Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 634 papers

Stability of extemporaneously compounded amiloride nasal spray.

  • Venkata Yellepeddi‎ et al.
  • PloS one‎
  • 2020‎

Anxiety disorders (AD) are the most common mental conditions affecting an estimated 40 million adults in the United States. Amiloride, a diuretic agent, has shown efficacy in reducing anxious responses in preclinical models by inhibiting the acid-sensing ion channels (ASIC). By delivering amiloride via nasal route, rapid onset of action can be achieved due to direct "nose-to-brain" access. Therefore, this study reports the formulation, physical, chemical, and microbiological stability of an extemporaneously prepared amiloride 2 mg/mL nasal spray. The amiloride nasal spray was prepared by adding 100 mg of amiloride hydrochloride to 50 mL of sterile water for injection in a sterile reagent bottle. A stability-indicating high-performance liquid chromatography (HPLC) method was developed and validated. Forced-degradation studies were performed to confirm the ability of the HPLC method to identify the degradation products from amiloride distinctively. The physical stability of the amiloride nasal spray was assessed by pH, clarity, and viscosity assessments. For chemical stability studies, samples of nasal sprays stored at room temperature were collected at time-points 0, 3 hr., 24 hr., and 7 days and were assayed in triplicate using the stability-indicating HPLC method. Microbiological stability of the nasal spray solution was evaluated for up to 7 days based on the sterility test outlined in United States Pharmacopoeia (USP) chapter 71. The stability-indicating HPLC method identified the degradation products of amiloride without interference from amiloride. All tested solutions retained over 90% of the initial amiloride concentration for the 7-day study period. There were no changes in color, pH, and viscosity in any sample. The nasal spray solutions were sterile for up to 7 days in all samples tested. An extemporaneously prepared nasal spray solution of amiloride hydrochloride (2 mg/mL) was physically, chemically, and microbiologically stable for 7 days when stored at room temperature.


Pharmacokinetics of intranasal amiloride in healthy volunteers.

  • Venkata K Yellepeddi‎ et al.
  • Clinical and translational science‎
  • 2023‎

Anxiety and panic disorders are the most common mental illnesses in the United States and lack effective treatment options. Acid-sending ion channels (ASICs) in the brain were shown to be associated with fear conditioning and anxiety responses and therefore are potential targets for treating panic disorder. Amiloride is an inhibitor of the ASICs in the brain and was shown to reduce panic symptoms in preclinical animal models. An intranasal formulation of amiloride will be highly beneficial to treat acute panic attacks due to advantages such as the rapid onset of action and patient compliance. The aim of this single-center, open-label trial was to evaluate the basic pharmacokinetics (PKs) and safety of amiloride after intranasal administration in healthy human volunteers at three doses (0.2, 0.4, and 0.6 mg). Amiloride was detected in plasma within 10 min of intranasal administration and showed a biphasic PK profile with an initial peak within 10 min of administration followed by a second peak between 4 and 8 h of administration. The biphasic PKs indicate an initial rapid absorption via the nasal pathway and later slower absorption by non-nasal pathways. Intranasal amiloride exhibited a dose-proportional increase in the area under the curve and did not exhibit any systemic toxicity. These data indicate that intranasal amiloride is rapidly absorbed and safe at the doses evaluated and can be further considered for clinical development as a portable, rapid, noninvasive, and nonaddictive anxiolytic agent to treat acute panic attacks.


Trial of Amiloride in Type 2 Diabetes with Proteinuria.

  • Mark L Unruh‎ et al.
  • Kidney international reports‎
  • 2017‎

Renal Na+ retention and extracellular fluid volume expansion are hallmarks of nephrotic syndrome, which occurs even in the absence of activation of hormones that stimulate renal Na+ transporters. Plasmin-dependent activation of the epithelial Na+ channel (ENaC) has been proposed to have a role in renal Na+ retention in the setting of nephrotic syndrome. We hypothesized that the ENaC inhibitor amiloride would be an effective therapeutic agent in inducing a natriuresis and lowering blood pressure in individuals with macroscopic proteinuria.


u-PA inhibitor amiloride suppresses peritoneal metastasis in gastric cancer.

  • Youcheng Ding‎ et al.
  • World journal of surgical oncology‎
  • 2012‎

Peritoneal metastasis in gastric cancer represents a ubiquitous human health problem but effective therapies with limited side effects are still lacking. Although previous research suggested that u-PA was involved in some tumor metastasis such as lung-specific metastasis, the role of u-PA for peritoneal metastasis in gastric cancer is still unclear. The aim of this study was to explore whether selective pharmacological blockade of u-PA is able to affect the peritoneal metastasis of gastric cancer both in vivo and in vitro.


Reduction of lithium induced interstitial fibrosis on co-administration with amiloride.

  • Paulomi M Mehta‎ et al.
  • Scientific reports‎
  • 2022‎

Long-term administration of lithium is associated with chronic interstitial fibrosis that is partially reduced with exposure to amiloride. We examined potential pathways of how amiloride may reduce interstitial fibrosis. Amiloride was administered to a rat model of lithium induced interstitial fibrosis over a long term (6 months), as well as for short terms of 14 and 28 days. Kidney cortical tissue was subjected to RNA sequencing and microRNA expression analysis. Gene expression changes of interest were confirmed using immunohistochemistry on kidney tissue. Pathways identified by RNA sequencing of kidney tissue were related to 'promoting inflammation' for lithium and 'reducing inflammation' for amiloride. Validation of candidate genes found amiloride reduced inflammatory components induced by lithium including NF-κB/p65Ser536 and activated pAKTSer473, and increased p53 mediated regulatory function through increased p21 in damaged tubular epithelial cells. Amiloride also reduced the amount of Notch1 positive PDGFrβ pericytes and infiltrating CD3 cells in the interstitium. Thus, amiloride attenuates a multitude of pro-inflammatory components induced by lithium. This suggests amiloride could be repurposed as a possible anti-inflammatory, anti-fibrotic agent to prevent or reduce the development of chronic interstitial fibrosis.


6-Furopyridine Hexamethylene Amiloride Is a Non-Selective P2X7 Receptor Antagonist.

  • Peter Cuthbertson‎ et al.
  • Biomolecules‎
  • 2022‎

P2X7 is an extracellular adenosine 5'-triphopshate (ATP)-gated cation channel present on leukocytes, where its activation induces pro-inflammatory cytokine release and ectodomain shedding of cell surface molecules. Human P2X7 can be partially inhibited by amiloride and its derivatives at micromolar concentrations. This study aimed to screen a library of compounds derived from amiloride or its derivative 5-(N,N-hexamethylene) amiloride (HMA) to identify a potential P2X7 antagonist. 6-Furopyridine HMA (6-FPHMA) was identified as a novel P2X7 antagonist and was characterized further. 6-FPHMA impaired ATP-induced dye uptake into human RPMI8226 multiple myeloma cells and human P2X7-HEK293 cells, in a concentration-dependent, non-competitive manner. Likewise, 6-FPHMA blocked ATP-induced Ca2+ fluxes in human P2X7-HEK293 cells in a concentration-dependent, non-competitive manner. 6-FPHMA inhibited ATP-induced dye uptake into human T cells, and interleukin-1β release within human blood and CD23 shedding from RPMI8226 cells. 6-FPHMA also impaired ATP-induced dye uptake into murine P2X7- and canine P2X7-HEK293 cells. However, 6-FPHMA impaired ATP-induced Ca2+ fluxes in human P2X4-HEK293 cells and non-transfected HEK293 cells, which express native P2Y1, P2Y2 and P2Y4. In conclusion, 6-FPHMA inhibits P2X7 from multiple species. Its poor selectivity excludes its use as a specific P2X7 antagonist, but further study of amiloride derivatives as P2 receptor antagonists is warranted.


Amiloride-sensitive channels in type I fungiform taste cells in mouse.

  • Aurelie Vandenbeuch‎ et al.
  • BMC neuroscience‎
  • 2008‎

Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na+ and K+ current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na+, K+, and Ca2+ currents, and make prominent synapses with afferent nerve fibers. Na+ salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs). In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice.


Amiloride-enhanced gene transfection of octa-arginine functionalized calcium phosphate nanoparticles.

  • Juan Ramón Vanegas Sáenz‎ et al.
  • PloS one‎
  • 2017‎

Nanoparticles represent promising gene delivery systems in biomedicine to facilitate prolonged gene expression with low toxicity compared to viral vectors. Specifically, nanoparticles of calcium phosphate (nCaP), the main inorganic component of human bone, exhibit high biocompatibility and good biodegradability and have been reported to have high affinity for protein or DNA, having thus been used as gene transfer vectors. On the other hand, Octa-arginine (R8), which has a high permeability to cell membrane, has been reported to improve intracellular delivery systems. Here, we present an optimized method for nCaP-mediated gene delivery using an octa-arginine (R8)-functionalized nCaP vector containing a marker or functional gene construct. nCaP particle size was between 220-580 nm in diameter and all R8-functionalized nCaPs carried a positive charge. R8 concentration significantly improved nCaP transfection efficiency with high cell compatibility in human mesenchymal stem cells (hMSC) and human osteoblasts (hOB) in particular, suggesting nCaPs as a good option for non-viral vector gene delivery. Furthermore, pre-treatment with different endocytosis inhibitors identified that the endocytic pathway differed among cell lines and functionalized nanoparticles, with amiloride increasing transfection efficiency of R8-functionalized nCaPs in hMSC and hOB.


[Use of antipotassiuretic diuretic amiloride in patients with chronic cardiac failure].

  • L V Khorunzhaia‎ et al.
  • Kardiologiia‎
  • 1983‎

Amyloride causes moderate natriuresis and a considerable reduction in urinary potassium excretion. Chlorine excretion and diuresis are less affected in their increase, while hydrogen ions secretion shows a slight decrease. Amyloride effect is localized in convoluted tubules of the kidney, and perhaps collecting tubules as well. When taken orally, its effect becomes evident within 2-3 hours, reaches its peak within 5-6 hours, and slowly declines within 16-18 hours. A daily dose of 10-15 mg is recommended. During a treatment course, the effect is in evidence throughout the whole of the 6-8 days of observation, without any signs of hyperpotassemia or shifts in acid-base balance. Amyloride combined with furosemide, uregit or hypothiazid produces an additive effect on natriuresis and essentially reduces renal loss of potassium and hydrogen ions.


Absorptive apical amiloride-sensitive Na+ conductance in human endometrial epithelium.

  • C J Matthews‎ et al.
  • The Journal of physiology‎
  • 1998‎

1. Human endometrial epithelial cells cultured on porous tissue culture supports formed tight, polarized epithelial monolayers with features characteristic of tight epithelia. Endometrial epithelial layers generated significant transepithelial electrical resistance (750 Omega cm2) and potential difference (15.3 mV), with an inward short-circuit current (Isc; 20.5 microA cm-2). 2. The Isc was linearly proportional to the external Na+ concentration and was abolished in the absence of Na+. The Isc was sensitive to apical amiloride. Net 22Na+ flux was in the absorptive apical to basolateral direction and fully accounted for the inward Isc. In addition, apical to basolateral and net 22Na+ transport were reduced in the presence of amiloride. 3. The Isc was also sensitive to addition of ouabain and Ba2+ to the basal solution, consistent with a role for basolateral Na+-K+-ATPase and K+ channels in generation of the current. 4. These data demonstrate that human endometrial epithelial cells in primary culture produce tight, functional monolayers on permeable supports. We provide the first evidence that human endometrial epithelial cells have an inward Isc accounted for by an amiloride-sensitive Na+ conductance. The Na+-absorptive function of the endometrium may provide an appropriate environment for sperm function and embryo growth.


Self-inhibition in amiloride-sensitive sodium channels in taste receptor cells.

  • T A Gilbertson‎ et al.
  • The Journal of general physiology‎
  • 1998‎

Electrophysiological recording techniques were used to study the Na+ dependence of currents through amiloride-sensitive sodium channels (ASSCs) in rat taste cells from the fungiform and vallate papillae. Perforated patch voltage clamp recordings were made from isolated fungiform and vallate taste receptor cells (TRCs) and Na+ transport was measured across lingual epithelia containing fungiform or vallate taste buds in a modified Ussing chamber. In isolated fungiform TRCs that contain Na+ currents sensitive to the diuretic amiloride, Na+ ions inhibit their own influx through ASSCs, a process known as sodium self-inhibition. Due to the interaction between self-inhibition and the driving force for Na+ entry, self-inhibition is most evident in whole-cell recordings at Na+ concentrations from 50 to 75 mM. In amiloride-sensitive cells, the Na permeability is significantly higher in extracellular solutions containing 35 mM Na+ than in 70 or 140 mM Na+. Compared with the block by amiloride, the development of self-inhibition is slow, taking up to 15 s to become maximally inhibited. Approximately one third of fungiform TRCs and all vallate TRCs lack functional ASSCs. These amiloride-insensitive TRCs show no signs of self-inhibition, tying this phenomenon to the presence of ASSCs. The sulfhydryl reagent, p-hydroxymercuribenzoate (p-HMB; 200 microM), reversibly removed self-inhibition from amiloride-sensitive Na+ currents, apparently by modifying cysteine residues in the ASSC. Na+ currents in amiloride-insensitive TRCs were unaffected by p-HMB. In sodium transport studies in fungiform taste bud-containing lingual epithelia, approximately 40% of the change in short-circuit current (Isc) after addition of 500 mM NaCl to the mucosal chamber is amiloride sensitive (0.5 mM). p-HMB significantly enhanced mucosal NaCl-induced changes in these epithelia at mucosal Na+ concentrations of 50 mM and above. In contrast, the vallate-containing epithelia, which are insensitive to amiloride, showed no enhancement of Isc during p-HMB treatment. These findings suggest that sodium self-inhibition is present in ASSCs in taste receptor cells where it may play a crucial role in performance of salt-sensitive pathways in taste tissue during sodium stimulation. This phenomenon may be important in the process of TRC adaptation, in the conservation of cellular resources during chronic sodium exposure, or in the gustatory response to water.


Effect of amiloride, or amiloride plus hydrochlorothiazide, versus hydrochlorothiazide on glucose tolerance and blood pressure (PATHWAY-3): a parallel-group, double-blind randomised phase 4 trial.

  • Morris J Brown‎ et al.
  • The lancet. Diabetes & endocrinology‎
  • 2016‎

Potassium depletion by thiazide diuretics is associated with a rise in blood glucose. We assessed whether addition or substitution of a potassium-sparing diuretic, amiloride, to treatment with a thiazide can prevent glucose intolerance and improve blood pressure control.


Antinociceptive effects of amiloride and benzamil in neuropathic pain model rats.

  • Seongtae Jeong‎ et al.
  • Journal of Korean medical science‎
  • 2013‎

Amiloride and benzamil showed antinocicepitve effects in several pain models through the inhibition of acid sensing ion channels (ASICs). However, their role in neuropathic pain has not been investigated. In this study, we investigated the effect of the intrathecal amiloride and benzamil in neuropathic pain model, and also examined the role of ASICs on modulation of neuropathic pain. Neuropathic pain was induced by L4-5 spinal nerve ligation in male Sprague-Dawley rats weighing 100-120 g, and intrathecal catheterization was performed for drug administration. The effects of amiloride and benzamil were measured by the paw-withdrawal threshold to a mechanical stimulus using the up and down method. The expression of ASICs in the spinal cord dorsal horn was also analyzed by RT-PCR. Intrathecal amiloride and benzamil significantly increased the paw withdrawal threshold in spinal nerve-ligated rats (87%±12% and 76%±14%, P=0.007 and 0.012 vs vehicle, respectively). Spinal nerve ligation increased the expression of ASIC3 in the spinal cord dorsal horn (P=0.01), and this increase was inhibited by both amiloride and benzamil (P<0.001 in both). In conclusion, intrathecal amiloride and benzamil display antinociceptive effects in the rat spinal nerve ligation model suggesting they may present an alternative pharmacological tool in the management of neuropathic pain at the spinal level.


Amiloride Promotes Oligodendrocyte Survival and Remyelination after Spinal Cord Injury in Rats.

  • Takeshi Imai‎ et al.
  • Journal of clinical medicine‎
  • 2018‎

After spinal cord injury (SCI), secondary injury results in an expanding area of glial cell apoptosis. Oligodendrocyte precursor cells (OPCs) actively proliferate after SCI, but many of these cells undergo apoptosis. One of the factors that exacerbates secondary injury is endoplasmic reticulum (ER) stress. In this study, we tested the effects of amiloride treatment on the fate of OPCs during secondary injury in rats. Amiloride is an FDA-approved diuretic for treating hypertension, which in rats enhances ER stress response and suppresses the apoptosis of glial cells after SCI. A severe contusive SCI was induced in Sprague-Dawley rats using an infinite horizon (IH)-impactor (200 kdyne). Beginning 24 h after SCI, 10 mg/kg of amiloride or phosphate buffered saline (PBS) was intraperitoneally administered daily for a period of 14 days. At 7, 14, 28, and 56 days after SCI, animals were subsequently euthanized in order to analyze the injured spinal cord. We labeled proliferating OPCs and demonstrated that amiloride treatment led to greater numbers of OPCs and oligodendrocytes in the injured spinal cord. Increased myelin basic protein (MBP) expression levels were observed, suggesting that increased numbers of mature oligodendrocytes led to improved remyelination, significantly improving motor function recovery.


Effect of amiloride to retinal toxicity induced by tissue plasminogen activator.

  • Ungsoo Samuel Kim‎ et al.
  • Korean journal of ophthalmology : KJO‎
  • 2012‎

The effects of amiloride on cellular toxicity caused by tissue plasminogen activator (tPA) in mouse primary retinal cells were investigated.


Amiloride derivatives enhance insulin release in pancreatic islets from diabetic mice.

  • Subhadra C Gunawardana‎ et al.
  • BMC endocrine disorders‎
  • 2005‎

Amiloride derivatives, commonly used for their diuretic and antihypertensive properties, can also cause a sustained but reversible decrease of intracellular pH (pHi). Using dimethyl amiloride (DMA) on normal rodent pancreatic islets, we previously demonstrated the critical influence of islet pHi on insulin secretion. Nutrient-stimulated insulin secretion (NSIS) requires a specific pHi-range, and is dramatically enhanced by forced intracellular acidification with DMA. Furthermore, DMA can enable certain non-secretagogues to stimulate insulin secretion, and induce time-dependent potentiation (TDP) of insulin release in mouse islets where this function is normally absent. The present study was performed to determine whether pHi-manipulation could correct the secretory defect in islets isolated from mice with type 2 diabetes.


Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication.

  • Lauren Wilson‎ et al.
  • Virology‎
  • 2006‎

All coronaviruses encode a small hydrophobic envelope (E) protein, which mediates viral assembly and morphogenesis by an unknown mechanism. We have previously shown that the E protein from Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) forms cation-selective ion channels in planar lipid bilayers (Wilson, L., McKinlay, C., Gage, P., Ewart, G., 2004. SARS coronavirus E protein forms cation-selective ion channels. Virology 330(1), 322-331). We now report that three other E proteins also form cation-selective ion channels. These E proteins were from coronaviruses representative of taxonomic groups 1-3: human coronavirus 229E (HCoV-229E), mouse hepatitis virus (MHV), and infectious bronchitis virus (IBV), respectively. It appears, therefore, that coronavirus E proteins in general, belong to the virus ion channels family. Hexamethylene amiloride (HMA)--an inhibitor of the HIV-1 Vpu virus ion channel--inhibited the HCoV-229E and MHV E protein ion channel conductance in bilayers and also inhibited replication of the parent coronaviruses in cultured cells, as determined by plaque assay. Conversely, HMA had no antiviral effect on a recombinant MHV with the entire coding region of E protein deleted (MHVDeltaE). Taken together, the data provide evidence of a link between inhibition of E protein ion channel activity and the antiviral activity of HMA.


Dendritic Cell Amiloride-Sensitive Channels Mediate Sodium-Induced Inflammation and Hypertension.

  • Natalia R Barbaro‎ et al.
  • Cell reports‎
  • 2017‎

Sodium accumulates in the interstitium and promotes inflammation through poorly defined mechanisms. We describe a pathway by which sodium enters dendritic cells (DCs) through amiloride-sensitive channels including the alpha and gamma subunits of the epithelial sodium channel and the sodium hydrogen exchanger 1. This leads to calcium influx via the sodium calcium exchanger, activation of protein kinase C (PKC), phosphorylation of p47phox, and association of p47phox with gp91phox. The assembled NADPH oxidase produces superoxide with subsequent formation of immunogenic isolevuglandin (IsoLG)-protein adducts. DCs activated by excess sodium produce increased interleukin-1β (IL-1β) and promote T cell production of cytokines IL-17A and interferon gamma (IFN-γ). When adoptively transferred into naive mice, these DCs prime hypertension in response to a sub-pressor dose of angiotensin II. These findings provide a mechanistic link between salt, inflammation, and hypertension involving increased oxidative stress and IsoLG production in DCs.


Enhanced degradation of amiloride over Bi2FeNbO7/bisulfite process: Key factors and mechanism.

  • Jie Zhao‎ et al.
  • Chemosphere‎
  • 2022‎

Construction of Bi2FeNbO7/bisulfite system for abatement of pharmaceutical residue was achieved. An attempt to synthesize Bi2FeNbO7 through hydrothermal technique was confirmed by X-ray diffraction. The magnetic field experiment revealed that Bi2FeNbO7 possessed a saturation magnetization of 6.99 emu/g, indicating magnetic attributes of Bi2FeNbO7. Scanning electron microscopy images showed that Bi2FeNbO7 exhibited regular octahedra in the size of 200-300 nm. In a self-made device, the activation of sodium bisulfite using Bi2FeNbO7 for the disposal of amiloride has been carefully explored. The effects of solution pH, sodium bisulfite concentration, Bi2FeNbO7 dosage, amiloride concentration, coexisting ions, and water matrix on the performance of Bi2FeNbO7/bisulfite system was investigated. The catalytic performance of Bi2FeNbO7/bisulfite to degrade amiloride was considerably higher than that of traditional iron oxides. The maximum removal efficiency of amiloride was 97.9% in Bi2FeNbO7/bisulfite process. The involvement of Fe might be crucial for activating bisulfite to create active species. The dominating radical in Bi2FeNbO7/bisulfite process was identified as SO3•‒. With the help of UHPLC/MS/MS, three new degradation products of amiloride were found. Dehalogenation and deamination of amiloride might account for the formation of these transformation products. This work provides a highly efficient Bi2FeNbO7/bisulfite process for the disposal of pharmaceutical pollutants in water treatment.


Nerve growth factor reduces amiloride-sensitive Na+ transport in human airway epithelial cells.

  • Michael J Shimko‎ et al.
  • Physiological reports‎
  • 2014‎

Nerve growth factor (NGF) is overexpressed in patients with inflammatory lung diseases, including virus infections. Airway surface liquid (ASL), which is regulated by epithelial cell ion transport, is essential for normal lung function. No information is available regarding the effect of NGF on ion transport of airway epithelium. To investigate whether NGF can affect ion transport, human primary air-interface cultured epithelial cells were placed in Ussing chambers to obtain transepithelial voltage (-7.1 ± 3.4 mV), short-circuit current (Isc, 5.9 ± 1.0 μA), and transepithelial resistance (750 Ω·cm(2)), and to measure responses to ion transport inhibitors. Amiloride (apical, 3.5 × 10(-5) mol/L) decreased Isc by 55.3%. Apically applied NGF (1 ng/mL) reduced Isc by 5.3% in 5 min; basolaterally applied NGF had no effect. The response to amiloride was reduced (41.6%) in the presence of NGF. K-252a (10 nmol/L, apical) did not itself affect Na(+) transport, but it attenuated the NGF-induced reduction in Na(+) transport, indicating the participation of the trkA receptor in the NGF-induced reduction in Na(+) transport. PD-98059 (30 μmol/L, apical and basolateral) did not itself affect Na(+) transport, but attenuated the NGF-induced reduction in Na(+) transport, indicating that trkA activated the Erk 1/2 signaling cascade. NGF stimulated phosphorylation of Erk 1/2 and the β-subunit of ENaC. K-252a and PD-98059 inhibited these responses. NGF had no effect on Isc in the presence of apical nystatin (50 μmol/L). These results indicate that NGF inhibits Na(+) transport through a trkA-Erk 1/2-activated signaling pathway linked to ENaC phosphorylation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: