Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 951 papers

Abomasal infusion of branched-chain amino acids or branched-chain keto-acids alter lactation performance and liver triglycerides in fresh cows.

  • Kristen Gallagher‎ et al.
  • Journal of animal science and biotechnology‎
  • 2024‎

Dairy cows are at high risk of fatty liver disease in early lactation, but current preventative measures are not always effective. Cows with fatty liver have lower circulating branched-chain amino acid (BCAA) concentrations whereas cows with high circulating BCAA levels have low liver triglyceride (TG). Our objective was to determine the impact of BCAA and their corresponding ketoacids (branched-chain ketoacids, BCKA) on production performance and liver TG accumulation in Holstein cows in the first 3 weeks postpartum.


Life-extending dietary restriction, but not dietary supplementation of branched-chain amino acids, can increase organismal oxidation rates of individual branched-chain amino acids by grasshoppers.

  • J D Hatle‎ et al.
  • Nutrition and healthy aging‎
  • 2019‎

Life-extending dietary restriction increases energy demands. Branched-chain amino acids (BCAAs), at high levels, may be detrimental to healthspan by activating the mechanistic Target of Rapamycin (mTOR). Whether organismal oxidation of BCAAs increases upon dietary restriction is unknown.


Plasma Branched-Chain and Aromatic Amino Acids in Relation to Hypertension.

  • M H Mahbub‎ et al.
  • Nutrients‎
  • 2020‎

Findings of the available studies regarding the roles of branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) in hypertension are inconsistent, conflicting and inconclusive. The purpose of this study was to explore and clarify the existence of any relationships of individual BCAAs and AAAs with hypertension with adjustments for potential relevant confounders. A total of 2805 healthy controls and 2736 hypertensive patients were included in the current analysis. The associations between individual amino acids and hypertension were explored by logistic regression analyses adjusted for potential confounding variables. Among the investigated amino acids, only the BCAAs showed consistently significant positive associations with hypertension in the adjusted models (p-trend < 0.05 to 0.001). However, compared with the corresponding lowest quartile of individual BCAAs, the positive association with hypertension remained significant only in the highest quartile (p < 0.01 to 0.001). We confirmed in a relatively large cohort of subjects that BCAAs, not AAAs, demonstrated consistent positive associations with hypertension. The results display the promising potential for the use of BCAAs as relevant and accessible biomarkers, and provide perspectives on interventions directed towards the reduction in plasma BCAA levels in the prevention and management of hypertension.


Branched-Chain Amino Acids Can Predict Mortality in ICU Sepsis Patients.

  • Alexander Christian Reisinger‎ et al.
  • Nutrients‎
  • 2021‎

Sepsis biomarkers and potential therapeutic targets are urgently needed. With proton nuclear magnetic resonance (1H NMR) spectroscopy, several metabolites can be assessed simultaneously. Fifty-three adult medical ICU sepsis patients and 25 ICU controls without sepsis were prospectively enrolled. 1H NMR differences between groups and associations with 28-day and ICU mortality were investigated. In multivariate metabolomic analyses, we found separate clustering of ICU controls and sepsis patients, as well as septic shock survivors and non-survivors. Lipoproteins were significantly different between sepsis and control patients. Levels of the branched-chain amino acids (BCAA) valine (median 43.3 [29.0-53.7] vs. 64.3 [47.7-72.3] normalized signal intensity units; p = 0.005), leucine (57.0 [38.4-71.0] vs. 73.0 [54.3-86.3]; p = 0.034) and isoleucine (15.2 [10.9-21.6] vs. 17.9 [16.1-24.4]; p = 0.048) were lower in patients with septic shock compared to those without. Similarly, BCAA were lower in ICU non-survivors compared to survivors, and BCAA were good discriminators for ICU and 28-day mortality. In uni- and multivariable logistic regression analyses, higher BCAA levels were associated with decreased ICU- and 28-day mortality. In conclusion, metabolomics using 1H NMR spectroscopy showed encouraging potential for personalized medicine in sepsis. BCAA was significantly lower in sepsis non-survivors and may be used as early biomarkers for outcome prediction.


Oral Branched-Chain Amino Acids Supplementation in Athletes: A Systematic Review.

  • Diogo V Martinho‎ et al.
  • Nutrients‎
  • 2022‎

Branched-chain amino acids (BCAAs) are oxidized in the muscle and result in stimulating anabolic signals-which in return may optimize performance, body composition and recovery. Meanwhile, among athletes, the evidence about BCAA supplementation is not clear. The aim of this study was to review the effects of BCAAs in athletic populations. The research was conducted in three databases: Web of Science (all databases), PubMed and Scopus. The inclusion criteria involved participants classified both as athletes and people who train regularly, and who were orally supplemented with BCAAs. The risk of bias was individually assessed for each study using the revised Cochrane risk of bias tool for randomized trials (RoB 2.0). From the 2298 records found, 24 studies met the inclusion criteria. Although BCAAs tended to activate anabolic signals, the benefits on performance and body composition were negligible. On the other hand, studies that included resistance participants showed that BCAAs attenuated muscle soreness after exercise, while in endurance sports the findings were inconsistent. The protocols of BCAA supplements differed considerably between studies. Moreover, most of the studies did not report the total protein intake across the day and, consequently, the benefits of BCAAs should be interpreted with caution.


Branched-chain amino acids-induced cardiac protection against ischemia/reperfusion injury.

  • Shiho Satomi‎ et al.
  • Life sciences‎
  • 2020‎

Amino acids, especially branched chain amino acids (BCAAs), have important regulatory roles in protein synthesis. Recently studies revealed that BCAAs protect against ischemia/reperfusion (I/R) injury. We studied the signaling pathway and mitochondrial function affecting a cardiac preconditioning of BCAAs.


Anti-fibrotic effects of branched-chain amino acids on hepatic stellate cells.

  • Hae Lim Lee‎ et al.
  • The Korean journal of internal medicine‎
  • 2022‎

Patients with liver cirrhosis (LC) have low levels of branched-chain amino acids (BCAAs). There is accumulating evidence that BCAAs have anti- fibrotic effects in cirrhosis. This study is aimed to evaluate the effect of BCAAs on the function and phenotype of activated hepatic stellate cells (HSCs).


Branched-chain amino acids sustain pancreatic cancer growth by regulating lipid metabolism.

  • Ji Hyeon Lee‎ et al.
  • Experimental & molecular medicine‎
  • 2019‎

Branched-chain amino acid (BCAA) catabolism and high levels of enzymes in the BCAA metabolic pathway have recently been shown to be associated with cancer growth and survival. However, the precise roles of BCAA metabolism in cancer growth and survival remain largely unclear. Here, we found that BCAA metabolism has an important role in human pancreatic ductal adenocarcinoma (PDAC) growth by regulating lipogenesis. Compared with nontransformed human pancreatic ductal (HPDE) cells, PDAC cells exhibited significantly elevated BCAA uptake through solute carrier transporters, which were highly upregulated in pancreatic tumor tissues compared with normal tissues. Branched-chain amino-acid transaminase 2 (BCAT2) knockdown markedly impaired PDAC cell proliferation, but not HPDE cell proliferation, without significant alterations in glutamate or reactive oxygen species levels. Furthermore, PDAC cell proliferation, but not HPDE cell proliferation, was substantially inhibited upon knockdown of branched-chain α-keto acid dehydrogenase a (BCKDHA). Interestingly, BCKDHA knockdown had no significant effect on mitochondrial metabolism; that is, neither the level of tricarboxylic acid cycle intermediates nor the oxygen consumption rate was affected. However, BCKDHA knockdown significantly inhibited fatty-acid synthesis, indicating that PDAC cells may utilize BCAAs as a carbon source for fatty-acid biosynthesis. Overall, our findings show that the BCAA metabolic pathway may provide a novel therapeutic target for pancreatic cancer.


Branched Chain Amino Acids Promote ATP Production Via Translocation of Glucose Transporters.

  • Sachiko Iwai‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2022‎

We have previously shown that maintenance of ATP levels is a promising strategy for preventing neuronal cell death, and that branched chain amino acids (BCAAs) enhanced cellular ATP levels in cultured cells and antagonized cell death. BCAAs attenuated photoreceptor degeneration and retinal ganglion cell death in rodent models of retinal degeneration or glaucoma. This study aimed to elucidate the mechanisms through which BCAAs enhance ATP production.


Restricting Branched-Chain Amino Acids within a High-Fat Diet Prevents Obesity.

  • Ming Liu‎ et al.
  • Metabolites‎
  • 2022‎

Obesity is a global pandemic, but there is yet no effective measure to control it. Recent metabolomics studies have identified a signature of altered amino acid profiles to be associated with obesity, but it is unclear whether these findings have actionable clinical potential. The aims of this study were to reveal the metabolic alterations of obesity and to explore potential strategies to mitigate obesity. We performed targeted metabolomic profiling of the plasma/serum samples collected from six independent cohorts and conducted an individual data meta-analysis of metabolomics for body mass index (BMI) and obesity. Based on the findings, we hypothesized that restriction of branched-chain amino acids (BCAAs), phenylalanine, or tryptophan may prevent obesity and tested our hypothesis in a dietary restriction trial with eight groups of 4-week-old male C57BL/6J mice (n = 5/group) on eight different types of diets, respectively, for 16 weeks. A total of 3397 individuals were included in the meta-analysis. The mean BMI was 30.7 ± 6.1 kg/m2, and 49% of participants were obese. Fifty-eight metabolites were associated with BMI and obesity (all p ≤ 2.58 × 10-4), linked to alterations of the BCAA, phenylalanine, tryptophan, and phospholipid metabolic pathways. The restriction of BCAAs within a high-fat diet (HFD) maintained the mice's weight, fat and lean volume, subcutaneous and visceral adipose tissue weight, and serum glucose and insulin at levels similar to those in the standard chow group, and prevented obesity, adipocyte hypertrophy, adipose inflammation, and insulin resistance induced by HFD. Our data suggest that four metabolic pathways, BCAA, phenylalanine, tryptophan, and phospholipid metabolic pathways, are altered in obesity and restriction of BCAAs within a HFD can prevent the development of obesity and insulin resistance in mice, providing a promising strategy to potentially mitigate diet-induced obesity.


Restoration of metabolic health by decreased consumption of branched-chain amino acids.

  • Nicole E Cummings‎ et al.
  • The Journal of physiology‎
  • 2018‎

We recently found that feeding healthy mice a diet with reduced levels of branched-chain amino acids (BCAAs), which are associated with insulin resistance in both humans and rodents, modestly improves glucose tolerance and slows fat mass gain. In the present study, we show that a reduced BCAA diet promotes rapid fat mass loss without calorie restriction in obese mice. Selective reduction of dietary BCAAs also restores glucose tolerance and insulin sensitivity to obese mice, even as they continue to consume a high-fat, high-sugar diet. A low BCAA diet transiently induces FGF21 (fibroblast growth factor 21) and increases energy expenditure. We suggest that dietary protein quality (i.e. the precise macronutrient composition of dietary protein) may impact the effectiveness of weight loss diets.


Of Older Mice and Men: Branched-Chain Amino Acids and Body Composition.

  • Rosilene V Ribeiro‎ et al.
  • Nutrients‎
  • 2019‎

Protein and branched-chain amino acid (BCAA) intake are associated with changes in circulating BCAAs and influence metabolic health in humans and rodents. However, the relationship between BCAAs and body composition in both species is unclear, with many studies questioning the translatability of preclinical findings to humans. Here, we assessed and directly compared the relationship between circulating BCAAs, body composition, and intake in older mice and men. Body weight and body fat were positively associated with circulating BCAA levels in both mouse and human, which remained significant after adjustments for age, physical activity, number of morbidities, smoking status, and source of income in the human cohort. Macronutrient intakes were similarly associated with circulating BCAA levels; however, the relationship between protein intake and BCAAs were more pronounced in the mice. These findings indicate that the relationship between circulating BCAAs, body composition, and intakes are comparable in both species, suggesting that the mouse is an effective model for examining the effects of BCAAs on body composition in older humans.


ITCH E3 ubiquitin ligase downregulation compromises hepatic degradation of branched-chain amino acids.

  • Rossella Menghini‎ et al.
  • Molecular metabolism‎
  • 2022‎

Metabolic syndrome, obesity, and steatosis are characterized by a range of dysregulations including defects in ubiquitin ligase tagging proteins for degradation. The identification of novel hepatic genes associated with fatty liver disease and metabolic dysregulation may be relevant to unravelling new mechanisms involved in liver disease progression METHODS: Through integrative analysis of liver transcriptomic and metabolomic obtained from obese subjects with steatosis, we identified itchy E ubiquitin protein ligase (ITCH) as a gene downregulated in human hepatic tissue in relation to steatosis grade. Wild-type or ITCH knockout mouse models of non-alcoholic fatty liver disease (NAFLD) and obesity-related hepatocellular carcinoma were analyzed to dissect the causal role of ITCH in steatosis RESULTS: We show that ITCH regulation of branched-chain amino acids (BCAAs) degradation enzymes is impaired in obese women with grade 3 compared with grade 0 steatosis, and that ITCH acts as a gatekeeper whose loss results in elevation of circulating BCAAs associated with hepatic steatosis. When ITCH expression was specifically restored in the liver of ITCH knockout mice, ACADSB mRNA and protein are restored, and BCAA levels are normalized both in liver and plasma CONCLUSIONS: Our data support a novel functional role for ITCH in the hepatic regulation of BCAA metabolism and suggest that targeting ITCH in a liver-specific manner might help delay the progression of metabolic hepatic diseases and insulin resistance.


In vivo assessment of increased oxidation of branched-chain amino acids in glioblastoma.

  • Eul Hyun Suh‎ et al.
  • Scientific reports‎
  • 2019‎

Altered branched-chain amino acids (BCAAs) metabolism is a distinctive feature of various cancers and plays an important role in sustaining tumor proliferation and aggressiveness. Despite the therapeutic and diagnostic potentials, the role of BCAA metabolism in cancer and the activities of associated enzymes remain unclear. Due to its pivotal role in BCAA metabolism and rapid cellular transport, hyperpolarized 13C-labeled α-ketoisocaproate (KIC), the α-keto acid corresponding to leucine, can assess both BCAA aminotransferase (BCAT) and branched-chain α-keto acid dehydrogenase complex (BCKDC) activities via production of [1-13C]leucine or 13CO2 (and thus H13CO3-), respectively. Here, we investigated BCAA metabolism of F98 rat glioma model in vivo using hyperpolarized 13C-KIC. In tumor regions, we observed a decrease in 13C-leucine production from injected hyperpolarized 13C-KIC via BCAT compared to the contralateral normal-appearing brain, and an increase in H13CO3-, a catabolic product of KIC through the mitochondrial BCKDC. A parallel ex vivo 13C NMR isotopomer analysis following steady-state infusion of [U-13C]leucine to glioma-bearing rats verified the increased oxidation of leucine in glioma tissue. Both the in vivo hyperpolarized KIC imaging and the leucine infusion study indicate that KIC catabolism is upregulated through BCAT/BCKDC and further oxidized via the citric acid cycle in F98 glioma.


Branched-Chain Amino Acids Have Equivalent Effects to Other Essential Amino Acids on Lifespan and Aging-Related Traits in Drosophila.

  • Paula Juricic‎ et al.
  • The journals of gerontology. Series A, Biological sciences and medical sciences‎
  • 2020‎

Branched-chain amino acids (BCAAs) have been suggested to be particularly potent activators of Target of Rapamycin (TOR) signaling. Moreover, increased circulating BCAAs are associated with higher risk of insulin resistance and diabetes in both mice and humans, and with increased mortality in mice. However, it remains unknown if BCAAs play a more prominent role in longevity than do other essential amino acids (EAAs). To test for a more prominent role of BCAAs in lifespan and related traits in Drosophila, we restricted either BCAAs or a control group of three other EAAs, threonine, histidine and lysine (THK). BCAA restriction induced compensatory feeding, lipid accumulation, stress resistance and amelioration of age-related gut pathology. It also extended lifespan in a dietary-nitrogen-dependent manner. Importantly, the control restriction of THK had similar effects on these phenotypes. Our control diet was designed to have every EAA equally limiting for growth and reproduction, and our findings therefore suggest that the level of the most limiting EAAs in the diet, rather than the specific EAAs that are limiting, determines the response of these phenotypes to EAA restriction.


Decreased branched-chain amino acids and elevated fatty acids during antecedent hypoglycemia in type 1 diabetes.

  • Rui She‎ et al.
  • BMJ open diabetes research & care‎
  • 2023‎

Hypoglycemia is a major limiting factor in achieving recommended glycemic targets for people with type 1 diabetes. Exposure to recurrent hypoglycemia results in blunted hormonal counter-regulatory and symptomatic responses to hypoglycemia. Limited data on metabolic adaptation to recurrent hypoglycemia are available. This study examined the acute metabolic responses to hypoglycemia and the effect of antecedent hypoglycemia on these responses in type 1 diabetes.


PPM1K-regulated impaired catabolism of branched-chain amino acids orchestrates polycystic ovary syndrome.

  • Liangshan Mu‎ et al.
  • EBioMedicine‎
  • 2023‎

Polycystic ovary syndrome (PCOS) is one of the most common diseases with the coexistence of reproductive malfunction and metabolic disorders. Previous studies have found increased branched chain amino acid (BCAA) levels in women with PCOS. However, it remains unclear whether BCAA metabolism is causally associated with the risk of PCOS.


Dually biofortified cisgenic tomatoes with increased flavonoids and branched-chain amino acids content.

  • Marta Vazquez-Vilar‎ et al.
  • Plant biotechnology journal‎
  • 2023‎

Higher dietary intakes of flavonoids may have a beneficial role in cardiovascular disease prevention. Additionally, supplementation of branched-chain amino acids (BCAAs) in vegan diets can reduce risks associated to their deficiency, particularly in older adults, which can cause loss of skeletal muscle strength and mass. Most plant-derived foods contain only small amounts of BCAAs, and those plants with high levels of flavonoids are not eaten broadly. Here we describe the generation of metabolically engineered cisgenic tomatoes enriched in both flavonoids and BCAAs. In this approach, coding and regulatory DNA elements, all derived from the tomato genome, were combined to obtain a herbicide-resistant version of an acetolactate synthase (mSlALS) gene expressed broadly and a MYB12-like transcription factor (SlMYB12) expressed in a fruit-specific manner. The mSlALS played a dual role, as a selectable marker as well as being key enzyme in BCAA enrichment. The resulting cisgenic tomatoes were highly enriched in Leucine (21-fold compared to wild-type levels), Valine (ninefold) and Isoleucine (threefold) and concomitantly biofortified in several antioxidant flavonoids including kaempferol (64-fold) and quercetin (45-fold). Comprehensive metabolomic and transcriptomic analysis of the biofortified cisgenic tomatoes revealed marked differences to wild type and could serve to evaluate the safety of these biofortified fruits for human consumption.


Effects of branched-chain amino acids on Shiraia perylenequinone production in mycelium cultures.

  • Wen Hao Shen‎ et al.
  • Microbial cell factories‎
  • 2023‎

Perylenequinones from Shiraia fruiting bodies are excellent photosensitizers and widely used for anti-cancer photodynamic therapy (PDT). The lower yield of Shiraia perylenequinones becomes a significant bottleneck for their medical application. Branched-chain amino acids (BCAAs) not only serve as important precursors for protein synthesis, but also are involved in signaling pathway in cell growth and development. However, there are few reports concerning their regulation of fungal secondary metabolism. In present study, the eliciting effects of BCAAs including L-isoleucine (L-Ile), L-leucine (L-Leu) and L-valine (L-Val) on Shiraia perylenequinone production were investigated.


Branched-chain amino acids enhance cyst development in autosomal dominant polycystic kidney disease.

  • Junya Yamamoto‎ et al.
  • Kidney international‎
  • 2017‎

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the progressive development of kidney and liver cysts. The mammalian target of rapamycin (mTOR) cascade is one of the important pathways regulating cyst growth in ADPKD. Branched-chain amino acids (BCAAs), including leucine, play a crucial role to activate mTOR pathway. Therefore, we administered BCAA dissolved in the drinking water to Pkd1flox/flox:Mx1-Cre (cystic) mice from four to 22 weeks of age after polyinosinic-polycytidylic acid-induced conditional Pkd1 knockout at two weeks of age. The BCAA group showed significantly greater kidney/body weight ratio and higher cystic index in both the kidney and liver compared to the placebo-treated mice. We found that the L-type amino acid transporter 1 that facilitates BCAA entry into cells is strongly expressed in cells lining the cysts. We also found increased cyst-lining cell proliferation and upregulation of mTOR and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways in the BCAA group. In vitro, we cultured renal epithelial cell lines from Pkd1 null mice with or without leucine. Leucine was found to stimulate cell proliferation, as well as activate mTOR and MAPK/ERK pathways in these cells. Thus, BCAA accelerated disease progression by mTOR and MAPK/ERK pathways. Hence, BCAA may be harmful to patients with ADPKD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: