Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,039 papers

The FKBP5 Gene Affects Alcohol Drinking in Knockout Mice and Is Implicated in Alcohol Drinking in Humans.

  • Bin Qiu‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR)-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO) mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1) Fkbp5 KO and wild-type (WT) EtOH consumption was tested using a two-bottle choice paradigm; (2) The EtOH elimination rate was measured after intraperitoneal (IP) injection of 2.0 g/kg EtOH; (3) Blood alcohol concentration (BAC) was measured after 3 h limited access of alcohol; (4) Brain region expression of Fkbp5 was identified using LacZ staining; (5) Baseline corticosterone (CORT) was assessed. Additionally, two SNPs, rs1360780 (C/T) and rs3800373 (T/G), were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162) from 21-26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT). Finally, single nucleotide polymorphisms (SNPs) in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans.


Adolescent Alcohol Drinking Renders Adult Drinking BLA-Dependent: BLA Hyper-Activity as Contributor to Comorbid Alcohol Use Disorder and Anxiety Disorders.

  • Mahsa Moaddab‎ et al.
  • Brain sciences‎
  • 2017‎

Adolescent alcohol drinking increases the risk for alcohol-use disorder in adulthood. Yet, the changes in adult neural function resulting from adolescent alcohol drinking remain poorly understood. We hypothesized that adolescent alcohol drinking alters basolateral amygdala (BLA) function, making alcohol drinking BLA-dependent in adulthood. Male, Long Evans rats were given voluntary, intermittent access to alcohol (20% ethanol) or a bitter, isocaloric control solution, across adolescence. Half of the rats in each group received neurotoxic BLA lesions. In adulthood, all rats were given voluntary, intermittent access to alcohol. BLA lesions reduced adult alcohol drinking in rats receiving adolescent access to alcohol, but not in rats receiving adolescent access to the control solution. The effect of the BLA lesion was most apparent in high alcohol drinking adolescent rats. The BLA is essential for fear learning and is hyper-active in anxiety disorders. The results are consistent with adolescent heavy alcohol drinking inducing BLA hyper-activity, providing a neural mechanism for comorbid alcohol use disorder and anxiety disorders.


Effect of caffeine on alcohol drinking in mice.

  • Harold L Haun‎ et al.
  • Alcohol (Fayetteville, N.Y.)‎
  • 2021‎

Mixing alcohol (ethanol) with caffeinated beverages continues to be a common and risky practice. Energy drinks are one type of caffeinated beverage that may be especially problematic when used as mixers, due to their relatively high caffeine content in combination with their highly sweetened flavor profile. The present study used a mouse model of limited-access drinking and lickometer circuitry to examine the effects of an energy drink anid its caffeine content on ethanol consumption. Predictably, the highly sweetened energy drink significantly increased ethanol intake compared to a plain ethanol solution (6.34 ± 0.2 vs. 5.01 ± 0.3 g/kg; Cohen's d = 1.79). Interestingly, adulterating a plain ethanol solution with the same concentration of caffeine (without sweetener) found in the energy drink also increased ethanol intake (5.47 ± 0.3 vs. 4.11 ± 0.3 g/kg; Cohen's d = 1.4). A lower concentration of caffeine was without effect on ethanol drinking. Interestingly, plain caffeine solutions at both tested concentrations provoked high numbers of bottle contacts, indicating that the mice found the solution palatable. These findings suggest that altering the bitterness profile of an ethanol solution with the addition of caffeine can increase intake in a similar manner as sweetening the solution. Further, the findings underscore the importance of taste in motivating ethanol consumption and the potential role that caffeine can have in this process.


Usefulness of Heavy Drinking and Binge Drinking for the Diagnosis of Alcohol Use Disorder.

  • Seong Gu Kim‎ et al.
  • Korean journal of family medicine‎
  • 2016‎

This research investigated the sensitivity and specificity of heavy and binge drinking for screening of alcohol use disorder.


Cross-sectional study on parental pro-drinking practices and adolescent alcohol drinking in Hong Kong.

  • Wing Man Au‎ et al.
  • BMJ open‎
  • 2016‎

To investigate the association between parental pro-drinking practices (PPDPs) and alcohol drinking in Hong Kong Chinese adolescents.


Alcohol and drinking cultures in Vietnam: A review.

  • Martha Lincoln‎
  • Drug and alcohol dependence‎
  • 2016‎

Epidemiological data suggest that national levels of alcohol consumption have increased rapidly in contemporary Vietnam; concomitantly, social and public health harms associated with alcohol use are on the rise.


Rapid nongenomic estrogen signaling controls alcohol drinking behavior.

  • L J Zallar‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

The sex steroid hormone estrogen is a key modulator of numerous physiological processes and adaptive behaviors, but it may also be co-opted to drive maladaptive behaviors. While many behavioral roles for estrogen signaling have been shown to occur through canonical genomic signaling mechanisms via nuclear receptors, estrogen can also act in a neurotransmitter-like fashion at membrane-associated estrogen receptors to rapidly regulate neuronal function. Early alcohol drinking confers greater risk for alcohol use disorder in women than men, and binge alcohol drinking is correlated with high circulating estrogen but a causal role for estrogen in alcohol drinking has not been established. Here, we demonstrate that gonadally intact female mice consume more alcohol and display an anxiolytic phenotype when they have elevated levels of ovarian-derived estrogen across the estrous cycle. We found that rapid, nongenomic estrogen signaling at membrane-associated estrogen receptor alpha in the bed nucleus of the stria terminalis (BNST) is necessary and sufficient for the pro-alcohol drinking effects of ovarian estrogen signaling, regardless of the transcriptional program of a high ovarian estrogen state. We further show that a population of corticotropin-releasing factor (CRF) BNST neurons (BNSTCRF) is a critical mediator of these effects, as high estrogen rapidly enhances synaptic excitation of BNSTCRF neurons and promotes their role in driving binge alcohol drinking. These findings show a causal role for endogenous, ovarian-derived estrogen in hormonal modulation of risky alcohol consumption and provide the first demonstration of a purely rapid, nongenomic signaling mechanism of ovarian estrogen in the brain controlling behavior in gonadally intact females.


Alcohol-preferring P rats exhibit aversion-resistant drinking of alcohol adulterated with quinine.

  • Nicholas M Timme‎ et al.
  • Alcohol (Fayetteville, N.Y.)‎
  • 2020‎

Understanding why some people continue to drink alcohol despite negative consequences and others do not is a central problem in the study of alcohol use disorder (AUD). In this study, we used alcohol-preferring P rats (a strain bred to prefer to drink alcohol, a model for genetic risk for AUD) and Wistar rats (control) to examine drinking despite negative consequences in the form of an aversive bitter taste stimulus produced by quinine. Animals were trained to consume 10% ethanol in a simple Pavlovian conditioning task that paired alcohol access with an auditory stimulus. When the alcohol was adulterated with quinine (0.1 g/L), P rats continued to consume alcohol + quinine at the same rate as unadulterated alcohol, despite a demonstrated aversion to quinine-adulterated alcohol when given a choice between adulterated and unadulterated alcohol in the home cage. Conversely, Wistar rats decreased consumption of quinine-adulterated alcohol in the task, but continued to try the alcohol + quinine solution at similar rates to unadulterated alcohol. These results indicate that following about 8 weeks of alcohol consumption, P rats exhibit aversion-resistant drinking. This model could be used in future work to explore how the biological basis of alcohol consumption and genetic risk for excessive drinking lead to drinking that is resistant to devaluation.


Paternal alcohol exposure reduces alcohol drinking and increases behavioral sensitivity to alcohol selectively in male offspring.

  • Andrey Finegersh‎ et al.
  • PloS one‎
  • 2014‎

Alcohol use disorder (AUD) is heritable, but the genetic basis for this disease remains poorly understood. Although numerous gene variants have been associated with AUD, these variants account for only a small fraction of the total risk. The idea of inheritance of acquired characteristics, i.e. "epigenetic inheritance," is re-emerging as a proven adjunct to traditional modes of genetic inheritance. We hypothesized that alcohol drinking and neurobiological sensitivity to alcohol are influenced by ancestral alcohol exposure. To test this hypothesis, we exposed male mice to chronic vapor ethanol or control conditions, mated them to ethanol-naïve females, and tested adult offspring for ethanol drinking, ethanol-induced behaviors, gene expression, and DNA methylation. We found that ethanol-sired male offspring had reduced ethanol preference and consumption, enhanced sensitivity to the anxiolytic and motor-enhancing effects of ethanol, and increased Bdnf expression in the ventral tegmental area (VTA) compared to control-sired male offspring. There were no differences among ethanol- and control-sired female offspring on these assays. Ethanol exposure also decreased DNA methylation at the BdnfÆpromoter of sire's germ cells and hypomethylation was maintained in the VTA of both male and female ethanol-sired offspring. Our findings show that paternal alcohol exposure is a previously unrecognized regulator of alcohol drinking and behavioral sensitivity to alcohol in male, but not female, offspring. Paternal alcohol exposure also induces epigenetic alterations (DNA hypomethylation) and gene expression changes that persist in the VTA of offspring. These results provide new insight into the inheritance and development of alcohol drinking behaviors.


Long-term alcohol drinking in High Drinking in the Dark mice is stable for many months and does not show alcohol deprivation effects.

  • John C Crabbe‎ et al.
  • Addiction biology‎
  • 2022‎

We have modelled genetic risk for binge-like drinking by selectively breeding High Drinking in the Dark-1 and -2 (HDID-1 and HDID-2) mice for their propensity to reach intoxicating blood alcohol levels (BALs) after binge-like drinking in a single bottle, limited access paradigm. Interestingly, in standard two-bottle choice (2BC) tests for continuously available alcohol versus water, HDID mice show modest levels of preference. This indicates some degree of independence of the genetic contributions to risk for binge-like and sustained, continuous access drinking. We had few data where the drinking in the dark (DID) tests of binge-like drinking had been repeatedly performed, so we serially offered multiple DID tests to see whether binge-like drinking escalated. It did not. We also asked whether HDID mice would escalate their voluntary intake with prolonged exposure to alcohol 2BC. They did not. Lastly, we assessed whether an alcohol deprivation effect (ADE) developed. ADE is a temporary elevation in drinking typically observed after a period of abstinence from sustained access to alcohol choice. With repetition, these periods of ADE sometimes have led to more sustained elevations in drinking. We therefore asked whether repeated ADE episodes would elevate choice drinking in HDID mice. They did not. After nearly 500 days of alcohol access, the intake of HDID mice remained stable. We conclude that a genetically-enhanced high risk for binge-like drinking is not sufficient to yield alterations in long-term alcohol intake.


Alcohol preference drinking in a mouse line selectively bred for high drinking in the dark.

  • John C Crabbe‎ et al.
  • Alcohol (Fayetteville, N.Y.)‎
  • 2011‎

We have selectively bred mice that reach very high blood ethanol concentrations (BECs) after drinking from a single bottle of 20% ethanol. High Drinking in the Dark (HDID-1) mice drink nearly 6g/kg ethanol in 4h and reach average BECs of more than 1.0mg/mL. Previous studies suggest that DID and two-bottle preference for 10% ethanol with continuous access are influenced by many of the same genes. We therefore asked whether HDID-1 mice would differ from the HS/Npt control stock on two-bottle preference drinking. We serially offered mice access to 3-40% ethanol in tap water versus tap water. For ethanol concentrations between 3 and 20%, HDID-1 and HS/Npt controls did not differ in two-bottle preference drinking. At the highest concentrations, the HS/Npt mice drank more than the HDID-1 mice. We also tested the same mice for preference for two concentrations each of quinine, sucrose, and saccharin. Curiously, the mice showed preference ratios (volume of tastant/total fluid drunk) of about 50% for all tastants and concentrations. Thus, neither genotype showed either preference or avoidance for any tastant after high ethanol concentrations. Therefore, we compared naive groups of HDID-1 and HS/Npt mice for tastant preference. Results from this test showed that ethanol-naive mice preferred sweet fluids and avoided quinine but the genotypes did not differ. Finally, we tested HDID-1 and HS mice for an extended period for preference for 15% ethanol versus water during a 2-h access period in the dark. After several weeks, HDID-1 mice consumed significantly more than HS. We conclude that drinking in the dark shows some genetic overlap with other tests of preference drinking, but that the degree of genetic commonality depends on the model used.


Automatic avoidance tendencies for alcohol cues predict drinking after detoxification treatment in alcohol dependence.

  • Matt Field‎ et al.
  • Psychology of addictive behaviors : journal of the Society of Psychologists in Addictive Behaviors‎
  • 2017‎

Alcohol dependence is characterized by conflict between approach and avoidance motivational orientations for alcohol that operate in automatic and controlled processes. This article describes the first study to investigate the predictive validity of these motivational orientations for relapse to drinking after discharge from alcohol detoxification treatment in alcohol-dependent patients. One hundred twenty alcohol-dependent patients who were nearing the end of inpatient detoxification treatment completed measures of self-reported (Approach and Avoidance of Alcohol Questionnaire; AAAQ) and automatic (modified Stimulus-Response Compatibility task) approach and avoidance motivational orientations for alcohol. Their drinking behavior was assessed via telephone follow-ups at 2, 4, and 6 months after discharge from treatment. Results indicated that, after controlling for the severity of alcohol dependence, strong automatic avoidance tendencies for alcohol cues were predictive of higher percentage of heavy drinking days (PHDD) at 4-month (β = 0.22, 95% CI [0.07, 0.43]) and 6-month (β = 0.22, 95% CI [0.01, 0.42]) follow-ups. We failed to replicate previous demonstrations of the predictive validity of approach subscales of the AAAQ for relapse to drinking, and there were no significant predictors of PHDD at 2-month follow-up. In conclusion, strong automatic avoidance tendencies predicted relapse to drinking after inpatient detoxification treatment, but automatic approach tendencies and self-reported approach and avoidance tendencies were not predictive in this study. Our results extend previous findings and help to resolve ambiguities with earlier studies that investigated the roles of automatic and controlled cognitive processes in recovery from alcohol dependence. (PsycINFO Database Record


Alcohol drinking alters oral microbiota to modulate the progression of alcohol-related liver disease.

  • Chuyue Pan‎ et al.
  • iScience‎
  • 2023‎

Alcohol-related liver disease (ALD) is one of the leading causes of liver-related death worldwide. However, roles of oral microbiota in regulating the progression of ALD remain unknown. Here, we fed mice with control or ethanol diet to establish chronic-plus-binge ALD model. 16S ribosomal DNA sequencing was performed on oral and cecum samples. We demonstrated that alcohol drinking influenced bacterial richness, microbial structure, and composition in oral samples of ethanol-fed mice compared with control mice. Alcohol consumption also remodeled relationships among oral microbes and altered functions of oral microbiota. Furthermore, oral microbiota, such as Streptococcus, Helicobacter, Alloprevotella, and Psychrobacter were closely associated with ALD parameters. Finally, we observed Sutterellaceae_uncultured, Dyella, and Gemmatimonas possibly translocated along with oral-gut axis and positively correlated with the severity of ALD. Altogether, alcohol consumption reprogramed composition and functions of oral microbiota to promote ALD progression, suggesting that oral microbes might become a new target for ALD therapy.


The histone methyltransferase G9a mediates stress-regulated alcohol drinking.

  • Ethan M Anderson‎ et al.
  • Addiction biology‎
  • 2022‎

The epigenetic enzyme G9a is a histone methyltransferase that dimethylates lysine 9 on histone H3 (H3K9me2), and in the adult nucleus accumbens (NAc), G9a regulates multiple behaviors associated with substance use disorder. We show here that chronic intermittent ethanol (CIE) exposure in male mice reduced both G9a and H3K9me2 levels in the adult NAc, but not dorsal striatum. Viral-mediated reduction of G9a in the NAc had no effects on baseline volitional ethanol drinking or escalated alcohol drinking produced by CIE exposure; however, NAc G9a was required for stress-regulated changes in ethanol drinking, including potentiated alcohol drinking produced by activation of the kappa-opioid receptor. In addition, we observed that chronic systemic administration of a G9a inhibitor, UNC0642, also blocked stress-potentiated alcohol drinking. Together, our findings suggest that chronic alcohol use, similar to other abused substances, produces a NAc-selective reduction in G9a levels that serves to limit stress-regulated alcohol drinking. Moreover, our findings suggest that pharmacological inhibition of G9a might provide a novel therapeutic approach to treat stress-induced alcohol drinking, which is a major trigger of relapse in individuals suffering from AUD.


CaMKIIα-GluA1 Activity Underlies Vulnerability to Adolescent Binge Alcohol Drinking.

  • Abigail E Agoglia‎ et al.
  • Alcoholism, clinical and experimental research‎
  • 2015‎

Binge drinking during adolescence is associated with increased risk for developing alcohol use disorders; however, the neural mechanisms underlying this liability are unclear. In this study, we sought to determine whether binge drinking alters expression or phosphorylation of 2 molecular mechanisms of neuroplasticity, calcium/calmodulin-dependent kinase II alpha (CaMKIIα) and the GluA1 subunit of AMPA receptors (AMPARs) in addiction-associated brain regions. We also asked whether activation of CaMKIIα-dependent AMPAR activity escalates binge-like drinking.


The α2-adrenergic receptor agonist, clonidine, reduces alcohol drinking in alcohol-preferring (P) rats.

  • Dennis D Rasmussen‎ et al.
  • Alcohol (Fayetteville, N.Y.)‎
  • 2014‎

Evidence suggests that noradrenergic signaling may play a role in mediating alcohol-drinking behavior in both rodents and humans. We have investigated this possibility by administering clonidine to alcohol-drinking rats selectively bred for alcohol preference (P line). Clonidine is an α2-adrenergic receptor agonist which, at low doses, inhibits noradrenergic signaling by decreasing norepinephrine release from presynaptic noradrenergic neurons. Adult male P rats were given 24 h access to food and water and scheduled access to a 15% (v/v) alcohol solution for 2 h daily. Rats received intra-peritoneal (IP) injections with clonidine (0, 10, 20, 40, or 80 μg/kg body weight [BW], 10-11 rats/treatment group) once/day at 30 min prior to onset of the daily 2 h alcohol access period for 2 consecutive days. Clonidine, in doses of 40 or 80 μg/kg BW, significantly reduced alcohol intake on both days of treatment (p<0.001). Two weeks later, rats were treated with clonidine for 5 consecutive days and clonidine, in doses of 40 or 80 μg/kg BW, reduced alcohol intake on all 5 treatment days (p < 0.001). Clonidine did not alter water consumption during the daily 2 h free-choice between alcohol and water. In a separate group of male P rats, clonidine (40 μg/kg BW) suppressed intake of a saccharin solution (0.04 g/L). These results are consistent with and complement our previous findings that the α1-adrenergic receptor antagonist, prazosin, decreases voluntary alcohol drinking in alcohol-preferring rats, but suggests that effects of clonidine may not be specific for alcohol. The results suggest that although activation of the noradrenergic system plays an important role in mediating voluntary alcohol drinking, care is needed in selecting which drugs to use to suppress central noradrenergic signaling in order to maximize the selectivity of the drugs for treating alcohol-use disorders.


Chronic MAP4343 reverses escalated alcohol drinking in a mouse model of alcohol use disorder.

  • Giovana C Macedo‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2023‎

Alcohol use disorders can be driven by negative reinforcement. Alterations of the microtubule cytoskeleton have been associated with mood regulation in the context of depression. Notably, MAP4343, a pregnenolone derivative known to promote tubulin assembly, has antidepressant properties. In the present study, we tested the hypothesis that MAP4343 may reduce excessive alcohol drinking in a mouse model of alcohol dependence by normalizing affect during withdrawal. Adult male C57BL/6J mice were given limited access to voluntary alcohol drinking and ethanol intake escalation was induced by chronic intermittent ethanol (CIE) vapor inhalation. Chronic, but not acute, administration of MAP4343 reduced ethanol intake and this effect was more pronounced in CIE-exposed mice. There was a complex interaction between the effects of MAP4343 and alcohol on affective behaviors. In the elevated plus maze, chronic MAP4343 tended to increase open-arm exploration in alcohol-naive mice but reduced it in alcohol-withdrawn mice. In the tail suspension test, chronic MAP4343 reduced immobility selectively in Air-exposed alcohol-drinking mice. Finally, chronic MAP4343 countered the plasma corticosterone reduction induced by CIE. Parallel analysis of tubulin post-translational modifications revealed lower α-tubulin acetylation in the medial prefrontal cortex of CIE-withdrawn mice. Altogether, these data support the relevance of microtubules as a therapeutic target for the treatment of AUD.


Sigma-1 receptor mediates acquisition of alcohol drinking and seeking behavior in alcohol-preferring rats.

  • Angelo Blasio‎ et al.
  • Behavioural brain research‎
  • 2015‎

Sigma-1 receptor (Sig-1R) has been proposed as a novel therapeutic target for drug and alcohol addiction. We have shown previously that Sig-1R agonists facilitate the reinforcing effects of ethanol and induce binge-like drinking, while Sig-1R antagonists on the other hand block excessive drinking in genetic and environmental models of alcoholism, without affecting intake in outbred non-dependent rats. Even though significant progress has been made in understanding the function of Sig-1R in alcohol reinforcement, its role in the early and late stage of alcohol addiction remains unclear. Administration of the selective Sig-1R antagonist BD-1063 dramatically reduced the acquisition of alcohol drinking behavior as well as the preference for alcohol in genetically selected TSRI Sardinian alcohol preferring (Scr:sP) rats; the treatment had instead no effect on total fluid intake, food intake or body weight gain, proving selectivity of action. Furthermore, BD-1063 dose-dependently decreased alcohol-seeking behavior in rats trained under a second-order schedule of reinforcement, in which responding is maintained by contingent presentation of a conditioned reinforcer. Finally, an innate elevation in Sig-1R protein levels was found in the nucleus accumbens of alcohol-preferring Scr:sP rats, compared to outbred Wistar rats, alteration which was normalized by chronic, voluntary alcohol drinking. Taken together these findings demonstrate that Sig-1R blockade reduces the propensity to both acquire alcohol drinking and to seek alcohol, and point to the nucleus accumbens as a potential key region for the effects observed. Our data suggest that Sig-1R antagonists may have therapeutic potential in multiple stages of alcohol addiction.


Midbrain circuit regulation of individual alcohol drinking behaviors in mice.

  • Barbara Juarez‎ et al.
  • Nature communications‎
  • 2017‎

Alcohol-use disorder (AUD) is the most prevalent substance-use disorder worldwide. There is substantial individual variability in alcohol drinking behaviors in the population, the neural circuit mechanisms of which remain elusive. Utilizing in vivo electrophysiological techniques, we find that low alcohol drinking (LAD) mice have dramatically higher ventral tegmental area (VTA) dopamine neuron firing and burst activity. Unexpectedly, VTA dopamine neuron activity in high alcohol drinking (HAD) mice does not differ from alcohol naive mice. Optogenetically enhancing VTA dopamine neuron burst activity in HAD mice decreases alcohol drinking behaviors. Circuit-specific recordings reveal that spontaneous activity of nucleus accumbens-projecting VTA (VTA-NAc) neurons is selectively higher in LAD mice. Specifically activating this projection is sufficient to reduce alcohol consumption in HAD mice. Furthermore, we uncover ionic and cellular mechanisms that suggest unique neuroadaptations between the alcohol drinking groups. Together, these data identify a neural circuit responsible for individual alcohol drinking behaviors.


Chromatin remodeling--a novel strategy to control excessive alcohol drinking.

  • V Warnault‎ et al.
  • Translational psychiatry‎
  • 2013‎

Harmful excessive use of alcohol has a severe impact on society and it remains one of the major causes of morbidity and mortality in the population. However, mechanisms that underlie excessive alcohol consumption are still poorly understood, and thus available medications for alcohol use disorders are limited. Here, we report that changing the level of chromatin condensation by affecting DNA methylation or histone acetylation limits excessive alcohol drinking and seeking behaviors in rodents. Specifically, we show that decreasing DNA methylation by inhibiting the activity of DNA methyltransferase (DNMT) with systemic administration of the FDA-approved drug, 5-azacitidine (5-AzaC) prevents excessive alcohol use in mice. Similarly, we find that increasing histone acetylation via systemic treatment with several histone deacetylase (HDAC) inhibitors reduces mice binge-like alcohol drinking. We further report that systemic administration of the FDA-approved HDAC inhibitor, SAHA, inhibits the motivation of rats to seek alcohol. Importantly, the actions of both DNMT and HDAC inhibitors are specific for alcohol, as no changes in saccharin or sucrose intake were observed. In line with these behavioral findings, we demonstrate that excessive alcohol drinking increases DNMT1 levels and reduces histone H4 acetylation in the nucleus accumbens (NAc) of rodents. Together, our findings illustrate that DNA methylation and histone acetylation control the level of excessive alcohol drinking and seeking behaviors in preclinical rodent models. Our study therefore highlights the possibility that DNMT and HDAC inhibitors can be used to treat harmful alcohol abuse.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: