Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,750 papers

Transient dimers of allergens.

  • Juha Rouvinen‎ et al.
  • PloS one‎
  • 2010‎

Allergen-mediated cross-linking of IgE antibodies bound to the FcepsilonRI receptors on the mast cell surface is the key feature of the type I allergy. If an allergen is a homodimer, its allergenicity is enhanced because it would only need one type of antibody, instead of two, for cross-linking.


Dimerization of lipocalin allergens.

  • Merja H Niemi‎ et al.
  • Scientific reports‎
  • 2015‎

Lipocalins are one of the most important groups of inhalant animal allergens. The analysis of structural features of these proteins is important to get insights into their allergenicity. We have determined two different dimeric crystal structures for bovine dander lipocalin Bos d 2, which was earlier described as a monomeric allergen. The crystal structure analysis of all other determined lipocalin allergens also revealed oligomeric structures which broadly utilize inherent structural features of the β-sheet in dimer formation. According to the moderate size of monomer-monomer interfaces, most of these dimers would be transient in solution. Native mass spectrometry was employed to characterize quantitatively transient dimerization of two lipocalin allergens, Bos d 2 and Bos d 5, in solution.


Cross-reactivity of peanut allergens.

  • Merima Bublin‎ et al.
  • Current allergy and asthma reports‎
  • 2014‎

Peanut seeds are currently widely used as source of human food ingredients in the United States of America and in European countries due to their high quality protein and oil content. This article describes the classification and molecular biology of peanut seed allergens with particular reference to their cross-reactivities. Currently, the IUIS allergen nomenclature subcommittee accepts 12 peanut allergens. Two allergens belong to the cupin and four to the prolamin superfamily, and six are distributed among profilins, Bet v 1-like proteins, oleosins, and defensins. Clinical observations frequently report an association of peanut allergy with allergies to legumes, tree nuts, seeds, fruits and pollen. Molecular cross-reactivity has been described between members of the Bet v 1-like proteins, the non-specific lipid transfer proteins, and the profilins. This review also addresses the less well-studied cross-reactivity between cupin and prolamin allergens of peanuts and of other plant food sources and the recently discovered cross-reactivity between peanut allergens of unrelated protein families.


Pollen Allergens for Molecular Diagnosis.

  • Isabel Pablos‎ et al.
  • Current allergy and asthma reports‎
  • 2016‎

Pollen allergens are one of the main causes of type I allergies affecting up to 30% of the population in industrialized countries. Climatic changes affect the duration and intensity of pollen seasons and may together with pollution contribute to increased incidences of respiratory allergy and asthma. Allergenic grasses, trees, and weeds often present similar habitats and flowering periods compromising clinical anamnesis. Molecule-based approaches enable distinction between genuine sensitization and clinically mostly irrelevant IgE cross-reactivity due to, e. g., panallergens or carbohydrate determinants. In addition, sensitivity as well as specificity can be improved and lead to identification of the primary sensitizing source which is particularly beneficial regarding polysensitized patients. This review gives an overview on relevant pollen allergens and their usefulness in daily practice. Appropriate allergy diagnosis is directly influencing decisions for therapeutic interventions, and thus, reliable biomarkers are pivotal when considering allergen immunotherapy in the context of precision medicine.


Group 10 allergens (tropomyosins) from house-dust mites may cause covariation of sensitization to allergens from other invertebrates.

  • Rubaba Hamid Shafique‎ et al.
  • Allergy & rhinology (Providence, R.I.)‎
  • 2012‎

Group 10 allergens (tropomyosins) have been assumed to be a major cause of cross-reactivity between house-dust mites (HDMs) and other invertebrates. Despite all of the published data regarding the epidemiology, percent IgE binding and level of sensitization in the population, the role of tropomyosin as a cross-reactive allergen in patients with multiple allergy syndrome still remains to be elucidated. Homology between amino acid sequences reported in allergen databases of selected invertebrate tropomyosins was determined with Der f 10 as the reference allergen. The 66.9 and 54.4% identities were found with selected crustacean and insect species, respectively, whereas only 20.4% identity was seen with mollusks. A similar analysis was performed using reported B-cell IgE-binding epitopes from Met e1 (shrimp allergen) and Bla g7 (cockroach allergen) with other invertebrate tropomyosins. The percent identity in linear sequences was higher than 35% in mites, crustaceans, and cockroaches. The polar and hydrophobic regions in these groups were highly conserved. These findings suggest that tropomyosin may be a major cause of covariation of sensitization between HDMs, crustaceans, and some species of insects and mollusks.


Immunochemical studies of hymenoptera venom allergens.

  • T P King‎
  • Allergy‎
  • 1980‎

No abstract available


Mass spectrometric analysis of allergens in roasted walnuts.

  • Melanie L Downs‎ et al.
  • Journal of proteomics‎
  • 2016‎

Thermal processing of allergenic foods can induce changes in the foods' constituent allergens, but the effects of heat treatment are poorly defined. Like other commonly allergenic tree nuts, walnuts often undergo heat treatment (e.g. roasting or baking) prior to consumption. This study evaluated the changes in solubility and detectability of allergens from roasted walnuts using tandem mass spectrometry methods. Walnuts were roasted (132°C or 180°C for 5, 10, or 20min) and prepared for LC-MS/MS using sequential or simultaneous extraction and tryptic digestion protocols. The LC-MS/MS data analysis incorporated label-free quantification of relevant allergens and Maillard adduct screening. In some proteins (2S albumin, LTP, and the 7S globulin N-terminal region) minor changes in relative abundance were observed following roasting. The mature 7S and 11S globulins, however, showed significantly increased detection following roasting at 180°C for 20min when using the simultaneous extraction/digestion protocol, possibly due to increased digestibility of the proteins. The results of this study indicate that individual walnut allergens respond differently to thermal processing, and the detection of these proteins by LC-MS/MS is dependent on the protein in question, its susceptibility to proteolytic digestion, the degree of thermal processing, and the sample preparation methodology.


Biopanning of allergens from wasp sting patients.

  • Lin Chai‎ et al.
  • Bioscience reports‎
  • 2018‎

Wasp venom is a potentially important natural drug, but it can cause hypersensitivity reactions. The purpose of the present study was to systematically study the epitopes of wasp venom.


Dog saliva - an important source of dog allergens.

  • N Polovic‎ et al.
  • Allergy‎
  • 2013‎

Allergy to dog (Canis familiaris) is a worldwide common cause of asthma and allergic rhinitis. However, dander extract in routine diagnostics is not an optimal predictor of IgE-mediated dog allergy. Our objective was to evaluate saliva as an allergen source for improved diagnostics of allergy to dog.


Large particulate allergens can elicit mast cell-mediated anaphylaxis without exit from blood vessels as efficiently as do small soluble allergens.

  • Li LiHua‎ et al.
  • Biochemical and biophysical research communications‎
  • 2015‎

Anaphylaxis is a rapid-onset, life-threatening allergic reaction in that IgE, mast cells and histamine are commonly involved. It can be experimentally induced in IgE-sensitized animals by intravenous injection of corresponding allergens, and the sign of anaphylactic reaction can be detected within minutes after allergen challenge. However, it remains puzzling why the anaphylactic reaction can be initiated in vivo so quickly, considering that allergens are delivered into the blood circulation while mast cells reside within peripheral tissues but not in the blood circulation. To address this issue, we compared two different forms of the same allergen, small soluble and large particulate ones, in their ability to induce anaphylaxis in IgE-sensitized mice. In contrast to our expectation, particulate allergens could induce anaphylaxis as quickly and efficiently as did soluble allergens, even though they remained inside of blood vessels. In vivo imaging analysis suggested the direct interaction of intravascular particulate allergens and perivascular mast cells across the capillary wall. Taken together with previous report that perivascular mast cells can capture IgE in the blood circulation by extending cell processes across the vessel wall, our findings imply that blood-circulating allergens, regardless of their size, can stimulate mast cells without exit from blood vessels, by means of cross-linking IgE on mast cell processes inserted into the vessel lumen, and hence initiate anaphylactic reaction so quickly.


Contact Allergy-Emerging Allergens and Public Health Impact.

  • Wolfgang Uter‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

Contact allergy (sensitisation) and allergic contact dermatitis (ACD) resulting from it have a considerable public health impact. For the present review, all pertinent articles were systematically searched via Medline and Web of Science™; additionally, all available issues of the journals "Contact Dermatitis" and "Dermatitis" were manually searched, covering the years 2018-2019, thereby extending and re-focusing a previous similar review. New allergens, or previously described allergens found in a new exposure context or of other current importance, are described in sections according to substance classes, e.g., metals, preservatives, fragrances. As a common finding in many investigations, a lack of information on product composition has been noted, for instance, regarding a newly described allergen in canvas shoes (dimethylthiocarbamylbenzothiazole sulfide) and, most notably, absence of co-operation from manufacturers of glucose-monitoring devices and insulin pumps, respectively. These latter devices have been shown to cause severe ACD in a considerable number of diabetic patients caused by the liberation of isobornyl acrylate and N,N'-dimethylacrylamide, respectively, as demonstrated by an international collaboration between dermatologists and chemists. Improved and complete ingredient labelling for all types of products, and not just cosmetics, must be put on the legislative agenda.


AllerTOP--a server for in silico prediction of allergens.

  • Ivan Dimitrov‎ et al.
  • BMC bioinformatics‎
  • 2013‎

Allergy is a form of hypersensitivity to normally innocuous substances, such as dust, pollen, foods or drugs. Allergens are small antigens that commonly provoke an IgE antibody response. There are two types of bioinformatics-based allergen prediction. The first approach follows FAO/WHO Codex alimentarius guidelines and searches for sequence similarity. The second approach is based on identifying conserved allergenicity-related linear motifs. Both approaches assume that allergenicity is a linearly coded property. In the present study, we applied ACC pre-processing to sets of known allergens, developing alignment-independent models for allergen recognition based on the main chemical properties of amino acid sequences.


Impact of cold plasma processing on major peanut allergens.

  • Harshitha Venkataratnam‎ et al.
  • Scientific reports‎
  • 2020‎

Cold plasma is emerging as a novel food processing technology, with demonstrated efficacies for microbial inactivation and residual chemical dissipation of food products. Given the technology's multimodal action it has the potential to reduce allergens in foods, however data on the efficacy and mechanisms of action are sparse. This study investigates the efficacy of cold plasma on major peanut allergens (Ara h 1 and Ara h 2). For this purpose, dry, whole peanut (WP) and defatted peanut flour (DPF) were subjected to an atmospheric air discharge using a pin to plate cold plasma reactor for different treatment durations. With increases in plasma exposure, SDS-PAGE analysis revealed reduced protein solubility of the major peanut allergens. Alterations in allergenicity and structure of Ara h 1 and Ara h 2 were examined using ELISA and circular dichroism (CD) spectroscopy. Competitive ELISA with proteins purified from plasma treated WP or DPF revealed reduced antigenicity for both Ara h 1 and Ara h 2. The highest reduction in antigenicity was 65% for Ara h 1 and 66% Ara h 2 when purified from DPF. Results from CD spectroscopy analysis of purified proteins strongly suggests the reduction in antigenicity is due to modifications in the secondary structure of the allergens induced by plasma reactive species. Cold plasma is effective at reducing peanut protein solubility and causes changes in allergen structure leading to reduced antigenicity.


Environmental allergens trigger type 2 inflammation through ripoptosome activation.

  • Michael Brusilovsky‎ et al.
  • Nature immunology‎
  • 2021‎

Environmental allergens, including fungi, insects and mites, trigger type 2 immunity; however, the innate sensing mechanisms and initial signaling events remain unclear. Herein, we demonstrate that allergens trigger RIPK1-caspase 8 ripoptosome activation in epithelial cells. The active caspase 8 subsequently engages caspases 3 and 7, which directly mediate intracellular maturation and release of IL-33, a pro-atopy, innate immunity, alarmin cytokine. Mature IL-33 maintained functional interaction with the cognate ST2 receptor and elicited potent pro-atopy inflammatory activity in vitro and in vivo. Inhibiting caspase 8 pharmacologically and deleting murine Il33 and Casp8 each attenuated allergic inflammation in vivo. Clinical data substantiated ripoptosome activation and IL-33 maturation as likely contributors to human allergic inflammation. Our findings reveal an epithelial barrier, allergen-sensing mechanism that converges on the ripoptosome as an intracellular molecular signaling platform, triggering type 2 innate immune responses. These findings have significant implications for understanding and treating human allergic diseases.


Immune sensing of food allergens promotes aversive behaviour.

  • Esther B Florsheim‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

In addition to its canonical function in protecting from pathogens, the immune system can also promote behavioural alterations 1â€"3 . The scope and mechanisms of behavioural modifications by the immune system are not yet well understood. Using a mouse food allergy model, here we show that allergic sensitization drives antigen-specific behavioural aversion. Allergen ingestion activates brain areas involved in the response to aversive stimuli, including the nucleus of tractus solitarius, parabrachial nucleus, and central amygdala. Food aversion requires IgE antibodies and mast cells but precedes the development of gut allergic inflammation. The ability of allergen-specific IgE and mast cells to promote aversion requires leukotrienes and growth and differentiation factor 15 (GDF15). In addition to allergen-induced aversion, we find that lipopolysaccharide-induced inflammation also resulted in IgE-dependent aversive behaviour. These findings thus point to antigen-specific behavioural modifications that likely evolved to promote niche selection to avoid unfavourable environments.


Immune sensing of food allergens promotes avoidance behaviour.

  • Esther B Florsheim‎ et al.
  • Nature‎
  • 2023‎

In addition to its canonical function of protection from pathogens, the immune system can also alter behaviour1,2. The scope and mechanisms of behavioural modifications by the immune system are not yet well understood. Here, using mouse models of food allergy, we show that allergic sensitization drives antigen-specific avoidance behaviour. Allergen ingestion activates brain areas involved in the response to aversive stimuli, including the nucleus of tractus solitarius, parabrachial nucleus and central amygdala. Allergen avoidance requires immunoglobulin E (IgE) antibodies and mast cells but precedes the development of gut allergic inflammation. The ability of allergen-specific IgE and mast cells to promote avoidance requires cysteinyl leukotrienes and growth and differentiation factor 15. Finally, a comparison of C57BL/6 and BALB/c mouse strains revealed a strong effect of the genetic background on the avoidance behaviour. These findings thus point to antigen-specific behavioural modifications that probably evolved to promote niche selection to avoid unfavourable environments.


Tree pollen allergens-an update from a molecular perspective.

  • C Asam‎ et al.
  • Allergy‎
  • 2015‎

It is estimated that pollen allergies affect approximately 40% of allergic individuals. In general, tree pollen allergies are mainly elicited by allergenic trees belonging to the orders Fagales, Lamiales, Proteales, and Pinales. Over 25 years ago, the gene encoding the major birch pollen allergen Bet v 1 was the first such gene to be cloned and its product characterized. Since that time, 53 tree pollen allergens have been identified and acknowledged by the WHO/IUIS allergen nomenclature subcommittee. Molecule-based profiling of allergic sensitization has helped to elucidate the immunological connections of allergen cross-reactivity, whereas advances in biochemistry have revealed structural and functional aspects of allergenic proteins. In this review, we provide a comprehensive overview of the present knowledge of the molecular aspects of tree pollen allergens. We analyze the geographic distribution of allergenic trees, discuss factors pivotal for allergic sensitization, and describe the role of tree pollen panallergens. Novel allergenic tree species as well as tree pollen allergens are continually being identified, making research in this field highly competitive and instrumental for clinical applications.


Current overview of allergens of plant pathogenesis related protein families.

  • Mau Sinha‎ et al.
  • TheScientificWorldJournal‎
  • 2014‎

Pathogenesis related (PR) proteins are one of the major sources of plant derived allergens. These proteins are induced by the plants as a defense response system in stress conditions like microbial and insect infections, wounding, exposure to harsh chemicals, and atmospheric conditions. However, some plant tissues that are more exposed to environmental conditions like UV irradiation and insect or fungal attacks express these proteins constitutively. These proteins are mostly resistant to proteases and most of them show considerable stability at low pH. Many of these plant pathogenesis related proteins are found to act as food allergens, latex allergens, and pollen allergens. Proteins having similar amino acid sequences among the members of PR proteins may be responsible for cross-reactivity among allergens from diverse plants. This review analyzes the different pathogenesis related protein families that have been reported as allergens. Proteins of these families have been characterized in regard to their biological functions, amino acid sequence, and cross-reactivity. The three-dimensional structures of some of these allergens have also been evaluated to elucidate the antigenic determinants of these molecules and to explain the cross-reactivity among the various allergens.


Are Dietary Lectins Relevant Allergens in Plant Food Allergy?

  • Annick Barre‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2020‎

Lectins or carbohydrate-binding proteins are widely distributed in seeds and vegetative parts of edible plant species. A few lectins from different fruits and vegetables have been identified as potential food allergens, including wheat agglutinin, hevein (Hev b 6.02) from the rubber tree and chitinases containing a hevein domain from different fruits and vegetables. However, other well-known lectins from legumes have been demonstrated to behave as potential food allergens taking into account their ability to specifically bind IgE from allergic patients, trigger the degranulation of sensitized basophils, and to elicit interleukin secretion in sensitized people. These allergens include members from the different families of higher plant lectins, including legume lectins, type II ribosome-inactivating proteins (RIP-II), wheat germ agglutinin (WGA), jacalin-related lectins, GNA (Galanthus nivalis agglutinin)-like lectins, and Nictaba-related lectins. Most of these potentially active lectin allergens belong to the group of seed storage proteins (legume lectins), pathogenesis-related protein family PR-3 comprising hevein and class I, II, IV, V, VI, and VII chitinases containing a hevein domain, and type II ribosome-inactivating proteins containing a ricin B-chain domain (RIP-II). In the present review, we present an exhaustive survey of both the structural organization and structural features responsible for the allergenic potency of lectins, with special reference to lectins from dietary plant species/tissues consumed in Western countries.


Allergens from Edible Insects: Cross-reactivity and Effects of Processing.

  • Laura De Marchi‎ et al.
  • Current allergy and asthma reports‎
  • 2021‎

The recent introduction of edible insects in Western countries has raised concerns about their safety in terms of allergenic reactions. The characterization of insect allergens, the sensitization and cross-reactivity mechanisms, and the effects of food processing represent crucial information for risk assessment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: