Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 40 papers

Macrocytic anemia and mitochondriopathy resulting from a defect in sideroflexin 4.

  • Gordon J Hildick-Smith‎ et al.
  • American journal of human genetics‎
  • 2013‎

We used exome sequencing to identify mutations in sideroflexin 4 (SFXN4) in two children with mitochondrial disease (the more severe case also presented with macrocytic anemia). SFXN4 is an uncharacterized mitochondrial protein that localizes to the mitochondrial inner membrane. sfxn4 knockdown in zebrafish recapitulated the mitochondrial respiratory defect observed in both individuals and the macrocytic anemia with megaloblastic features of the more severe case. In vitro and in vivo complementation studies with fibroblasts from the affected individuals and zebrafish demonstrated the requirement of SFXN4 for mitochondrial respiratory homeostasis and erythropoiesis. Our findings establish mutations in SFXN4 as a cause of mitochondriopathy and macrocytic anemia.


Murine tribbles homolog 2 deficiency affects erythroid progenitor development and confers macrocytic anemia on mice.

  • Kou-Ray Lin‎ et al.
  • Scientific reports‎
  • 2016‎

Tribbles homolog 2 (Trib2) is a member of Tribbles protein pseudokinases and involves in apoptosis, autoimmunity, cancer, leukemia and erythropoiesis, however, the physiological function of Trib2 in hematopoietic system remains to be elucidated. Here, we report that Trib2 knockout (KO) mice manifest macrocytic anemia and increase of T lymphocytes. Although Trib2 deficient RBCs have similar half-life as the control RBCs, Trib2 KO mice are highly vulnerable to oxidant-induced hemolysis. Endogenous Trib2 mRNA is expressed in early hematopoietic progenitors, erythroid precursors, and lymphoid lineages, but not in mature RBCs, myeloid progenitors and granulocytes. Consistently, flow cytometric analysis and in vitro colony forming assay revealed that deletion of Trib2 mainly affected erythroid lineage development, and had no effect on either granulocyte or megakaryocyte lineages in bone marrow. Furthermore, a genetic approach using double knockout of Trib2 and C/ebpα genes in mice suggested that Trib2 promotes erythropoiesis independent of C/ebpα proteins in vivo. Finally, ectopic expression of human Trib2 in zebrafish embryos resulted in increased expression of erythropoiesis-related genes and of hemoglobin. Taking all data together, our results suggest that Trib2 positively promotes early erythrocyte differentiation and is essential for tolerance to hemolysis.


Nonlinear Relationship Between Macrocytic Anemia and Decompensated Hepatitis B Virus Associated Cirrhosis: A Population-Based Cross-Sectional Study.

  • Tian-Yu Zhao‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Background: Mean corpuscular volume (MCV) is major used as an indicator for the differential diagnosis of anemia. Macrocytic anemia in decompensated cirrhosis is common. However, the relationship between macrocytic anemia and decompensated hepatitis B virus (HBV) associated cirrhosis has not been fully addressed. Methods: In this cross-sectional study, a total of 457 patients diagnosed decompensated HBV associated cirrhosis who met all inclusion criteria from 2011 to 2018 were analyzed. Association between macrocytic anemia and the liver damaged (Model for End Stage Liver Disease (MELD) score) were examined using multiple logistic regression analyses and identified using smooth curve fitting. Results: Compared with normocytic anemia, MCV and MELD are significantly positively correlated in macrocytic anemia (p < 0.001). A non-linear relationship of MCV and MELD association was found though the piecewise linear spline models in patients with decompensated HBV associated cirrhosis. MCV positive correlated with MELD when the MCV was greater than 98.2 fl (regression coefficient = 0.008, 95% CI 0.1, 0.4). Conclusion: Macrocytic anemia may be a reliable predictor for mortality because it is closely related to the degree of liver damage in patients with decompensated HBV associated cirrhosis.


Human radical scavenger α1-microglobulin protects against hemolysis in vitro and α1-microglobulin knockout mice exhibit a macrocytic anemia phenotype.

  • Amanda Kristiansson‎ et al.
  • Free radical biology & medicine‎
  • 2021‎

During red blood cell (RBC) lysis hemoglobin and heme leak out of the cells and cause damage to the endothelium and nearby tissue. Protective mechanisms exist; however, these systems are not sufficient in diseases with increased extravascular hemolysis e.g. hemolytic anemia. α1-microglobulin (A1M) is a ubiquitous reductase and radical- and heme-binding protein with antioxidation properties. Although present in the circulation in micromolar concentrations, its function in blood is unclear. Here, we show that A1M provides RBC stability. A1M-/- mice display abnormal RBC morphology, reminiscent of macrocytic anemia conditions, i.e. fewer, larger and more heterogeneous cells. Recombinant human A1M (rA1M) reduced in vitro hemolysis of murine RBC against spontaneous, osmotic and heme-induced stress. Moreover, A1M is taken up by human RBCs both in vitro and in vivo. Similarly, rA1M also protected human RBCs against in vitro spontaneous, osmotic, heme- and radical-induced hemolysis as shown by significantly reduced leakage of hemoglobin and LDH. Addition of rA1M resulted in decreased hemolysis compared to addition of the heme-binding protein hemopexin and the radical-scavenging and reducing agents ascorbic acid and Trolox (vitamin E). Furthermore, rA1M significantly reduced spontaneous and heme-induced fetal RBC cell death. Addition of A1M to human whole blood resulted in a significant reduction of hemolysis, whereas removal of A1M from whole blood resulted in increased hemolysis. We conclude that A1M has a protective function in reducing hemolysis which is neither specific to the origin of hemolytic insult, nor species specific.


A critical role for mTORC1 in erythropoiesis and anemia.

  • Zachary A Knight‎ et al.
  • eLife‎
  • 2014‎

Red blood cells (RBC) must coordinate their rate of growth and proliferation with the availability of nutrients, such as iron, but the signaling mechanisms that link the nutritional state to RBC growth are incompletely understood. We performed a screen for cell types that have high levels of signaling through mTORC1, a protein kinase that couples nutrient availability to cell growth. This screen revealed that reticulocytes show high levels of phosphorylated ribosomal protein S6, a downstream target of mTORC1. We found that mTORC1 activity in RBCs is regulated by dietary iron and that genetic activation or inhibition of mTORC1 results in macrocytic or microcytic anemia, respectively. Finally, ATP competitive mTOR inhibitors reduced RBC proliferation and were lethal after treatment with phenylhydrazine, an inducer of hemolysis. These results identify the mTORC1 pathway as a critical regulator of RBC growth and proliferation and establish that perturbations in this pathway result in anemia.


The prevalence of iron deficiency anemia in a Saudi University female students.

  • Nora Nasir Al Hassan‎
  • Journal of microscopy and ultrastructure‎
  • 2015‎

The study aims to determine the prevalence of anemia in apparently healthy university female students. This study was conducted in 2007-2008 at Taibah University and a total of 268 female students participated in this research. In order to assess iron deficiency and iron deficiency anemia, the venous blood samples were collected from consecutive female students at the medical center of Taibah University excluding those already on iron supplementation for iron-deficiency anemia. One hundred and seventy-one (64%) students were found to be anemic. The overall prevalence of mild (10-11 g/dL), moderate (7-10 g/dL), and severe (Hb <7 g/dL) anemia was 45%, 49%, and 6%, respectively. Out of the anemic students, 81% showed microcytic (MCV <80 fL) and 1.6% had macrocytic (MCV >96 fL) variety. The results of this study warrant further evidence-based surveys on a larger scale to validate these findings and eventually set a stage to develop well-organized educational and nutritional programs to safeguard and improve the nation's health. The high prevalence of iron deficiency anemia in the present study might be related to life style of female students as well as to their dietary habits. It is recommended that female students never skip breakfast as it is essential for their cognitive functions and physical activities.


Identification of a novel RPS26 nonsense mutation in a Chinese Diamond-Blackfan Anemia patient.

  • Xiaodong Shi‎ et al.
  • BMC medical genetics‎
  • 2019‎

Diamond-Blackfan anemia (DBA), a congenital pure red cell aplasia (PRCA), is characterized by normochromic macrocytic anemia, reticulocytopenia, and nearly absent erythroid progenitors in the bone marrow. DBA10, a subset of DBA, is an autosomal dominant disease caused by a mutation in RPS26. So far, there are 30 disease-causing variants in RPS26 being reported, however, only three of them are small insert mutations.


Novel FANCA mutation in the first fully-diagnosed patient with Fanconi anemia in Polish population - case report.

  • Anna Repczynska‎ et al.
  • Molecular cytogenetics‎
  • 2020‎

Fanconi anemia is a rare genetic disorder caused by mutations in genes which protein products are involved in replication, cell cycle control and DNA repair. It is characterized by congenital malformations, bone marrow failure, and high risk of cancer. The diagnosis is based on morphological and hematological abnormalities such as pancytopenia, macrocytic anaemia and progressive bone marrow failure. Genetic examination, often very complex, includes chromosomal breakage testing and mutational analysis.


A new murine Rpl5 (uL18) mutation provides a unique model of variably penetrant Diamond-Blackfan anemia.

  • Lei Yu‎ et al.
  • Blood advances‎
  • 2021‎

Ribosome dysfunction is implicated in multiple abnormal developmental and disease states in humans. Heterozygous germline mutations in genes encoding ribosomal proteins are found in most individuals with Diamond-Blackfan anemia (DBA), whereas somatic mutations have been implicated in a variety of cancers and other disorders. Ribosomal protein-deficient animal models show variable phenotypes and penetrance, similar to human patients with DBA. In this study, we characterized a novel ENU mouse mutant (Skax23m1Jus) with growth and skeletal defects, cardiac malformations, and increased mortality. After genetic mapping and whole-exome sequencing, we identified an intronic Rpl5 mutation, which segregated with all affected mice. This mutation was associated with decreased ribosome generation, consistent with Rpl5 haploinsufficiency. Rpl5Skax23-Jus/+ animals had a profound delay in erythroid maturation and increased mortality at embryonic day (E) 12.5, which improved by E14.5. Surviving mutant animals had macrocytic anemia at birth, as well as evidence of ventricular septal defect (VSD). Surviving adult and aged mice exhibited no hematopoietic defect or VSD. We propose that this novel Rpl5Skax23-Jus/+ mutant mouse will be useful in studying the factors influencing the variable penetrance that is observed in DBA.


Eltrombopag Improves Erythroid Differentiation in a Human Induced Pluripotent Stem Cell Model of Diamond Blackfan Anemia.

  • Husam Qanash‎ et al.
  • Cells‎
  • 2021‎

Diamond Blackfan Anemia (DBA) is a congenital macrocytic anemia associated with ribosomal protein haploinsufficiency. Ribosomal dysfunction delays globin synthesis, resulting in excess toxic free heme in erythroid progenitors, early differentiation arrest, and pure red cell aplasia. In this study, DBA induced pluripotent stem cell (iPSC) lines were generated from blood mononuclear cells of DBA patients with inactivating mutations in RPS19 and subjected to hematopoietic differentiation to model disease phenotypes. In vitro differentiated hematopoietic cells were used to investigate whether eltrombopag, an FDA-approved mimetic of thrombopoietin with robust intracellular iron chelating properties, could rescue erythropoiesis in DBA by restricting the labile iron pool (LIP) derived from excessive free heme. DBA iPSCs exhibited RPS19 haploinsufficiency, reduction in the 40S/60S ribosomal subunit ratio and early erythroid differentiation arrest in the absence of eltrombopag, compared to control isogenic iPSCs established by CRISPR/Cas9-mediated correction of the RPS19 point mutation. Notably, differentiation of DBA iPSCs in the presence of eltrombopag markedly improved erythroid maturation. Consistent with a molecular mechanism based on intracellular iron chelation, we observed that deferasirox, a clinically licensed iron chelator able to permeate into cells, also enhanced erythropoiesis in our DBA iPSC model. In contrast, erythroid maturation did not improve substantially in DBA iPSC differentiation cultures supplemented with deferoxamine, a clinically available iron chelator that poorly accesses LIP within cellular compartments. These findings identify eltrombopag as a promising new therapeutic to improve anemia in DBA.


Dysferlin and other non-red cell proteins accumulate in the red cell membrane of Diamond-Blackfan Anemia patients.

  • Esther N Pesciotta‎ et al.
  • PloS one‎
  • 2014‎

Diamond Blackfan Anemia (DBA) is a congenital anemia usually caused by diverse mutations in ribosomal proteins. Although the genetics of DBA are well characterized, the mechanisms that lead to macrocytic anemia remain unclear. We systematically analyzed the proteomes of red blood cell membranes from multiple DBA patients to determine whether abnormalities in protein translation or erythropoiesis contribute to the observed macrocytosis or alterations in the mature red blood cell membrane. In depth proteome analysis of red cell membranes enabled highly reproducible identification and quantitative comparisons of 1100 or more proteins. These comparisons revealed clear differences between red cell membrane proteomes in DBA patients and healthy controls that were consistent across DBA patients with different ribosomal gene mutations. Proteins exhibiting changes in abundance included those known to be increased in DBA such as fetal hemoglobin and a number of proteins not normally found in mature red cell membranes, including proteins involved in the major histocompatibility complex class I pathway. Most striking was the presence of dysferlin in the red blood cell membranes of DBA patients but absent in healthy controls. Immunoblot validation using red cell membranes isolated from additional DBA patients and healthy controls confirmed a distinct membrane protein signature specific to patients with DBA.


Characterization of the interactions between Codanin-1 and C15Orf41, two proteins implicated in congenital dyserythropoietic anemia type I disease.

  • Grace Swickley‎ et al.
  • BMC molecular and cell biology‎
  • 2020‎

Congenital dyserythropoietic anemia type I (CDA I), is an autosomal recessive disease with macrocytic anemia in which erythroid precursors in the bone marrow exhibit pathognomonic abnormalities including spongy heterochromatin and chromatin bridges. We have shown previously that the gene mutated in CDA I encodes Codanin-1, a ubiquitously expressed and evolutionarily conserved large protein. Recently, an additional etiologic factor for CDA I was reported, C15Orf41, a predicted nuclease. Mutations in both CDAN1 and C15Orf41 genes results in very similar erythroid phenotype. However, the possible relationships between these two etiologic factors is not clear.


Pseudouridine synthase 1 deficient mice, a model for Mitochondrial Myopathy with Sideroblastic Anemia, exhibit muscle morphology and physiology alterations.

  • Joshua E Mangum‎ et al.
  • Scientific reports‎
  • 2016‎

Mitochondrial myopathy with lactic acidosis and sideroblastic anemia (MLASA) is an oxidative phosphorylation disorder, with primary clinical manifestations of myopathic exercise intolerance and a macrocytic sideroblastic anemia. One cause of MLASA is recessive mutations in PUS1, which encodes pseudouridine (Ψ) synthase 1 (Pus1p). Here we describe a mouse model of MLASA due to mutations in PUS1. As expected, certain Ψ modifications were missing in cytoplasmic and mitochondrial tRNAs from Pus1(-/-) animals. Pus1(-/-) mice were born at the expected Mendelian frequency and were non-dysmorphic. At 14 weeks the mutants displayed reduced exercise capacity. Examination of tibialis anterior (TA) muscle morphology and histochemistry demonstrated an increase in the cross sectional area and proportion of myosin heavy chain (MHC) IIB and low succinate dehydrogenase (SDH) expressing myofibers, without a change in the size of MHC IIA positive or high SDH myofibers. Cytochrome c oxidase activity was significantly reduced in extracts from red gastrocnemius muscle from Pus1(-/-) mice. Transmission electron microscopy on red gastrocnemius muscle demonstrated that Pus1(-/-) mice also had lower intermyofibrillar mitochondrial density and smaller mitochondria. Collectively, these results suggest that alterations in muscle metabolism related to mitochondrial content and oxidative capacity may account for the reduced exercise capacity in Pus1(-/-) mice.


Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients.

  • Hanna T Gazda‎ et al.
  • American journal of human genetics‎
  • 2008‎

Diamond-Blackfan anemia (DBA), a congenital bone-marrow-failure syndrome, is characterized by red blood cell aplasia, macrocytic anemia, clinical heterogeneity, and increased risk of malignancy. Although anemia is the most prominent feature of DBA, the disease is also characterized by growth retardation and congenital anomalies that are present in approximately 30%-50% of patients. The disease has been associated with mutations in four ribosomal protein (RP) genes, RPS19, RPS24, RPS17, and RPL35A, in about 30% of patients. However, the genetic basis of the remaining 70% of cases is still unknown. Here, we report the second known mutation in RPS17 and probable pathogenic mutations in three more RP genes, RPL5, RPL11, and RPS7. In addition, we identified rare variants of unknown significance in three other genes, RPL36, RPS15, and RPS27A. Remarkably, careful review of the clinical data showed that mutations in RPL5 are associated with multiple physical abnormalities, including craniofacial, thumb, and heart anomalies, whereas isolated thumb malformations are predominantly present in patients carrying mutations in RPL11. We also demonstrate that mutations of RPL5, RPL11, or RPS7 in DBA cells is associated with diverse defects in the maturation of ribosomal RNAs in the large or the small ribosomal subunit production pathway, expanding the repertoire of ribosomal RNA processing defects associated with DBA.


In-Depth, Label-Free Analysis of the Erythrocyte Cytoplasmic Proteome in Diamond Blackfan Anemia Identifies a Unique Inflammatory Signature.

  • Esther N Pesciotta‎ et al.
  • PloS one‎
  • 2015‎

Diamond Blackfan Anemia (DBA) is a rare, congenital erythrocyte aplasia that is usually caused by haploinsufficiency of ribosomal proteins due to diverse mutations in one of several ribosomal genes. A striking feature of this disease is that a range of different mutations in ribosomal proteins results in similar disease phenotypes primarily characterized by erythrocyte abnormalities and macrocytic anemia, while most other cell types in the body are minimally affected. Previously, we analyzed the erythrocyte membrane proteomes of several DBA patients and identified several proteins that are not typically associated with this cell type and that suggested inflammatory mechanisms contribute to the pathogenesis of DBA. In this study, we evaluated the erythrocyte cytosolic proteome of DBA patients through in-depth analysis of hemoglobin-depleted erythrocyte cytosols. Simple, reproducible, hemoglobin depletion using nickel columns enabled in-depth analysis of over 1000 cytosolic erythrocyte proteins with only moderate total analysis time per proteome. Label-free quantitation and statistical analysis identified 29 proteins with significantly altered abundance levels in DBA patients compared to matched healthy control donors. Proteins that were significantly increased in DBA erythrocyte cytoplasms included three proteasome subunit beta proteins that make up the immunoproteasome and proteins induced by interferon-γ such as n-myc interactor and interferon-induced 35 kDa protein [NMI and IFI35 respectively]. Pathway analysis confirmed the presence of an inflammatory signature in erythrocytes of DBA patients and predicted key upstream regulators including mitogen activated kinase 1, interferon-γ, tumor suppressor p53, and tumor necrosis factor. These results show that erythrocytes in DBA patients are intrinsically different from those in healthy controls which may be due to an inflammatory response resulting from the inherent molecular defect of ribosomal protein haploinsufficiency or changes in the bone marrow microenvironment that leads to red cell aplasia in DBA patients.


Centrosome function is critical during terminal erythroid differentiation.

  • Péter Tátrai‎ et al.
  • The EMBO journal‎
  • 2022‎

Red blood cells are produced by terminal erythroid differentiation, which involves the dramatic morphological transformation of erythroblasts into enucleated reticulocytes. Microtubules are important for enucleation, but it is not known if the centrosome, a key microtubule-organizing center, is required as well. Mice lacking the conserved centrosome component, CDK5RAP2, are likely to have defective erythroid differentiation because they develop macrocytic anemia. Here, we show that fetal liver-derived, CDK5RAP2-deficient erythroid progenitors generate fewer and larger reticulocytes, hence recapitulating features of macrocytic anemia. In erythroblasts, but not in embryonic fibroblasts, loss of CDK5RAP2 or pharmacological depletion of centrosomes leads to highly aberrant spindle morphologies. Consistent with such cells exiting mitosis without chromosome segregation, tetraploidy is frequent in late-stage erythroblasts, thereby giving rise to fewer but larger reticulocytes than normal. Our results define a critical role for CDK5RAP2 and centrosomes in spindle formation specifically during blood production. We propose that disruption of centrosome and spindle function could contribute to the emergence of macrocytic anemias, for instance, due to nutritional deficiency or exposure to chemotherapy.


Mito-protective autophagy is impaired in erythroid cells of aged mtDNA-mutator mice.

  • XiuJie Li-Harms‎ et al.
  • Blood‎
  • 2015‎

Somatic mitochondrial DNA (mtDNA) mutations contribute to the pathogenesis of age-related disorders, including myelodysplastic syndromes (MDS). The accumulation of mitochondria harboring mtDNA mutations in patients with these disorders suggests a failure of normal mitochondrial quality-control systems. The mtDNA-mutator mice acquire somatic mtDNA mutations via a targeted defect in the proofreading function of the mtDNA polymerase, PolgA, and develop macrocytic anemia similar to that of patients with MDS. We observed an unexpected defect in clearance of dysfunctional mitochondria at specific stages during erythroid maturation in hematopoietic cells from aged mtDNA-mutator mice. Mechanistically, aberrant activation of mechanistic target of rapamycin signaling and phosphorylation of uncoordinated 51-like kinase (ULK) 1 in mtDNA-mutator mice resulted in proteasome-mediated degradation of ULK1 and inhibition of autophagy in erythroid cells. To directly evaluate the consequence of inhibiting autophagy on mitochondrial function in erythroid cells harboring mtDNA mutations in vivo, we deleted Atg7 from erythroid progenitors of wild-type and mtDNA-mutator mice. Genetic disruption of autophagy did not cause anemia in wild-type mice but accelerated the decline in mitochondrial respiration and development of macrocytic anemia in mtDNA-mutator mice. These findings highlight a pathological feedback loop that explains how dysfunctional mitochondria can escape autophagy-mediated degradation and propagate in cells predisposed to somatic mtDNA mutations, leading to disease.


Test utilization for the diagnosis of vitamin B12 and folate deficiency in local clinics in Korea.

  • Rihwa Choi‎ et al.
  • Journal of clinical laboratory analysis‎
  • 2020‎

Current guidelines pertaining to diagnosing macrocytic anemia in association with vitamin B12 and folate deficiency recommend that vitamin B12, folate, homocysteine, and methylmalonic acid assays should be assessed concurrently due to their close relationship in metabolism. We aimed to investigate the completion of these assays in local clinics and hospitals without in-house clinical laboratories in Korea.


Physiologic Expression of Sf3b1(K700E) Causes Impaired Erythropoiesis, Aberrant Splicing, and Sensitivity to Therapeutic Spliceosome Modulation.

  • Esther A Obeng‎ et al.
  • Cancer cell‎
  • 2016‎

More than 80% of patients with the refractory anemia with ring sideroblasts subtype of myelodysplastic syndrome (MDS) have mutations in Splicing Factor 3B, Subunit 1 (SF3B1). We generated a conditional knockin mouse model of the most common SF3B1 mutation, Sf3b1(K700E). Sf3b1(K700E) mice develop macrocytic anemia due to a terminal erythroid maturation defect, erythroid dysplasia, and long-term hematopoietic stem cell (LT-HSC) expansion. Sf3b1(K700E) myeloid progenitors and SF3B1-mutant MDS patient samples demonstrate aberrant 3' splice-site selection associated with increased nonsense-mediated decay. Tet2 loss cooperates with Sf3b1(K700E) to cause a more severe erythroid and LT-HSC phenotype. Furthermore, the spliceosome modulator, E7017, selectively kills SF3B1(K700E)-expressing cells. Thus, SF3B1(K700E) expression reflects the phenotype of the mutation in MDS and may be a therapeutic target in MDS.


In-vitro and in-silico evidence for oxidative stress as drivers for RDW.

  • Huibert-Jan Joosse‎ et al.
  • Scientific reports‎
  • 2023‎

Red blood cell distribution width (RDW) is a biomarker associated with a variety of clinical outcomes. While anemia and subclinical inflammation have been posed as underlying pathophysiology, it is unclear what mechanisms underlie these assocations. Hence, we aimed to unravel the mechanisms in silico using a large clinical dataset and validate our findings in vitro. We retrieved complete blood counts (CBC) from 1,403,663 measurements from the Utrecht Patient Oriented Database, to model RDW using gradient boosting regression. We performed (sex-stratified) analyses in patients with anemia, patients younger/older than 50 and validation across platforms and care settings. We then validated our hypothesis regarding oxidative stress using an in vitro approach. Only percentage microcytic (pMIC) and macrocytic (pMAC) erythrocytes and mean corpuscular volume were most important in modelling RDW (RMSE = 0.40, R2 = 0.96). Subgroup analyses and validation confirmed our findings. In vitro induction of oxidative stress underscored our results, namely increased RDW and decreased erythrocyte volume, yet no vesiculation was observed. We found that erythrocyte size, especially pMIC, is most informative in predicting RDW, but no role for anemia or inflammation. Oxidative stress affecting the size of the erythrocytes may play a role in the association between RDW and clinical outcomes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: