Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 62 papers

Therapeutics Development for Alagille Syndrome.

  • Phillip Sanchez‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Advancements in treatment for the rare genetic disorder known as Alagille Syndrome (ALGS) have been regrettably slow. The large variety of mutations to the JAG1 and NOTCH2 genes which lead to ALGS pose a unique challenge for developing targeted treatments. Due to the central role of the Notch signaling pathway in several cancers, traditional treatment modalities which compensate for the loss in activity caused by mutation are rightly excluded. Unfortunately, current treatment plans for ALGS focus on relieving symptoms of the disorder and do not address the underlying causes of disease. Here we review several of the current and potential key technologies and strategies which may yield a significant leap in developing targeted therapies for this disorder.


Alagille Syndrome Mimicking Biliary Atresia in Early Infancy.

  • Tomáš Dědič‎ et al.
  • PloS one‎
  • 2015‎

Alagille syndrome may mimic biliary atresia in early infancy. Since mutations in JAG1 typical for Alagille syndrome type 1 have also been found in biliary atresia, we aimed to identify JAG1 mutations in newborns with proven biliary atresia (n = 72). Five biliary atresia patients with cholestasis, one additional characteristic feature of Alagille syndrome and ambiguous liver histology were single heterozygotes for nonsense or frameshift mutations in JAG1. No mutations were found in the remaining 67 patients. All "biliary atresia" carriers of JAG1 null mutations developed typical Alagille syndrome at the age of three years. Our data do not support association of biliary atresia with JAG1 mutations, at least in Czech patients. Rapid testing for JAG1 mutations could prevent misdiagnosis of Alagille syndrome in early infancy and improve their outcome.


Exocrine pancreatic function in children with Alagille syndrome.

  • Dorota Gliwicz‎ et al.
  • Scientific reports‎
  • 2016‎

Alagille syndrome (AGS) is often associated with symptoms of maldigestion, such as steatorrhea, hypotrophy and growth retardation. Exocrine pancreatic insufficiency was proposed as the underlying cause. We aimed to assess the exocrine pancreatic function with the use of different methods in AGS patients. Concentrations of fecal elastase-1 (FE1) and fecal lipase (FL) activities were measured in 33 children with AGS. The C-mixed triglyceride breath test (MTBT) in a subgroup comprising 15 patients. In all patients studied, FE1 concentrations and FL activities were normal. Abnormal MTBT results were documented in 4 (26.7%) patients. The FE1 and FL levels in MTBT-positive and MTBT-negative children did not differ. The results of this research do not confirm the presence of exocrine pancreatic dysfunction in AGS patients. Routine screening for exocrine pancreatic insufficiency of this group of patients is not necessary.


Mouse Model of Alagille Syndrome and Mechanisms of Jagged1 Missense Mutations.

  • Emma R Andersson‎ et al.
  • Gastroenterology‎
  • 2018‎

Alagille syndrome is a genetic disorder characterized by cholestasis, ocular abnormalities, characteristic facial features, heart defects, and vertebral malformations. Most cases are associated with mutations in JAGGED1 (JAG1), which encodes a Notch ligand, although it is not clear how these contribute to disease development. We aimed to develop a mouse model of Alagille syndrome to elucidate these mechanisms.


Systematic Review: The Epidemiology, Natural History, and Burden of Alagille Syndrome.

  • Binita M Kamath‎ et al.
  • Journal of pediatric gastroenterology and nutrition‎
  • 2018‎

Alagille syndrome (ALGS) is an inherited multisystem disorder typically manifesting as cholestasis, and potentially leading to end-stage liver disease and death. The aim of the study was to perform the first systematic review of the epidemiology, natural history, and burden of ALGS with a focus on the liver component.


Novel JAG1 variants leading to Alagille syndrome in two Chinese cases.

  • Xiufang Feng‎ et al.
  • Scientific reports‎
  • 2024‎

Alagille Syndrome (ALGS) is a complex genetic disorder characterized by cholestasis, congenital cardiac anomalies, and butterfly vertebrae. The variable phenotypic expression of ALGS can lead to challenges in accurately diagnosing affected infants, potentially resulting in misdiagnoses or underdiagnoses. This study highlights novel JAG1 gene mutations in two cases of ALGS. The first case with a novel p.Pro325Leufs*87 variant was diagnosed at 2 months of age and exhibited a favorable prognosis and an unexpected manifestation of congenital hypothyroidism. Before the age of 2, the second patient was incorrectly diagnosed with liver structural abnormalities, necessitating extensive treatment. In addition, he exhibited delays in language acquisition that may have been a result of SNAP25 haploinsufficiency. The identification of ALGS remains challenging, highlighting the importance of early detection and genetic testing for effective patient management. The variant p.Pro325Leufs*87 is distinct from reported variants linked to congenital hypothyroidism in ALGS patients, thereby further confirming the clinical and genetic complexity of ALGS. This emphasizes the critical need for individualized and innovative approaches to diagnosis and medical interventions, uniquely intended to address the complexity of this syndrome.


Sex differences and risk factors for bleeding in Alagille syndrome.

  • Simona Hankeova‎ et al.
  • EMBO molecular medicine‎
  • 2022‎

Spontaneous bleeds are a leading cause of death in the pediatric JAG1-related liver disease Alagille syndrome (ALGS). We asked whether there are sex differences in bleeding events in patients, whether Jag1Ndr/Ndr mice display bleeds or vascular defects, and whether discovered vascular pathology can be confirmed in patients non-invasively. We performed a systematic review of patients with ALGS and vascular events following PRISMA guidelines, in the context of patient sex, and found significantly more girls than boys reported with spontaneous intracranial hemorrhage. We investigated vascular development, homeostasis, and bleeding in Jag1Ndr/Ndr mice, using retina as a model. Jag1Ndr/Ndr mice displayed sporadic brain bleeds, a thin skull, tortuous blood vessels, sparse arterial smooth muscle cell coverage in multiple organs, which could be aggravated by hypertension, and sex-specific venous defects. Importantly, we demonstrated that retinographs from patients display similar characteristics with significantly increased vascular tortuosity. In conclusion, there are clinically important sex differences in vascular disease in ALGS, and retinography allows non-invasive vascular analysis in patients. Finally, Jag1Ndr/Ndr mice represent a new model for vascular compromise in ALGS.


THBS2 Is a Candidate Modifier of Liver Disease Severity in Alagille Syndrome.

  • Ellen A Tsai‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2016‎

Alagille syndrome is an autosomal-dominant, multisystem disorder caused primarily by mutations in JAG1, resulting in bile duct paucity, cholestasis, cardiac disease, and other features. Liver disease severity in Alagille syndrome is highly variable, however, factors influencing the hepatic phenotype are unknown. We hypothesized that genetic modifiers may contribute to the variable expressivity of this disorder.


Spectrum of JAG1 gene mutations in Polish patients with Alagille syndrome.

  • Dorota Jurkiewicz‎ et al.
  • Journal of applied genetics‎
  • 2014‎

Alagille syndrome (ALGS) is an autosomal dominant disorder characterized by developmental abnormalities in several organs including the liver, heart, eyes, vertebrae, kidneys, and face. The majority (90-94%) of ALGS cases are caused by mutations in the JAG1 (JAGGED1) gene, and in a small percent of patients (∼1%) mutations in the NOTCH2 gene have been described. Both genes are involved in the Notch signaling pathway. To date, over 440 different JAG1 gene mutations and ten NOTCH2 mutations have been identified in ALGS patients. The present study was conducted on a group of 35 Polish ALGS patients and revealed JAG1 gene mutations in 26 of them. Twenty-three different mutations were detected including 13 novel point mutations and six large deletions affecting the JAG1 gene. Review of all mutations identified to date in individuals from Poland allowed us to propose an effective diagnostic strategy based on the mutations identified in the reported patients of Polish descent. However, the distribution of mutations seen in this cohort was not substantively different than the mutation distribution in other reported populations.


Characterization of the Spectrum of Ophthalmic Changes in Patients With Alagille Syndrome.

  • Mariana Matioli da Palma‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2021‎

The purpose of this study was to characterize the phenotypic spectrum of ophthalmic findings in patients with Alagille syndrome.


Peritoneal dialysis in an adult patient with tetralogy of Fallot diagnosed with incomplete Alagille syndrome.

  • Malgorzata Ponikowska‎ et al.
  • BMC medical genetics‎
  • 2020‎

Alagille syndrome is an autosomal dominant disorder usually caused by pathogenic variants of the JAG1 gene. In the past, cholestasis was a condition sine qua non for diagnosis of the syndrome. However, recent advancements in genetic testing have revealed that clinical presentations vary from lack of symptoms, to multiorgan involvement. Tetralogy of Fallot, the most frequent complex congenital heart defect in Alagille Syndrome, very rarely leads to renal failure requiring dialysis - there are only single reports of such cases in the literature, with none of them in Alagille Syndrome.


Polymorphism analysis and new JAG1 gene mutations of Alagille syndrome in Mexican population.

  • Edgar Ricardo Vázquez-Martínez‎ et al.
  • Meta gene‎
  • 2014‎

Alagille syndrome is a multisystem disorder with an autosomic dominant pattern of inheritance that affects the liver, heart, eyes, kidneys, skeletal system and presents characteristic facial features. Mutations of the JAG1 gene have been identified in 20-89% of the patients with Alagille syndrome, this gene encodes for a ligand that activates the Notch signaling pathway. In the present study we analyzed 9 Mexican patients with Alagille syndrome who presented the clinical criteria for the classical presentation of the disease. By using the denaturing high performance liquid chromatography mutation analysis we were able to identify different mutations in 7 of the patients (77.77%), importantly, we found 5 novel mutations in JAG1 gene. The allelic frequency distribution of 13 polymorphisms in Mexican population is also reported. The overall results demonstrated an expanding mutational spectrum of JAG1 gene in the Mexican population.


NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway.

  • Ryan McDaniell‎ et al.
  • American journal of human genetics‎
  • 2006‎

Alagille syndrome (AGS) is caused by mutations in the gene for the Notch signaling pathway ligand Jagged1 (JAG1), which are found in 94% of patients. To identify the cause of disease in patients without JAG1 mutations, we screened 11 JAG1 mutation-negative probands with AGS for alterations in the gene for the Notch2 receptor (NOTCH2). We found NOTCH2 mutations segregating in two families and identified five affected individuals. Renal manifestations, a minor feature in AGS, were present in all the affected individuals. This demonstrates that AGS is a heterogeneous disorder and implicates NOTCH2 mutations in human disease.


An Adult Patient with Alagille Syndrome Showing Mainly Renal Failure and Vascular Abnormality without Liver Manifestation.

  • Homare Shimohata‎ et al.
  • Internal medicine (Tokyo, Japan)‎
  • 2020‎

Alagille syndrome is an inherited multisystemic disorder. We herein report an atypical case of a Japanese adult patient with Alagille syndrome. He had been diagnosed with Alagille syndrome as an infant based on a liver biopsy. At 27 years of age, he needed to start hemodialysis therapy, but an arteriovenous fistula was not created because his peripheral blood vessels were too narrow. He also had a recurrent brain infarction due to cerebral vascular stenosis. Alagille syndrome is generally recognized as a pediatric hepatic disease, but general physicians should be aware of its potential existence with renal involvement and vascular abnormalities.


JAG1 Mutation Spectrum and Origin in Chinese Children with Clinical Features of Alagille Syndrome.

  • Liting Li‎ et al.
  • PloS one‎
  • 2015‎

Alagille syndrome is an autosomal dominant disorder that results from defects in the Notch signaling pathway, which is most frequently due to JAG1 mutations. This study investigated the rate, spectrum, and origin of JAG1 mutations in 91 Chinese children presenting with at least two clinical features of Alagille syndrome (cholestasis, heart murmur, skeletal abnormalities, ocular abnormalities, characteristic facial features, and renal abnormalities). Direct sequencing and/or multiplex-ligation-dependent probe amplification were performed in these patients, and segregation analysis was performed using samples available from the parents. JAG1 disease-causing mutations were detected in 70/91 (76.9%) patients, including 29/70 (41.4%) small deletions, 6/70 (8.6%) small insertions, 16/70 (22.9%) nonsense mutations, 8/70 (11.4%) splice-site mutations, 6/70 (9.4%) missense mutations, and 5/70 (7.1%) gross deletions. Of the mutations detected, 45/62 (72.6%) were novel, and almost all were unique, with the exception of c.439C>T, c.439+1G>A, c.703C>T, c.1382_1383delAC, c.2698C>T, and c.2990C>A, which were detected in two cases each; three cases exhibited entire gene deletions. A majority (69.2%) of the point and frameshift mutations could be detected by the sequencing of eleven exons (exons 3, 5, 6, 11, 14, 16, 18, 21, and 23-25). The mutation detection rate was 50.0% (10/20) in atypical cases that only presented with two or three clinical features of Alagille syndrome. Segregation analysis revealed that 81.1% (30/37) of these mutations were de novo. In conclusion, JAG1 mutations are present in the majority of Chinese pediatric patients with clinical features of Alagille syndrome, and the mutations concentrate on different exons from other reports. Genetic study is important for the diagnosis of atypical Alagille syndrome in Chinese patients.


Targeted Sequencing and RNA Assay Reveal a Noncanonical JAG1 Splicing Variant Causing Alagille Syndrome.

  • Yiyao Chen‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Alagille syndrome (ALGS), as known as congenital arteriohepatic dysplasia, is a rare autosomal dominant multi-systemic disorder. Mutations in JAG1 or more rarely NOTCH2 have been reported as the cause of ALGS. In this study, a 5-year old girl with typical ALGS feature and her pregnant mother came to our reproductive genetics clinic for counseling. We aimed to clarify the genetic diagnosis and provide prenatal genetic diagnosis for the pregnant. Next generation sequencing (NGS)-based multigene panel was used to identify pathogenic variant of the proband. Then the candidate variant was verified by using Sanger sequencing. RNA assay was performed to clarify splicing effect of the candidate variant. Amniocentesis, karyotyping, and Sanger sequencing were performed for prenatal testing. We found a novel de novo noncanonical JAG1 splicing variant (c.2917-8C > A) in the proband. Peripheral blood RNA assay suggested that the mutant transcript might escape nonsense-mediated messenger RNA (mRNA) decay (NMD) and encode a C-terminal truncated protein. Information of the variant has resulted in a successful prenatal diagnosis of the fetus. Our results clarified the genetic diagnosis of an ALGS patient and ensured utility of prenatal genetic testing.


Genome sequencing increases diagnostic yield in clinically diagnosed Alagille syndrome patients with previously negative test results.

  • Ramakrishnan Rajagopalan‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2021‎

Detection of all major classes of genomic variants in a single test would decrease cost and increase the efficiency of genomic diagnostics. Genome sequencing (GS) has the potential to provide this level of comprehensive detection. We sought to demonstrate the utility of GS in the molecular diagnosis of 18 patients with clinically defined Alagille syndrome (ALGS), who had a negative or inconclusive result by standard-of-care testing.


Impact of long-term administration of maralixibat on children with cholestasis secondary to Alagille syndrome.

  • Benjamin L Shneider‎ et al.
  • Hepatology communications‎
  • 2022‎

There is growing interest in, but limited data about, intestinal bile acid transport inhibitors as treatment for cholestatic liver disease. The current analyses combine two similar randomized placebo-controlled trials with subsequent extension phases investigating the impact of maralixibat in children with severe cholestasis secondary to Alagille Syndrome (n = 57). The primary outcomes were measures of pruritus (ItchRO[Obs]) and clinician scratch scale (CSS), both increasing in severity from 0 to 4) and quality of life (QoL) (Parent PedsQL and Multidimensional Fatigue Scale module [MFS] scaled 0-100 with increased QoL) at week 48 of the extension phase relative to the baseline of the placebo-controlled trials (week 13). Secondary assessments included other clinical and biochemical parameters assessed in participants at week 72 or end of treatment (after week 48). At week 48, statistically and clinically significant least square mean (95% CI) improvements in pruritus and QoL were observed (ItchRO[Obs] -1.59 [-1.81, -1.36], CSS -1.36 [-1.67, -1.05], PedsQL +10.17 [4.48, 15.86], and multidimension fatigue [MFS] +13.97 [7.85, 20.08]). At week 48, serum bile acids, platelet count, and cholesterol decreased, whereas alanine aminotransferase (ALT) increased and total bilirubin (TB) and albumin were stable. Changes were durable at week 72 and end of treatment. There were no deaths; 2 participants underwent liver transplantation. Study drug was discontinued in 9 participants after treatment-emergent adverse events, 6 of which were events of increased ALT or TB. Conclusion: Maralixibat administration was associated with marked improvement in pruritus and QoL. Interpretation of these findings is complicated by the complex natural history of severe cholestasis in Alagille syndrome.


Novel Heterozygous Mutations in JAG1 and NOTCH2 Genes in a Neonatal Patient with Alagille Syndrome.

  • Alisa Brennan‎ et al.
  • Case reports in pediatrics‎
  • 2017‎

Alagille Syndrome (ALGS) is a rare autosomal dominant disorder that affects multiple organ systems. Cholestasis as a result of a paucity of intrahepatic bile ducts and congenital heart defects are the two most common features of ALGS. We describe a case of ALGS with novel mutations of JAG1 and NOTCH2 genes in a newborn girl with complex congenital heart disease, bilateral dysplastic kidneys, and malrotation with volvulus.


DUCT reveals architectural mechanisms contributing to bile duct recovery in a mouse model for Alagille syndrome.

  • Simona Hankeova‎ et al.
  • eLife‎
  • 2021‎

Organ function depends on tissues adopting the correct architecture. However, insights into organ architecture are currently hampered by an absence of standardized quantitative 3D analysis. We aimed to develop a robust technology to visualize, digitalize, and segment the architecture of two tubular systems in 3D: double resin casting micro computed tomography (DUCT). As proof of principle, we applied DUCT to a mouse model for Alagille syndrome (Jag1Ndr/Ndr mice), characterized by intrahepatic bile duct paucity, that can spontaneously generate a biliary system in adulthood. DUCT identified increased central biliary branching and peripheral bile duct tortuosity as two compensatory processes occurring in distinct regions of Jag1Ndr/Ndr liver, leading to full reconstitution of wild-type biliary volume and phenotypic recovery. DUCT is thus a powerful new technology for 3D analysis, which can reveal novel phenotypes and provide a standardized method of defining liver architecture in mouse models.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: