


Population genetic patterns among social groups of the endangered Central American spider monkey (Ateles geoffroyi) in a human-dominated landscape.

  • Suzanne Hagell‎ et al.
  • Ecology and evolution‎
  • 2013‎

SPIDER MONKEYS (GENUS: Ateles) are a widespread Neotropical primate with a highly plastic socioecological strategy. However, the Central American species, Ateles geoffroyi, was recently re-listed as endangered due to the accelerated loss of forest across the subcontinent. There is inconsistent evidence that spider monkey populations could persist when actively protected, but their long-term viability in unprotected, human-dominated landscapes is not known. We analyzed noninvasive genetic samples from 185 individuals in 14 putative social groups on the Rivas Isthmus in southwestern Nicaragua. We found evidence of weak but significant genetic structure in the mitochondrial control region and in eight nuclear microsatellite loci plus negative spatial autocorrelation in Fst and kinship. The overall pattern suggests strong localized mating and at least historical female-biased dispersal, as is expected for this species. Heterozygosity was significantly lower than expected under random mating and lower than that found in other spider monkey populations, possibly reflecting a recent decline in genetic diversity and a threat from inbreeding. We conclude that despite a long history of human disturbance on this landscape, spider monkeys were until recently successful at maintaining gene flow. We consider the recent decline to be further indication of accelerated anthropogenic disturbance, but also of an opportunity to conserve native biodiversity. Spider monkeys are one of many wildlife species in Central America that is threatened by land cover change, and an apt example of how landscape-scale conservation planning could be used to ensure long-term persistence.


Genetic Diversity and Population Structure of Mycobacterium bovis at the Human-Animal-Ecosystem Interface in France: "A One Health Approach".

  • Anaïs Appegren‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2023‎

Mycobacterium bovis infects cattle and wildlife, and also causes a small proportion of tuberculosis cases in humans. In most European countries, M. bovis infections in cattle have been drastically reduced, but not eradicated. Here, to determine the M. bovis circulation within and between the human, cattle, and wildlife compartments, we characterized by spoligotyping and mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing the genetic diversity of M. bovis isolates collected from humans, cattle, and wildlife in France from 2000 to 2010. We also assessed their genetic structure within and among the different host groups, and across time and space. The M. bovis genetic structure and its spatiotemporal variations showed different dynamics in the human and animal compartments. Most genotypes detected in human isolates were absent in cattle and wildlife isolates, possibly because in patients, M. bovis infection was contracted abroad or was the reactivation of an old lesion. Therefore, they did not match the genetic pool present in France during the study period. However, some human-cattle exchanges occurred because some genotypes were common to both compartments. This study provides new elements for understanding M. bovis epidemiology in France, and calls for increased efforts to control this pathogen worldwide.


HPLC-(Q)-TOF-MS-Based Study of Plasma Metabolic Profile Differences Associated with Age in Pediatric Population Using an Animal Model.

  • Oihane E Albóniga‎ et al.
  • Metabolites‎
  • 2022‎

A deep knowledge about the biological development of children is essential for appropriate drug administration and dosage in pediatrics. In this sense, the best approximation to study organ maturation is the analysis of tissue samples, but it requires invasive methods. For this reason, surrogate matrices should be explored. Among them, plasma emerges as a potential alternative since it represents a snapshot of global organ metabolism. In this work, plasma metabolic profiles from piglets of different ages (newborns, infants, and children) obtained by HPLC-(Q)-TOF-MS at positive and negative ionization modes were studied. Improved clustering within groups was achieved using multiblock principal component analysis compared to classical principal component analysis. Furthermore, the separation observed among groups was better resolved by using partial least squares-discriminant analysis, which was validated by bootstrapping and permutation testing. Thanks to univariate analysis, 13 metabolites in positive and 21 in negative ionization modes were found to be significant to discriminate the three groups of piglets. From these features, an acylcarnitine and eight glycerophospholipids were annotated and identified as metabolites of interest. The findings indicate that there is a relevant change with age in lipid metabolism in which lysophosphatidylcholines and lysophoshatidylethanolamines play an important role.


Streptococcus canis Are a Single Population Infecting Multiple Animal Hosts Despite the Diversity of the Universally Present M-Like Protein SCM.

  • Marcos D Pinho‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Streptococcus canis is an animal pathogen which occasionally causes infections in humans. The S. canis M-like protein (SCM) encoded by the scm gene, is its best characterized virulence factor but previous studies suggested it could be absent in a substantial fraction of isolates. We studied the distribution and variability of the scm gene in 188 S. canis isolates recovered from companion animals (n = 152), wild animal species (n = 20), and humans (n = 14). Multilocus sequence typing, including the first characterization of wildlife isolates, showed that the same lineages are present in all animal hosts, raising the possibility of extensive circulation between species. Whole-genome analysis revealed that emm-like genes found previously in S. canis correspond to divergent scm genes, indicating that what was previously believed to correspond to two genes is in fact the same scm locus. We designed primers allowing for the first time the successful amplification of the scm gene in all isolates. Analysis of the scm sequences identified 12 distinct types, which could be divided into two clusters: group I (76%, n = 142) and group II (24%, n = 46) sharing little sequence similarity. The predicted group I SCM showed extensive similarity with each other outside of the N-terminal hypervariable region and a conserved IgG binding domain. This domain was absent from group II SCM variants found in isolates previously thought to lack the scm gene, which also showed greater amino acid variability. Further studies are necessary to elucidate the possible host interacting partners of the group II SCM variants and their role in virulence.


ggroups: an R package for pedigree and genetic groups data.

  • Mohammad Ali Nilforooshan‎ et al.
  • Hereditas‎
  • 2020‎

R is a multi-platform statistical software and an object oriented programming language. The package archive network for R provides CRAN repository that features over 15,000 free open source packages, at the time of writing this article (https://cran.r-project.org/web/packages, accessed in October 2019). The package ggroups is introduced in this article. The purpose of this package is providing functions for checking and processing the pedigree, calculation of the additive genetic relationship matrix and its inverse, which are used to study the population structure and predicting the genetic merit of animals. Calculation of the dominance relationship matrix and its inverse are also covered. A concept in animal breeding is genetic groups, which is about the inequality of the average genetic merits for groups of unknown parents. The package provides functions for the calculation of the matrix of genetic group contributions (Q). Calculating Q is computationally demanding, and depending on the size of the pedigree and the number of genetic groups, it might not be feasible using personal computers. Therefore, a computationally optimised function and its parallel processing alternative are provided in the package.


Bachelor groups in primate multilevel society facilitate gene flow across fragmented habitats.

  • Yu-Li Li‎ et al.
  • Current zoology‎
  • 2020‎

In the face of ongoing habitat fragmentation, many primate species have experienced reduced gene flow resulting in a reduction of genetic diversity, population bottlenecks, and inbreeding depression, including golden snub-nosed monkeys Rhinopithecus roxellana. Golden snub-nosed monkeys live in a multilevel society composed of several 1 male harem units that aggregate to form a cohesive breeding band, which is followed by one or more bachelor groups composed of juvenile, subadult, and adult male members. In this research, we examine the continuous landscape resistance surface, the genetic diversity and patterns of gene flow among 4 isolated breeding bands and 1 all-male band in the Qinling Mountains, China. Landscape surface modeling suggested that human activities and ecological factors severely limit the movement of individuals among breeding bands. Although these conditions are expected to result in reduced gene flow, reduced genetic diversity, and an increased opportunity for a genetic bottleneck, based on population genetic analyses of 13 microsatellite loci from 188 individuals inhabiting 4 isolated breeding bands and 1 all-male band, we found high levels of genetic diversity but low levels of genetic divergence, as well as high rates of gene flow between males residing in the all-male band and each of the 4 breeding bands. Our results indicate that the movement of bachelor males across the landscape, along with their association with several different breeding bands, appears to provide a mechanism for promoting gene flows and maintaining genetic diversity that may counteract the otherwise isolating effects of habitat fragmentation.


Animal invaders threaten protected areas worldwide.

  • Xuan Liu‎ et al.
  • Nature communications‎
  • 2020‎

Protected areas are the cornerstone of biodiversity conservation. However, alien species invasion is an increasing threat to biodiversity, and the extent to which protected areas worldwide are resistant to incursions of alien species remains poorly understood. Here, we investigate establishment by 894 terrestrial alien animals from 11 taxonomic groups including vertebrates and invertebrates across 199,957 protected areas at the global scale. We find that <10% of protected areas are home to any of the alien animals, but there is at least one established population within 10-100 km of the boundaries of 89%-99% of protected areas, while >95% of protected areas are environmentally suitable for establishment. Higher alien richness is observed in IUCN category-II national parks supposedly with stricter protection, and in larger protected areas with higher human footprint and more recent designation. Our results demonstrate that protected areas provide important protection from biological invasions, but invasions may become an increasingly dominant problem in the near future.


Evolutionary patterns of recently emerged animal duplogs.

  • Kiyoshi Ezawa‎ et al.
  • Genome biology and evolution‎
  • 2011‎

Duplogs, or intraspecies paralogs, constitute the important portion of eukaryote genomes and serve as a major source of functional innovation. We conducted detailed analyses of recently emerged animal duplogs. Genome data of three vertebrate species (Homo sapiens, Mus musculus, and Danio rerio), Caenorhabditis elegans, and two Drosophila species (Drosophila melanogaster and D. pseudoobscura) were used. Duplication events were divided into six age-groups according to the synonymous distance (dS) up to 0.6. Duplogs were classified into four equal-sized classes on physical distances and into three classes on relative orientations. We observed the following shared characteristics among intrachromosomal multiexon duplogs: 1) inverted duplogs account for 20-50%, and about a half of the physically most distant 25%; 2) except for C. elegans, the composition of physical distances, that of relative orientations, and the proportion of inverted duplogs in each physical distance category are more or less uniform; 3) except for C. elegans, the characteristics of the youngest (dS < 0.01) duplogs are similar to the overall characteristics of the entire set. These results suggest that intrachromosomal duplogs with fairly long physical distances were generated at once, rather than resulting from tandem duplications and subsequent genomic rearrangements. This is different from the three well-known modes of gene duplication: tandem duplication, retrotransposition, and genome duplication. We termed this new mode as "drift" duplication. The drift duplication has been producing duplicate copies at paces comparable with tandem duplications since the common ancestor of vertebrates, and it may have already operated in the common ancestor of bilateral animals.


Collective Housing of Mice of Different Age Groups before Maturity Affects Mouse Behavior.

  • Hiroshi Ueno‎ et al.
  • Behavioural neurology‎
  • 2020‎

Although population housing is recommended by many animal management and ethical guidelines, the effect of collective housing of mice of different age groups on mouse behavior has not been clarified. Since the development of the central nervous system continues to occur before sexual maturation, the stress of social ranking formation among male individuals in mixed housing conditions can affect postmaturation behavior. To assess these effects, sexually immature mice of different ages were housed in the same cage and a series of behavioral tests were performed after maturation.


COMADRE: a global data base of animal demography.

  • Roberto Salguero-Gómez‎ et al.
  • The Journal of animal ecology‎
  • 2016‎

The open-data scientific philosophy is being widely adopted and proving to promote considerable progress in ecology and evolution. Open-data global data bases now exist on animal migration, species distribution, conservation status, etc. However, a gap exists for data on population dynamics spanning the rich diversity of the animal kingdom world-wide. This information is fundamental to our understanding of the conditions that have shaped variation in animal life histories and their relationships with the environment, as well as the determinants of invasion and extinction. Matrix population models (MPMs) are among the most widely used demographic tools by animal ecologists. MPMs project population dynamics based on the reproduction, survival and development of individuals in a population over their life cycle. The outputs from MPMs have direct biological interpretations, facilitating comparisons among animal species as different as Caenorhabditis elegans, Loxodonta africana and Homo sapiens. Thousands of animal demographic records exist in the form of MPMs, but they are dispersed throughout the literature, rendering comparative analyses difficult. Here, we introduce the COMADRE Animal Matrix Database, an open-data online repository, which in its version 1.0.0 contains data on 345 species world-wide, from 402 studies with a total of 1625 population projection matrices. COMADRE also contains ancillary information (e.g. ecoregion, taxonomy, biogeography, etc.) that facilitates interpretation of the numerous demographic metrics that can be derived from its MPMs. We provide R code to some of these examples.


Ecologic correlations of selected food groups with disease incidence and mortality in Switzerland.

  • Harold Besson‎ et al.
  • Journal of epidemiology‎
  • 2013‎

There is little information regarding the impact of diet on disease incidence and mortality in Switzerland. We assessed ecologic correlations between food availability and disease.


Farm animal genomics and informatics: an update.

  • Ahmed Fadiel‎ et al.
  • Nucleic acids research‎
  • 2005‎

Farm animal genomics is of interest to a wide audience of researchers because of the utility derived from understanding how genomics and proteomics function in various organisms. Applications such as xenotransplantation, increased livestock productivity, bioengineering new materials, products and even fabrics are several reasons for thriving farm animal genome activity. Currently mined in rapidly growing data warehouses, completed genomes of chicken, fish and cows are available but are largely stored in decentralized data repositories. In this paper, we provide an informatics primer on farm animal bioinformatics and genome project resources which drive attention to the most recent advances in the field. We hope to provide individuals in biotechnology and in the farming industry with information on resources and updates concerning farm animal genome projects.


Systematic genotyping of groups of cows to improve genomic estimated breeding values of selection candidates.

  • Laura Plieschke‎ et al.
  • Genetics, selection, evolution : GSE‎
  • 2016‎

Extending the reference set for genomic predictions in dairy cattle by adding large numbers of cows with genotypes and phenotypes has been proposed as a means to increase reliability of selection decisions for candidates.


The dominance-diversity dilemma in animal conservation biology.

  • Charles A Martin‎ et al.
  • PloS one‎
  • 2023‎

The alteration of environmental conditions has two major outcomes on the demographics of living organisms: population decline of the common species and extinction of the rarest ones. Halting the decline of abundant species as well as the erosion of biodiversity require solutions that may be mismatched, despite being rooted in similar causes. In this study, we demonstrate how rank abundance distribution (RAD) models are mathematical representations of a dominance-diversity dilemma. Across 4,375 animal communities from a range of taxonomic groups, we found that a reversed RAD model correctly predicts species richness, based solely on the relative dominance of the most abundant species in a community and the total number of individuals. Overall, predictions from this RAD model explained 69% of the variance in species richness, compared to 20% explained by simply regressing species richness on the relative dominance of the most abundant species. Using the reversed RAD model, we illustrate how species richness is co-limited by the total abundance of a community and the relative dominance of the most common species. Our results highlight an intrinsic trade-off between species richness and dominance that is present in the structure of RAD models and real-world animal community data. This dominance-diversity dilemma suggests that withdrawing individuals from abundant populations might contribute to the conservation of species richness. However, we posit that the positive effect of harvesting on biodiversity is often offset by exploitation practices with negative collateral consequences, such as habitat destruction or species bycatches.


Animal Models of COVID-19 II. Comparative Immunology.

  • Rebecca T Veenhuis‎ et al.
  • ILAR journal‎
  • 2021‎

Developing strong animal models is essential for furthering our understanding of how the immune system functions in response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. The alarming speed at which SARS-CoV-2 has spread, and the high mortality rate of severe Coronavirus Disease 2019 (COVID-19), has required both basic science and clinical research to move at an unprecedented pace. Models previously developed to study the immune response against SARS-CoV have been rapidly deployed to now study SARS-CoV-2. To date, both small and large animal models are remarkably consistent when infected with SARS-CoV-2; however, certain models have proven more useful when answering specific immunological questions than others. Small animal models, such as Syrian hamsters, ferrets, and mice carrying the hACE2 transgene, appear to reliably recapitulate the initial cytokine surge seen in COVID-19 as well as show significant innate and adaptive cell infiltration in to the lung early in infection. Additionally, these models develop strong antibody responses to the virus, are protected from reinfection, and genetically modified versions exist that can be used to ask specific immunological questions. Large animal models such as rhesus and cynomologus macaques and African green monkeys are critical to understanding how the immune system responds to SARS-CoV-2 infection because they are considered to be the most similar to humans. These models are considered the gold standard for assessing vaccine efficacy and protection, and recapitulate the initial cytokine surge, immune cell infiltration into the lung, certain aspects of thrombosis, and the antibody and T-cell response to the virus. In this review, we discuss both small and large animal model studies previously used in SARS-CoV-2 research that may be useful in elucidating the immunological contributions to hallmark syndromes observed with COVID-19.


OpenFluDB, a database for human and animal influenza virus.

  • Robin Liechti‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2010‎

Although research on influenza lasted for more than 100 years, it is still one of the most prominent diseases causing half a million human deaths every year. With the recent observation of new highly pathogenic H5N1 and H7N7 strains, and the appearance of the influenza pandemic caused by the H1N1 swine-like lineage, a collaborative effort to share observations on the evolution of this virus in both animals and humans has been established. The OpenFlu database (OpenFluDB) is a part of this collaborative effort. It contains genomic and protein sequences, as well as epidemiological data from more than 27,000 isolates. The isolate annotations include virus type, host, geographical location and experimentally tested antiviral resistance. Putative enhanced pathogenicity as well as human adaptation propensity are computed from protein sequences. Each virus isolate can be associated with the laboratories that collected, sequenced and submitted it. Several analysis tools including multiple sequence alignment, phylogenetic analysis and sequence similarity maps enable rapid and efficient mining. The contents of OpenFluDB are supplied by direct user submission, as well as by a daily automatic procedure importing data from public repositories. Additionally, a simple mechanism facilitates the export of OpenFluDB records to GenBank. This resource has been successfully used to rapidly and widely distribute the sequences collected during the recent human swine flu outbreak and also as an exchange platform during the vaccine selection procedure. Database URL: http://openflu.vital-it.ch.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: