Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 41 papers

The phenotypic spectrum of germline YARS2 variants: from isolated sideroblastic anemia to mitochondrial myopathy, lactic acidosis and sideroblastic anemia 2.

  • Lisa G Riley‎ et al.
  • Haematologica‎
  • 2018‎

YARS2 variants have previously been described in patients with myopathy, lactic acidosis and sideroblastic anemia 2 (MLASA2). YARS2 encodes the mitochondrial tyrosyl-tRNA synthetase, which is responsible for conjugating tyrosine to its cognate mt-tRNA for mitochondrial protein synthesis. Here we describe 14 individuals from 11 families presenting with sideroblastic anemia and YARS2 variants that we identified using a sideroblastic anemia gene panel or exome sequencing. The phenotype of these patients ranged from MLASA to isolated congenital sideroblastic anemia. As in previous cases, inter- and intra-familial phenotypic variability was observed, however, this report includes the first cases with isolated sideroblastic anemia and patients with biallelic YARS2 variants that have no clinically ascertainable phenotype. We identified ten novel YARS2 variants and three previously reported variants. In vitro amino-acylation assays of five novel missense variants showed that three had less effect on the catalytic activity of YARS2 than the most commonly reported variant, p.(Phe52Leu), associated with MLASA2, which may explain the milder phenotypes in patients with these variants. However, the other two missense variants had a more severe effect on YARS2 catalytic efficiency. Several patients carried the common YARS2 c.572 G>T, p.(Gly191Val) variant (minor allele frequency =0.1259) in trans with a rare deleterious YARS2 variant. We have previously shown that the p.(Gly191Val) variant reduces YARS2 catalytic activity. Consequently, we suggest that biallelic YARS2 variants, including severe loss-of-function alleles in trans of the common p.(Gly191Val) variant, should be considered as a cause of isolated congenital sideroblastic anemia, as well as the MLASA syndromic phenotype.


Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

  • J Pedro Fernández-Murray‎ et al.
  • PLoS genetics‎
  • 2016‎

Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.


Sideroblastic anemia: functional study of two novel missense mutations in ALAS2.

  • Manuel Méndez‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2016‎

X-linked sideroblastic anemia (XLSA) is a disorder characterized by decreased heme synthesis and mitochondrial iron overload with ringed sideroblasts in bone marrow. XLSA is caused by mutations in the erythroid-specific gene coding 5-aminolevulinate synthase (ALAS2). Anemia in XLSA is extremely variable, characteristically microcytic and hypochromic with poikilocytosis, and the red blood cell distribution width is increased and prominent dimorphism of the red cell population. Anemia in XLSA patients responds variably to supplementation with pyridoxine.


[New mutation of congenital sideroblastic anemia: a case report and literature review].

  • X Han‎ et al.
  • Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi‎
  • 2021‎

No abstract available


Thalidomide as an Effective Treatment in Sideroblastic Anemia, Immunodeficiency, Periodic Fevers, and Developmental Delay (SIFD).

  • Yan Li‎ et al.
  • Journal of clinical immunology‎
  • 2023‎

Sideroblastic anemia, immunodeficiency, periodic fevers, and developmental delay (SIFD) is an autosomal recessive syndrome caused by biallelic loss-of-function variant of tRNA nucleotidyl transferase 1 (TRNT1). Efficacious methods to treat SIFD are lacking. We identified two novel mutations in TRNT1 and an efficacious and novel therapy for SIFD.


Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA).

  • Yelena Bykhovskaya‎ et al.
  • American journal of human genetics‎
  • 2004‎

Mitochondrial myopathy and sideroblastic anemia (MLASA) is a rare, autosomal recessive oxidative phosphorylation disorder specific to skeletal muscle and bone marrow. Linkage analysis and homozygosity testing of two families with MLASA localized the candidate region to 1.2 Mb on 12q24.33. Sequence analysis of each of the six known genes in this region, as well as four putative genes with expression in bone marrow or muscle, identified a homozygous missense mutation in the pseudouridine synthase 1 gene (PUS1) in all patients with MLASA from these families. The mutation is the only amino acid coding change in these 10 genes that is not a known polymorphism, and it is not found in 934 controls. The amino acid change affects a highly conserved amino acid, and appears to be in the catalytic center of the protein, PUS1p. PUS1 is widely expressed, and quantitative expression analysis of RNAs from liver, brain, heart, bone marrow, and skeletal muscle showed elevated levels of expression in skeletal muscle and brain. We propose deficient pseudouridylation of mitochondrial tRNAs as an etiology of MLASA. Identification of the pathophysiologic pathways of the mutation in these families may shed light on the tissue specificity of oxidative phosphorylation disorders.


Azacitidine is a potential therapeutic drug for pyridoxine-refractory female X-linked sideroblastic anemia.

  • Yuki Morimoto‎ et al.
  • Blood advances‎
  • 2022‎

X-linked sideroblastic anemia (XLSA) is associated with mutations in the erythroid-specific δ-aminolevulinic acid synthase (ALAS2) gene. Treatment of XLSA is mainly supportive, except in patients who are pyridoxine responsive. Female XLSA often represents a late onset of severe anemia, mostly related to the acquired skewing of X chromosome inactivation. In this study, we successfully generated active wild-type and mutant ALAS2-induced pluripotent stem cell (iPSC) lines from the peripheral blood cells of an affected mother and 2 daughters in a family with pyridoxine-resistant XLSA related to a heterozygous ALAS2 missense mutation (R227C). The erythroid differentiation potential was severely impaired in active mutant iPSC lines compared with that in active wild-type iPSC lines. Most of the active mutant iPSC-derived erythroblasts revealed an immature morphological phenotype, and some showed dysplasia and perinuclear iron deposits. In addition, globin and HO-1 expression and heme biosynthesis in active mutant erythroblasts were severely impaired compared with that in active wild-type erythroblasts. Furthermore, genes associated with erythroblast maturation and karyopyknosis showed significantly reduced expression in active mutant erythroblasts, recapitulating the maturation defects. Notably, the erythroid differentiation ability and hemoglobin expression of active mutant iPSC-derived hematopoietic progenitor cells (HPCs) were improved by the administration of δ-aminolevulinic acid, verifying the suitability of the cells for drug testing. Administration of a DNA demethylating agent, azacitidine, reactivated the silent, wild-type ALAS2 allele in active mutant HPCs and ameliorated the erythroid differentiation defects, suggesting that azacitidine is a potential novel therapeutic drug for female XLSA. Our patient-specific iPSC platform provides novel biological and therapeutic insights for XLSA.


A distinct mitochondrial myopathy, lactic acidosis and sideroblastic anemia (MLASA) phenotype associates with YARS2 mutations.

  • Rojeen Shahni‎ et al.
  • American journal of medical genetics. Part A‎
  • 2013‎

Nuclear-encoded disorders of mitochondrial translation are clinically and genetically heterogeneous. Genetic causes include defects of mitochondrial aminoacyl-tRNA synthetases, and factors required for initiation, elongation and termination of protein synthesis as well as ribosome recycling. We report on a new case of myopathy, lactic acidosis and sideroblastic anemia (MLASA) syndrome caused by defective mitochondrial tyrosyl aminoacylation. The patient presented at 1 year with anemia initially attributed to iron deficiency. Bone marrow aspirate at 5 years revealed ringed sideroblasts but transfusion dependency did not occur until 11 years. Other clinical features included lactic acidosis, poor weight gain, hypertrophic cardiomyopathy and severe myopathy leading to respiratory failure necessitating ventilatory support. Long-range PCR excluded mitochondrial DNA rearrangements. Clinical diagnosis of MLASA prompted direct sequence analysis of the YARS2 gene encoding the mitochondrial tyrosyl-tRNA synthetase, which revealed homozygosity for a known pathogenic mutation, c.156C>G;p.F52L. Comparison with four previously reported cases demonstrated remarkable clinical homogeneity. First line investigation of MLASA should include direct sequence analysis of YARS2 and PUS1 (encoding a tRNA modification factor) rather than muscle biopsy. Early genetic diagnosis is essential for counseling and to facilitate appropriate supportive therapy. Reasons for segregation of specific clinical phenotypes with particular mitochondrial aminoacyl tRNA-synthetase defects remain unknown.


Pleiotropic effects and compensation mechanisms determine tissue specificity in mitochondrial myopathy and sideroblastic anemia (MLASA).

  • Yelena Bykhovskaya‎ et al.
  • Molecular genetics and metabolism‎
  • 2007‎

The tissue specificity of mitochondrial diseases is poorly understood. Recently, tissue-specific quantitative differences of the components of the mitochondrial translation system have been found to correlate with disease presentation in fatal hepatopathy caused by mutations in mitochondrial translation factor EFG1. MLASA is an autosomal recessive inherited progressive oxidative phosphorylation disorder that affects muscle and erythroid cells. The disease is caused by the homozygous point mutation C656T (R116W) in the catalytic domain of the pseudouridylate synthase 1 (PUS1) gene, which leads to a complete lack of pseudouridylation at the expected sites in mitochondrial and cytoplasmic tRNAs. Despite the presence of these altered tRNAs, most tissues are unaffected, and even in muscle and erythroid cells the disease phenotype only slowly emerges over the course of years. In order to elucidate intracellular pathways through which the homozygous mutation leads to tissue-restricted phenotype, we performed microarray expression analysis of EBV-transformed lymphoblasts from MLASA patients, heterozygous parents, and controls using human Beadchip microarray with 47,296 transcripts. Genes coding for proteins involved in DNA transcription and its regulation, and metal binding proteins, demonstrated major differences in expression between patients and all other individuals with normal phenotype. Genes coding for ribosomal proteins differed significantly between individual with at least one copy of the mutated PUS1 gene and controls. These findings indicate that the lack of tRNA pseudouridylation can be overcome by compensatory changes in levels of ribosomal proteins, and that the disease phenotype in affected tissues is likely due to pleiotropic effects of PUS1p on non-tRNA molecules involved in DNA transcription and iron metabolism. Similar combinations of mechanisms may play a role in the tissue specificity of other mitochondrial disorders.


The First Case Report of X-Linked Sideroblastic Anemia With Ataxia of Chinese Origin and Literature Review.

  • Shiqiu Xiong‎ et al.
  • Frontiers in pediatrics‎
  • 2021‎

X-linked sideroblastic anemia with ataxia (XLSA/A) is a rare X-liked inherited disease, which was linked to the ABCB7 gene mutations. So far, five families have been reported worldwide. We present the first Chinese family of XLSA/A with novel ABCB7 gene mutation (c.2024A > G) and make a retrospective literature review. All affected patients were male. Age of symptom onset was <2 years old. The main symptoms included ataxia, delay in motor development, and mild sideroblastic anemia with obviously increased erythrocyte protoporphyrin. In this case, he had new symptoms that had not been reported in other cases such as epilepsy and cryptorchidism. We also discuss the possible molecular mechanism linking ABCB7 gene mutations to sideroblastic anemia and ataxia.


[Genetic diagnosis of a Chinese pedigree with X-Linked sideroblastic anemia: a case report and literature review].

  • Changming Chen‎ et al.
  • Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi‎
  • 2016‎

No abstract available


Effect of 5-aminolevulinic acid on erythropoiesis: a preclinical in vitro characterization for the treatment of congenital sideroblastic anemia.

  • Tohru Fujiwara‎ et al.
  • Biochemical and biophysical research communications‎
  • 2014‎

Congenital sideroblastic anemia (CSA) is a hereditary disorder characterized by microcytic anemia and bone marrow sideroblasts. The most common form of CSA is attributed to mutations in the X-linked gene 5-aminolevulinic acid synthase 2 (ALAS2). ALAS2 is a mitochondrial enzyme, which utilizes glycine and succinyl-CoA to form 5-aminolevulinic acid (ALA), a crucial precursor in heme synthesis. Therefore, ALA supplementation could be an effective therapeutic strategy to restore heme synthesis in CSA caused by ALAS2 defects. In a preclinical study, we examined the effects of ALA in human erythroid cells, including K562 cells and human induced pluripotent stem cell-derived erythroid progenitor (HiDEP) cells. ALA treatment resulted in significant dose-dependent accumulation of heme in the K562 cell line. Concomitantly, the treatment substantially induced erythroid differentiation as assessed using benzidine staining. Quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis confirmed significant upregulation of heme-regulated genes, such as the globin genes [hemoglobin alpha (HBA) and hemoglobin gamma (HBG)] and the heme oxygenase 1 (HMOX1) gene, in K562 cells. Next, to investigate the mechanism by which ALA is transported into erythroid cells, quantitative RT-PCR analysis was performed on previously identified ALA transporters, including solute carrier family 15 (oligopeptide transporter), member (SLC15A) 1, SLC15A2, solute carrier family 36 (proton/amino acid symporter), member (SLC36A1), and solute carrier family 6 (neurotransmitter transporter), member 13 (SLC6A13). Our analysis revealed that SLC36A1 was abundantly expressed in erythroid cells. Thus, gamma-aminobutyric acid (GABA) was added to K562 cells to competitively inhibit SLC36A1-mediated transport. GABA treatment significantly impeded the ALA-mediated increase in the number of hemoglobinized cells as well as the induction of HBG, HBA, and HMOX1. Finally, small-interfering RNA-mediated knockdown of ALAS2 in HiDEP cells considerably decreased the expression of HBA, HBG, and HMOX1, and these expression levels were rescued with ALA treatment. In summary, ALA appears to be transported into erythroid cells mainly by SLC36A1 and is utilized to generate heme. ALA may represent a novel therapeutic option for CSA treatment, particularly for cases harboring ALAS2 mutations.


Case Report: Expanding Clinical, Immunological and Genetic Findings in Sideroblastic Anemia With Immunodeficiency, Fevers and Development Delay (SIFD) Syndrome.

  • Leonardo Oliveira Mendonca‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Since the first description of the syndrome of sideroblastic anemia with immunodeficiency, fevers and development delay (SIFD), clinical pictures lacking both neurological and hematological manifestations have been reported. Moreover, prominent skin involvement, such as with relapsing erythema nodosum, is not a common finding. Up to this moment, no genotype and phenotype correlation could be done, but mild phenotypes seem to be located in the N or C part. B-cell deficiency is a hallmark of SIFD syndrome, and multiple others immunological defects have been reported, but not high levels of double negative T cells. Here we report a Brazilian patient with a novel phenotype of SFID syndrome, carrying multiple immune defects and harboring a novel mutation on TRNT1 gene.


A hemizygous p.R204Q mutation in the ALAS2 gene underlies X-linked sideroblastic anemia in an adult Chinese Han man.

  • Jinbo Huang‎ et al.
  • BMC medical genomics‎
  • 2021‎

X-linked sideroblastic anemia (XLSA) is the most common form of congenital sideroblastic anemia (CSA), and is associated with the mutations in the 5-aminolevulinate synthase 2 (ALAS2). The genetic basis of more than 40% of CSA cases remains unknown.


Pseudouridine synthase 1 deficient mice, a model for Mitochondrial Myopathy with Sideroblastic Anemia, exhibit muscle morphology and physiology alterations.

  • Joshua E Mangum‎ et al.
  • Scientific reports‎
  • 2016‎

Mitochondrial myopathy with lactic acidosis and sideroblastic anemia (MLASA) is an oxidative phosphorylation disorder, with primary clinical manifestations of myopathic exercise intolerance and a macrocytic sideroblastic anemia. One cause of MLASA is recessive mutations in PUS1, which encodes pseudouridine (Ψ) synthase 1 (Pus1p). Here we describe a mouse model of MLASA due to mutations in PUS1. As expected, certain Ψ modifications were missing in cytoplasmic and mitochondrial tRNAs from Pus1(-/-) animals. Pus1(-/-) mice were born at the expected Mendelian frequency and were non-dysmorphic. At 14 weeks the mutants displayed reduced exercise capacity. Examination of tibialis anterior (TA) muscle morphology and histochemistry demonstrated an increase in the cross sectional area and proportion of myosin heavy chain (MHC) IIB and low succinate dehydrogenase (SDH) expressing myofibers, without a change in the size of MHC IIA positive or high SDH myofibers. Cytochrome c oxidase activity was significantly reduced in extracts from red gastrocnemius muscle from Pus1(-/-) mice. Transmission electron microscopy on red gastrocnemius muscle demonstrated that Pus1(-/-) mice also had lower intermyofibrillar mitochondrial density and smaller mitochondria. Collectively, these results suggest that alterations in muscle metabolism related to mitochondrial content and oxidative capacity may account for the reduced exercise capacity in Pus1(-/-) mice.


A novel hemizygous I418S mutation in the ALAS2 gene in a young Korean man with X-linked sideroblastic anemia.

  • Soo Young Moon‎ et al.
  • Annals of laboratory medicine‎
  • 2014‎

No abstract available


Mitochondrial myopathy, lactic acidosis, and sideroblastic anemia (MLASA) plus associated with a novel de novo mutation (m.8969G>A) in the mitochondrial encoded ATP6 gene.

  • Lindsay C Burrage‎ et al.
  • Molecular genetics and metabolism‎
  • 2014‎

Mitochondrial myopathy, lactic acidosis and sideroblastic anemia (MLASA) is a rare mitochondrial disorder that has previously been associated with mutations in PUS1 and YARS2. In the present report, we describe a 6-year old male with an MLASA plus phenotype. This patient had features of MLASA in the setting of developmental delay, sensorineural hearing loss, epilepsy, agenesis of the corpus callosum, failure to thrive, and stroke-like episodes. Sequencing of the mitochondrial genome identified a novel de novo, heteroplasmic mutation in the mitochondrial DNA (mtDNA) encoded ATP6 gene (m.8969G>A, p.S148N). Whole exome sequencing did not identify mutations or variants in PUS1 or YARS2 or any known nuclear genes that could affect mitochondrial function and explain this phenotype. Studies of fibroblasts derived from the patient revealed a decrease in oligomycin-sensitive respiration, a finding which is consistent with a complex V defect. Thus, this mutation in MT-ATP6 may represent the first mtDNA point mutation associated with the MLASA phenotype.


Deregulation of genes related to iron and mitochondrial metabolism in refractory anemia with ring sideroblasts.

  • Mónica del Rey‎ et al.
  • PloS one‎
  • 2015‎

The presence of SF3B1 gene mutations is a hallmark of refractory anemia with ring sideroblasts (RARS). However, the mechanisms responsible for iron accumulation that characterize the Myelodysplastic Syndrome with ring sideroblasts (MDS-RS) are not completely understood. In order to gain insight in the molecular basis of MDS-RS, an integrative study of the expression and mutational status of genes related to iron and mitochondrial metabolism was carried out. A total of 231 low-risk MDS patients and 81 controls were studied. Gene expression analysis revealed that iron metabolism and mitochondrial function had the highest number of genes deregulated in RARS patients compared to controls and the refractory cytopenias with unilineage dysplasia (RCUD). Thus mitochondrial transporters SLC25 (SLC25A37 and SLC25A38) and ALAD genes were over-expressed in RARS. Moreover, significant differences were observed between patients with SF3B1 mutations and patients without the mutations. The deregulation of genes involved in iron and mitochondrial metabolism provides new insights in our knowledge of MDS-RS. New variants that could be involved in the pathogenesis of these diseases have been identified.


Absence of mitochondrial superoxide dismutase results in a murine hemolytic anemia responsive to therapy with a catalytic antioxidant.

  • J S Friedman‎ et al.
  • The Journal of experimental medicine‎
  • 2001‎

Manganese superoxide dismutase 2 (SOD2) is a critical component of the mitochondrial pathway for detoxification of O2(-), and targeted disruption of this locus leads to embryonic or neonatal lethality in mice. To follow the effects of SOD2 deficiency in cells over a longer time course, we created hematopoietic chimeras in which all blood cells are derived from fetal liver stem cells of Sod2 knockout, heterozygous, or wild-type littermates. Stem cells of each genotype efficiently rescued hematopoiesis and allowed long-term survival of lethally irradiated host animals. Peripheral blood analysis of leukocyte populations revealed no differences in reconstitution kinetics of T cells, B cells, or myeloid cells when comparing Sod2(+/+), Sod2(-/-), and Sod2(+/-) fetal liver recipients. However, animals receiving Sod2(-/-) cells were persistently anemic, with findings suggestive of a hemolytic process. Loss of SOD2 in erythroid progenitor cells results in enhanced protein oxidative damage, altered membrane deformation, and reduced survival of red cells. Treatment of anemic animals with Euk-8, a catalytic antioxidant with both SOD and catalase activities, significantly corrected this oxidative stress-induced condition. Such therapy may prove useful in treatment of human disorders such as sideroblastic anemia, which SOD2 deficiency most closely resembles.


Impaired activity of CCA-adding enzyme TRNT1 impacts OXPHOS complexes and cellular respiration in SIFD patient-derived fibroblasts.

  • Urszula Liwak-Muir‎ et al.
  • Orphanet journal of rare diseases‎
  • 2016‎

SIFD (Sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay) is a novel form of congenital sideroblastic anemia associated with B-cell immunodeficiency, periodic fevers, and developmental delay caused by mutations in the CCA-adding enzyme TRNT1, but the precise molecular pathophysiology is not known.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: