Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Face Attractiveness versus Artistic Beauty in Art Portraits: A Behavioral Study.

  • Katharina Schulz‎ et al.
  • Frontiers in psychology‎
  • 2017‎

From art portraits, the observer may derive at least two different hedonic values: The attractiveness of the depicted person and the artistic beauty of the image that relates to the way of presentation. We argue that attractiveness is a property that is predominantly driven by perceptual processes, while the perception of artistic beauty is based predominantly on cognitive processing. To test this hypothesis, we conducted two behavioral experiments. In a gist study (Experiment 1), we showed that ratings on attractiveness were higher after short-term presentation (50 ms) than after long-term presentation (3000 ms), while the opposite pattern was found for artistic beauty. In an experiment on perceptual contrast (Experiment 2), we showed that the perceptual contrast effect was stronger for attractiveness than for artistic beauty. These results are compatible with our hypothesis that appreciation of artistic beauty is cognitively modulated at least in part, while processing of attractiveness is predominantly driven perceptually. This dichotomy between cognitive and perceptual processing of different kinds of beauty suggests the participation of different neuronal mechanisms.


The Risk Factors Associated with Grip Lock Injuries in Artistic Gymnasts: A Systematic Review.

  • Erhan Kara‎ et al.
  • International journal of environmental research and public health‎
  • 2023‎

Artistic gymnastics (AG) is a sport that demands grace, strength, and flexibility, leading to a broad spectrum of injuries. The dowel grip (DG) is widely used by gymnasts to securely hold onto the high bar or uneven bars. However, incorrect usage of the DG can result in grip lock (GL) injuries. This systematic review aims to (1) identify studies that have investigated the risk factors related to GL injuries among gymnasts and (2) synthesize the key evidence. A comprehensive electronic search was conducted in the following databases: PubMed, ScienceDirect, Elsevier, SportDiscus, and Google Scholar, covering the period from their inception until November 2022. The data extraction and analysis were independently completed by two investigators. A total of 90 relevant studies were initially identified, out of which seven clinical trials met the eligibility criteria. For the quantitative synthesis, five studies were included. The details extracted from each article include: the sample characteristics (number, gender, age, and health status), the study design, the instrumentation or intervention used, and the final results. Our results revealed that the underlying causes of the risk factors of GL injuries were the irregular checking of the dowel grip and the mating surface of the bar, the tearing of the dowel of the leather strap, and the use of the dowel grip in different competition apparatuses. In addition, GL injuries may occur either as severe forearm fractures or mild injuries. Excessive flexion of the forearm and overpronation of the wrist during rotational movements, such as the swing or backward/forward giant circle, may increase the possibility of GL injury on the high bar. Future studies should focus on GL injury prevention strategy and rehabilitation protocol for GL injuries. Further high-quality research is required to establish the validity of these findings.


Visual mismatch negativity indicates automatic, task-independent detection of artistic image composition in abstract artworks.

  • Claudia Menzel‎ et al.
  • Biological psychology‎
  • 2018‎

In complex abstract art, image composition (i.e., the artist's deliberate arrangement of pictorial elements) is an important aesthetic feature. We investigated whether the human brain detects image composition in abstract artworks automatically (i.e., independently of the experimental task). To this aim, we studied whether a group of 20 original artworks elicited a visual mismatch negativity when contrasted with a group of 20 images that were composed of the same pictorial elements as the originals, but in shuffled arrangements, which destroy artistic composition. We used a passive oddball paradigm with parallel electroencephalogram recordings to investigate the detection of image type-specific properties. We observed significant deviant-standard differences for the shuffled and original images, respectively. Furthermore, for both types of images, differences in amplitudes correlated with the behavioral ratings of the images. In conclusion, we show that the human brain can detect composition-related image properties in visual artworks in an automatic fashion.


Inside out: modern imaging techniques to reveal animal anatomy.

  • Henrik Lauridsen‎ et al.
  • PloS one‎
  • 2011‎

Animal anatomy has traditionally relied on detailed dissections to produce anatomical illustrations, but modern imaging modalities, such as MRI and CT, now represent an enormous resource that allows for fast non-invasive visualizations of animal anatomy in living animals. These modalities also allow for creation of three-dimensional representations that can be of considerable value in the dissemination of anatomical studies. In this methodological review, we present our experiences using MRI, CT and μCT to create advanced representation of animal anatomy, including bones, inner organs and blood vessels in a variety of animals, including fish, amphibians, reptiles, mammals, and spiders. The images have a similar quality to most traditional anatomical drawings and are presented together with interactive movies of the anatomical structures, where the object can be viewed from different angles. Given that clinical scanners found in the majority of larger hospitals are fully suitable for these purposes, we encourage biologists to take advantage of these imaging techniques in creation of three-dimensional graphical representations of internal structures.


Spatial ability and 3D model colour-coding affect anatomy performance: a cross-sectional and randomized trial.

  • Ming Yi Koh‎ et al.
  • Scientific reports‎
  • 2023‎

Photorealistic 3D models (PR3DM) have great potential to supplement anatomy education; however, there is evidence that realism can increase cognitive load and negatively impact anatomy learning, particularly in students with decreased spatial ability. These differing viewpoints have resulted in difficulty in incorporating PR3DM when designing anatomy courses. To determine the effects of spatial ability on anatomy learning and reported intrinsic cognitive load using a drawing assessment, and of PR3DM versus an Artistic colour-coded 3D model (A3DM) on extraneous cognitive load and learning performance. First-year medical students participated in a cross-sectional (Study 1) and a double-blind randomised control trial (Study 2). Pre-tests analysed participants' knowledge of anatomy of the heart (Study 1, N = 50) and liver (Study 2, N = 46). In Study 1, subjects were first divided equally using a mental rotations test (MRT) into low and high spatial ability groups. Participants memorised a 2D-labeled heart valve diagram and sketched it rotated 180°, before self-reporting their intrinsic cognitive load (ICL). For Study 2, participants studied a liver PR3DM or its corresponding A3DM with texture-homogenisation, followed by a liver anatomy post-test, and reported extraneous cognitive load (ECL). All participants reported no prior anatomy experience. Participants with low spatial ability (N = 25) had significantly lower heart drawing scores (p = 0.001) than those with high spatial ability (N = 25), despite no significant differences in reported ICL (p = 0.110). Males had significantly higher MRT scores than females (p = 0.011). Participants who studied the liver A3DM (N = 22) had significantly higher post-test scores than those who studied the liver PR3DM (N = 24) (p = 0.042), despite no significant differences in reported ECL (p = 0.720). This investigation demonstrated that increased spatial ability and colour-coding of 3D models are associated with improved anatomy performance without significant increase in cognitive load. The findings are important and provide useful insight into the influence of spatial ability and photorealistic and artistic 3D models on anatomy education, and their applicability to instructional and assessment design in anatomy.


ART IN MEDICINE: A RETROSPECTIVE ON THE ANATOMICAL DRAWINGS OF CHARLES BELL.

  • Lucy Dewar‎ et al.
  • Acta clinica Croatica‎
  • 2019‎

Perhaps best known for his discovery of the eponymous syndrome 'Bell's Palsy', Charles Bell (1774-1842) made significant contributions to neuroscience, medical education and philosophy. Our aim was to examine his neuroanatomical drawings in the context of the era in which they were produced and their influence on future scholars. Emphasis is placed on analysing the artistic techniques employed and Bell's unique manner of conveying both structure and function. The images discussed include those featured in his book entitled The Anatomy of the Brain: Explained in a Series of Engravings. These images can be viewed in parallel with his writing on the anatomy of the brain, in which he describes the usual manner of demonstrating neuroanatomy as 'dull' and 'unmeaning'. His mastery of artistic technique complements his insightful descriptions of this prodigiously complex organ. The result is a more engaging account of neuroanatomy and an impressive display of his skill as an artist, anatomist and physician. Examining these expressive portrait-like diagrams provides greater insight into the mind of the pioneer of modern neuroscience.


Altered Cerebellar Response to Somatosensory Stimuli in the Cntnap2 Mouse Model of Autism.

  • Marta Fernández‎ et al.
  • eNeuro‎
  • 2021‎

Atypical sensory processing is currently included within the diagnostic criteria of autism. The cerebellum is known to integrate sensory inputs of different modalities through its connectivity to the cerebral cortex. Interestingly, cerebellar malformations are among the most replicated features found in postmortem brain of individuals with autism. We studied sensory processing in the cerebellum in a mouse model of autism, knock-out (KO) for the Cntnap2 gene. Cntnap2 is widely expressed in Purkinje cells (PCs) and has been recently reported to regulate their morphology. Further, individuals with CNTNAP2 mutations display cerebellar malformations and CNTNAP2 antibodies are associated with a mild form of cerebellar ataxia. Previous studies in the Cntnap2 mouse model show an altered cerebellar sensory learning. However, a physiological analysis of cerebellar function has not been performed yet. We studied sensory evoked potentials in cerebellar Crus I/II region on electrical stimulation of the whisker pad in alert mice and found striking differences between wild-type and Cntnap2 KO mice. In addition, single-cell recordings identified alterations in both sensory-evoked and spontaneous firing patterns of PCs. These changes were accompanied by altered intrinsic properties and morphologic features of these neurons. Together, these results indicate that the Cntnap2 mouse model could provide novel insight into the pathophysiological mechanisms of autism core sensory deficits.


Subjective Ratings of Beauty and Aesthetics: Correlations With Statistical Image Properties in Western Oil Paintings.

  • Gregor U Hayn-Leichsenring‎ et al.
  • i-Perception‎
  • 2017‎

For centuries, oil paintings have been a major segment of the visual arts. The JenAesthetics data set consists of a large number of high-quality images of oil paintings of Western provenance from different art periods. With this database, we studied the relationship between objective image measures and subjective evaluations of the images, especially evaluations on aesthetics (defined as artistic value) and beauty (defined as individual liking). The objective measures represented low-level statistical image properties that have been associated with aesthetic value in previous research. Subjective rating scores on aesthetics and beauty correlated not only with each other but also with different combinations of the objective measures. Furthermore, we found that paintings from different art periods vary with regard to the objective measures, that is, they exhibit specific patterns of statistical image properties. In addition, clusters of participants preferred different combinations of these properties. In conclusion, the results of the present study provide evidence that statistical image properties vary between art periods and subject matters and, in addition, they correlate with the subjective evaluation of paintings by the participants.


Gist Perception of Image Composition in Abstract Artworks.

  • Kana Schwabe‎ et al.
  • i-Perception‎
  • 2018‎

Most recent studies in experimental aesthetics have focused on the cognitive processing of visual artworks. In contrast, the perception of formal compositional features of artworks has been studied less extensively. Here, we investigated whether fast and automatic processing of artistic image composition can lead to a stable and consistent aesthetic evaluation when cognitive processing is minimized or absent. To this aim, we compared aesthetic ratings on abstract artworks and their shuffled counterparts in a gist experiment. Results show that exposure times as short as 50 ms suffice for the participants to reach a stable and consistent rating on how ordered and harmonious the abstract stimuli were. Moreover, the rating scores for the 50 ms exposure time exhibited similar dependencies on image type and self-similarity and a similar pattern of correlations between different rating terms, as the rating scores for the long exposure time (3,000 ms). Ratings were less consistent for the term interesting and inconsistent for the term pleasing. Our results are compatible with a model of aesthetic experience, in which the early perceptual processing of the formal aspects of visual artworks can lead to a consistent aesthetic judgment, even if there is no cognitive contribution to this judgment.


Statistical image properties and aesthetic judgments on abstract paintings by Robert Pepperell.

  • Christoph Redies‎ et al.
  • Journal of vision‎
  • 2023‎

In this exploratory study, we asked whether objective statistical image properties can predict subjective aesthetic ratings for a set of 48 abstract paintings created by the artist Robert Pepperell. Ruta and colleagues (2021) used the artworks previously to study the effect of curved/angular contour on liking and wanting decisions. We related a predefined set of statistical image properties to the eight different dimensions of aesthetic judgments from their study. Our results show that the statistical image properties can predict a large portion of the variance in the different aesthetic judgments by Ruta and colleagues. For example, adjusted R2 values for liking, attractiveness, visual comfort, and approachability range between 0.52 and 0.60 in multiple linear regression models with four predictors each. For wanting judgments in an (imagined) gallery context, the explained variance is even higher (adjusted R2 of 0.78). To explain these findings, we hypothesize that differences in cognitive processing of Pepperell's abstract paintings are minimized because this set of stimuli has no apparent content and is of uniform artistic style and cultural context. Under this condition, the aesthetic ratings by Ruta and colleagues are largely based on perceptual processing that systematically varies along a relatively small set of objective image properties.


A Neuroelectrical Brain Imaging Study on the Perception of Figurative Paintings against Only their Color or Shape Contents.

  • Anton G Maglione‎ et al.
  • Frontiers in human neuroscience‎
  • 2017‎

In this study, the cortical activity correlated with the perception and appreciation of different set of pictures was estimated by using neuroelectric brain activity and graph theory methodologies in a group of artistic educated persons. The pictures shown to the subjects consisted of original pictures of Titian's and a contemporary artist's paintings (Orig dataset) plus two sets of additional pictures. These additional datasets were obtained from the previous paintings by removing all but the colors or the shapes employed (Color and Style dataset, respectively). Results suggest that the verbal appreciation of Orig dataset when compared to Color and Style ones was mainly correlated to the neuroelectric indexes estimated during the first 10 s of observation of the pictures. Always in the first 10 s of observation: (1) Orig dataset induced more emotion and is perceived with more appreciation than the other two Color and Style datasets; (2) Style dataset is perceived with more attentional effort than the other investigated datasets. During the whole period of observation of 30 s: (1) emotion induced by Color and Style datasets increased across the time while that induced of the Orig dataset remain stable; (2) Color and Style dataset were perceived with more attentional effort than the Orig dataset. During the entire experience, there is evidence of a cortical flow of activity from the parietal and central areas toward the prefrontal and frontal areas during the observation of the images of all the datasets. This is coherent from the notion that active perception of the images with sustained cognitive attention in parietal and central areas caused the generation of the judgment about their aesthetic appreciation in frontal areas.


Occupational Etiology of Oropharyngeal Cancer: A Literature Review.

  • Rayan Nikkilä‎ et al.
  • International journal of environmental research and public health‎
  • 2023‎

While abundant evidence exists linking alcohol, tobacco, and HPV infection to a carcinogenic impact on the oropharynx, the contribution of inhalational workplace hazards remains ill-defined. We aim to determine whether the literature reveals occupational environments at a higher-than-average risk of developing oropharyngeal cancer (OPC) and summarize the available data. To identify studies assessing the relationship between occupational exposure and risk of OPC, a search of the literature through the PubMed-NCBI database was carried out and, ultimately, 15 original articles meeting eligibility criteria were selected. Only original articles in English focusing on the association between occupational exposure and risk or death of specifically OPC were included. The available data are supportive of a potentially increased risk of OPC in waiters, cooks and stewards, artistic workers, poultry and meat workers, mechanics, and World Trade Center responders exposed to dust. However, the available literature on occupation-related OPC is limited. To identify occupational categories at risk, large cohorts with long follow-ups are needed. Identification of causal associations with occupation-related factors would require dose-response analyses adequately adjusted for confounders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: