Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 739 papers

NF-κB-dependent airway inflammation triggers systemic insulin resistance.

  • Travis J Cyphert‎ et al.
  • American journal of physiology. Regulatory, integrative and comparative physiology‎
  • 2015‎

Inflammatory lung diseases (e.g., pneumonia and acute respiratory distress syndrome) are associated with hyperglycemia, even in patients without a prior diagnosis of Type 2 diabetes. It is unknown whether the lung inflammation itself or the accompanying comorbidities contribute to the increased risk of hyperglycemia and insulin resistance. To investigate whether inflammatory signaling by airway epithelial cells can induce systemic insulin resistance, we used a line of doxycycline-inducible transgenic mice that express a constitutive activator of the NF-κB in airway epithelial cells. Airway inflammation with accompanying neutrophilic infiltration was induced with doxycycline over 5 days. Then, hyperinsulinemic-euglycemic clamps were performed in chronically catheterized, conscious mice to assess insulin action. Lung inflammation decreased the whole body glucose requirements and was associated with secondary activation of inflammation in multiple tissues. Metabolic changes occurred in the absence of hypoxemia. Lung inflammation markedly attenuated insulin-induced suppression of hepatic glucose production and moderately impaired insulin action in peripheral tissues. The hepatic Akt signaling pathway was intact, while hepatic markers of inflammation and plasma lactate were increased. As insulin signaling was intact, the inability of insulin to suppress glucose production in the liver could have been driven by the increase in lactate, which is a substrate for gluconeogenesis, or due to an inflammation-driven signal that is independent of Akt. Thus, localized airway inflammation that is observed during inflammatory lung diseases can contribute to systemic inflammation and insulin resistance.


Using Drugs to Probe the Variability of Trans-Epithelial Airway Resistance.

  • Kendra Tosoni‎ et al.
  • PloS one‎
  • 2016‎

Precision medicine aims to combat the variability of the therapeutic response to a given medicine by delivering the right medicine to the right patient. However, the application of precision medicine is predicated on a prior quantitation of the variance of the reference range of normality. Airway pathophysiology provides a good example due to a very variable first line of defence against airborne assault. Humans differ in their susceptibility to inhaled pollutants and pathogens in part due to the magnitude of trans-epithelial resistance that determines the degree of epithelial penetration to the submucosal space. This initial 'set-point' may drive a sentinel event in airway disease pathogenesis. Epithelia differentiated in vitro from airway biopsies are commonly used to model trans-epithelial resistance but the 'reference range of normality' remains problematic. We investigated the range of electrophysiological characteristics of human airway epithelia grown at air-liquid interface in vitro from healthy volunteers focusing on the inter- and intra-subject variability both at baseline and after sequential exposure to drugs modulating ion transport.


Spontaneous Breathing Through Increased Airway Resistance Augments Elastase-Induced Pulmonary Emphysema.

  • Dimitrios Toumpanakis‎ et al.
  • International journal of chronic obstructive pulmonary disease‎
  • 2020‎

Resistive breathing (RB), the pathophysiologic hallmark of chronic obstructive pulmonary disease (COPD), especially during exacerbations, is associated with significant inflammation and mechanical stress on the lung. Mechanical forces are implicated in the progression of emphysema that is a major pathologic feature of COPD. We hypothesized that resistive breathing exacerbates emphysema.


Sex differences in body composition affect total airway resistance during puberty.

  • Ju Hee Kim‎ et al.
  • BMC pediatrics‎
  • 2022‎

During puberty, changes in body composition due to sex hormones are associated with lung mechanics. However, little is known about the mediation effect of sex differences in body composition during puberty with total airway resistance.


Different effects of acetyl-CoA carboxylase inhibitor TOFA on airway inflammation and airway resistance in a mice model of asthma.

  • Fang-Fang Zhu‎ et al.
  • Pharmacological reports : PR‎
  • 2020‎

Acetyl CoA carboxylase (ACC) regulates the differentiation of Th1, Th2, Th17 cells and Treg cells, which play a critical role in airway inflammation of asthma. Here we investigated the role of ACC in the pathogenesis of asthma.


Effect of sleep and sighing on upper airway resistance in mongrel dogs.

  • F G Issa‎ et al.
  • Journal of applied physiology (Bethesda, Md. : 1985)‎
  • 1994‎

We investigated the effect of sleep and sighing on supratracheal resistance in unrestrained mongrel dogs breathing through the nose by comparing within-breath changes in upper airway pressure-flow relationship in control, sigh, and five postsigh breaths recorded during wakefulness and during non-rapid-eye-movement and rapid-eye-movement sleep. A sigh breath was characterized by a high tidal volume and was typically followed by an apnea of a variable duration. Sleep had little or no effect on supratracheal resistance, measured at peak flow rates, during quiet breathing (awake 7.3 +/- 0.4, non-rapid eye movement 8.3 +/- 0.4, and rapid eye movement 6.8 +/- 0.4 cmH2O.l-1.s). The resistance was identical in the early part of inspiration in control and sigh breaths but increased during the augmented phase of sigh breaths. Resistance at peak inspiratory flow was higher in sigh breaths than in control breaths in all sleep states. The flow-pressure profile of postsigh breaths was identical to that of control breaths in all sleep states. We conclude that upper airway resistance is essentially unaffected by sleep state in the mongrel dog and that sighing increases upper airway resistance regardless of sleep state.


Treatment of upper airway resistance syndrome in adults: Where do we stand?

  • Luciana B M de Godoy‎ et al.
  • Sleep science (Sao Paulo, Brazil)‎
  • 2015‎

To evaluate the available literature regarding Upper Airway Resistance Syndrome (UARS) treatment.


Antibiotic multidrug resistance in the cystic fibrosis airway microbiome is associated with decreased diversity.

  • Andrea Hahn‎ et al.
  • Heliyon‎
  • 2018‎

Cystic fibrosis (CF) is associated with significant morbidity and early mortality due to recurrent acute and chronic lung infections. The chronic use of multiple antibiotics increases the possibility of multidrug resistance (MDR). Antibiotic susceptibility determined by culture-based techniques may not fully represent the resistance profile. The study objective was to detect additional antibiotic resistance using molecular methods and relate the presence of MDR to airway microbiome diversity and pulmonary function.


Modeling susceptibility versus resistance in allergic airway disease reveals regulation by Tec kinase Itk.

  • Nisebita Sahu‎ et al.
  • PloS one‎
  • 2010‎

Murine models of allergic asthma have been used to understand the mechanisms of development and pathology in this disease. In addition, knockout mice have contributed significantly to our understanding of the roles of specific molecules and cytokines in these models. However, results can vary significantly depending on the mouse strain used in the model, and in particularly in understanding the effect of specific knockouts. For example, it can be equivocal as to whether specific gene knockouts affect the susceptibility of the mice to developing the disease, or lead to resistance. Here we used a house dust mite model of allergic airway inflammation to examine the response of two strains of mice (C57BL/6 and BALB/c) which differ in their responses in allergic airway inflammation. We demonstrate an algorithm that can facilitate the understanding of the behavior of these models with regards to susceptibility (to allergic airway inflammation) (S(aai)) or resistance (R(aai)) in this model. We verify that both C57BL/6 and BALB/c develop disease, but BALB/c mice have higher S(aai) for development. We then use this approach to show that the absence of the Tec family kinase Itk, which regulates the production of Th2 cytokines, leads to R(aai) in the C57BL/6 background, but decreases S(aai) on the BALB/c background. We suggest that the use of such approaches could clarify the behavior of various knockout mice in modeling allergic asthma.


Stimulus-dependent glucocorticoid-resistance of GM-CSF production in human cultured airway smooth muscle.

  • Thai Tran‎ et al.
  • British journal of pharmacology‎
  • 2005‎

For a subpopulation of asthmatics, symptoms persist even with high doses of glucocorticoids. Glucocorticoids reduce the levels of the proinflammatory and fibrogenic cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by human cultured airway smooth muscle (ASM). We have contrasted the effects of a synthetic glucocorticoid, dexamethasone, on thrombin- and IL-1alpha-stimulated GM-CSF production in human ASM cells. Although IL-1alpha stimulated three-fold higher levels of GM-CSF mRNA and protein compared to thrombin, dexamethasone concentration-dependently reduced IL-1alpha-stimulated GM-CSF more potently and to a greater extent than the response to thrombin. This pattern of glucocorticoid regulation was also observed at the GM-CSF mRNA level and was reproduced with other glucocorticoids such as fluticasone propionate. IL-1alpha and thrombin stimulated NF-kappa B-dependent luciferase expression equally. Dexamethasone treatment reduced luciferase expression stimulated by both IL-1alpha and thrombin. The GM-CSF mRNA half life was markedly prolonged by IL-1alpha compared to thrombin. This IL-1alpha-induced GM-CSF mRNA stability was prevented by either dexamethasone or the p38(MAPK) inhibitor, SB203580, neither of which influenced GM-CSF mRNA stability in thrombin-treated cells. Dexamethasone inhibited p38(MAPK) phosphorylation in IL-1alpha-stimulated ASM, whereas thrombin does not stimulate p38(MAPK) phosphorylation. These data suggest that the mechanism underlying the greater potency and efficacy of glucocorticoids in reducing GM-CSF synthesis stimulated by IL-1alpha depends on inhibition of the involvement of p38(MAPK)-induced increases in GM-CSF message stability.


Elevated expression of microRNA-378 in children with asthma aggravates airway remodeling by promoting the proliferation and apoptosis resistance of airway smooth muscle cells.

  • Peng Li‎ et al.
  • Experimental and therapeutic medicine‎
  • 2019‎

The present study determined the expression of microRNA (miR)-378 in the peripheral blood and lung tissues of children with asthma, and investigated its effect and mechanism of action on the biological functions of airway smooth muscle cells. A total of 23 asthmatic children and 15 healthy children were included in the study. Peripheral blood and tissues were obtained from asthmatic children. Healthy children provided peripheral blood. Quantitative real-time polymerase chain reaction was used to determine the expression of miR-378. Airway smooth muscle cells were isolated and cultured in vitro. The cells were transfected with miR-378 mimics or miR-378 inhibitor. Following transfection, proliferation of the cells was determined using the CCK-8 assay. In addition, flow cytometry was used to detect the cell cycles and apoptosis of smooth muscle cells. Western blotting was performed to determine the expression of extracellular matrix proteins in smooth muscle cells. Furthermore, bioinformatics was used to predict potential target genes of miR-378 and their downstream signaling pathways. Results indicated that the expression of miR-378 in peripheral blood and lung tissues from asthmatic children was increased compared with that in healthy children. Serum from asthmatic children promoted the proliferation of smooth muscle cells in vitro by affecting the cell cycle, and enhanced apoptotic resistance of smooth muscle cells. Notably, overexpression of miR-378 increased the proliferation of smooth muscle cells by affecting the cell cycle, and this upregulated apoptotic resistance of smooth muscle cells and enhanced the expression of extracellular matrix-related proteins in smooth muscle cells. However, downregulation of miR-378 expression reversed the promoting effect of serum from asthmatic children on the biological functions of smooth muscle cells. These findings suggested that miR-378 possibly affects the proliferation, apoptosis and motility of airway smooth muscle cells via downstream signaling pathways. To conclude, the present study demonstrated that miR-378 expression was elevated in the peripheral blood and lung tissues from children with asthma. Furthermore, miR-378 promoted the biological functions of extracellular matrix-related proteins of smooth muscle cells, and possibly exerts its effect via its target genes through downstream signaling pathways.


Progesterone attenuates airway remodeling and glucocorticoid resistance in a murine model of exposing to ozone.

  • Xue Zhang‎ et al.
  • Molecular immunology‎
  • 2018‎

Airway remodeling is a vital component of chronic obstructive pulmonary disease (COPD). Despite the broad anti-inflammation effects of glucocorticoids, they exhibit relatively little therapeutic benefit in COPD, indicating the accelerating demands of new agents for COPD. We aim to explore the effect of progesterone on airway remodeling in a murine modeling of exposing to ozone and to further examine the potential effect of progesterone on glucocorticoid insensitivity. C57/BL6 mice were exposed to ozone for 12 times over 6 weeks, and were administered with progesterone alone or combined with budesonide (BUD) after each exposure until the 10th week. The peribronchial collagen deposition was measured. The protein levels of MMP8 and MMP9 in bronchoalveolar lavage fluid (BALF) and lungs were assessed. Western blot analysis was used to detect the levels of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), a-smooth muscle actin (α-SMA), glycogen synthase kinase-3β (GSK-3β). The expression of VEGF and histone deacetylase 2 (HDAC2) in the lung were determined by Immunohistochemical analyses. We observe that progesterone attenuates the peribronchial collagen deposition, as well as the expression of MMP8, MMP9, HIF-1α, VEGF, α-SMA, and GSK-3β in BALF or lung tissues. Progesterone or BUD monotherapy has no effect on HDAC2 production. Progesterone combines with BUD induce dramatically enhanced effects. Thus, these results demonstrate novel roles of progesterone for the pathogenesis and airway remodeling in COPD. Progesterone plus BUD administration exerts more significant inhibition on airway remodeling with dose-independent. Additionally, progesterone may, to some extent, improve the glucocorticoid insensitivity.


Airway Resistance and Respiratory Compliance in Children with Acute Viral Bronchiolitis Requiring Mechanical Ventilation Support.

  • Cinara Andreolio‎ et al.
  • Indian journal of critical care medicine : peer-reviewed, official publication of Indian Society of Critical Care Medicine‎
  • 2021‎

Acute viral bronchiolitis (AVB) is a very frequent disease that affects the lower airways of young children increasing the inspiratory and expiratory resistance in variable degree as well as reducing the pulmonary compliance. It would be desirable to know whether these variables are associated with the outcome.


Steady-state estradiol triggers a unique innate immune response to allergen resulting in increased airway resistance.

  • Kristi J Warren‎ et al.
  • Biology of sex differences‎
  • 2023‎

Asthma is a chronic airway condition that occurs more often in women than men during reproductive years. Population studies have collectively shown that long-term use of oral contraceptives decreased the onset of asthma in women of reproductive age. In the current study, we hypothesized that steady-state levels of estrogen would reduce airway inflammation and airway hyperresponsiveness to methacholine challenge.


Additional Expiratory Resistance Elevates Airway Pressure and Lung Volume during High-Flow Tracheal Oxygen via Tracheostomy.

  • Guang-Qiang Chen‎ et al.
  • Scientific reports‎
  • 2019‎

The standard high-flow tracheal (HFT) interface was modified by adding a 5-cm H2O/L/s resistor to the expiratory port. First, in a test lung simulating spontaneous breathing, we found that the modified HFT caused an elevation in airway pressure as a power function of flow. Then, three tracheal oxygen treatments (T-piece oxygen at 10 L/min, HFT and modified HFT at 40 L/min) were delivered in a random crossover fashion to six tracheostomized pigs before and after the induction of lung injury. The modified HFT induced a significantly higher airway pressure compared with that in either T-piece or HFT (p < 0.001). Expiratory resistance significantly increased during modified HFT (p < 0.05) to a mean value of 4.9 to 6.7 cm H2O/L/s. The modified HFT induced significant augmentation in end-expiratory lung volume (p < 0.05) and improved oxygenation for lung injury model (p = 0.038) compared with the HFT and T-piece. There was no significant difference in esophageal pressure swings, transpulmonary driving pressure or pressure time product among the three treatments (p > 0.05). In conclusion, the modified HFT with additional expiratory resistance generated a clinically relevant elevation in airway pressure and lung volume. Although expiratory resistance increased, inspiratory effort, lung stress and work of breathing remained within an acceptable range.


Airway delivery of interferon-γ overexpressing macrophages confers resistance to Mycobacterium avium infection in SCID mice.

  • Rajamouli Pasula‎ et al.
  • Physiological reports‎
  • 2016‎

Mycobacterium avium (M. avium) causes significant pulmonary infection, especially in immunocompromised hosts. Alveolar macrophages (AMs) represent the first line of host defense against infection in the lung. Interferon gamma (IFN-γ) activation of AMs enhances in vitro killing of pathogens such as M. avium We hypothesized that airway delivery of AMs into the lungs of immunodeficient mice infected with M. avium will inhibit M. avium growth in the lung and that this macrophage function is in part IFN-γ dependent. In this study, normal BALB/c and BALB/c SCID mice received M. avium intratracheally while on mechanical ventilation. After 30 days, M. avium numbers increased in a concentration-dependent manner in SCID mice compared with normal BALB/c mice. Airway delivery of IFN-γ-activated BALB/c AMs or J774A.1 macrophages overexpressing IFN-γ into the lungs of SCID mice resulted in a significant decrease in M. avium growth (P < 0.01, both comparisons) and limited dissemination to other organs. In addition, airway delivery of IFN-γ activated AMs and macrophages overexpressing IFN-γ increased the levels of IFN-γ and TNF-α in SCID mice. A similar protective effect against M. avium infection using J774A.1 macrophages overexpressing IFN-γ was observed in IFN-γ knockout mice. These data suggest that administration of IFN-γ activated AMs or macrophages overexpressing IFN-γ may partially restore local alveolar host defense against infections like M. avium, even in the presence of ongoing systemic immunosuppression.


Anoikis resistance of small airway epithelium is involved in the progression of chronic obstructive pulmonary disease.

  • Dian Chen‎ et al.
  • Frontiers in immunology‎
  • 2023‎

Anoikis resistance is recognized as a crucial step in the metastasis of cancer cells. Most epithelial tumors are distinguished by the ability of epithelial cells to abscond anoikis when detached from the extracellular matrix. However, no study has investigated the involvement of anoikis in the small airway epithelium (SAE) of chronic obstructive pulmonary disease (COPD).


Insulin resistance mediates high-fat diet-induced pulmonary fibrosis and airway hyperresponsiveness through the TGF-β1 pathway.

  • Yoon Hee Park‎ et al.
  • Experimental & molecular medicine‎
  • 2019‎

Prior studies have reported the presence of lung fibrosis and enhanced airway hyperresponsiveness (AHR) in mice with high-fat-diet (HFD)-induced obesity. This study evaluated the role of TGF-β1 in HFD-induced AHR and lung fibrosis in a murine model. We generated HFD-induced obesity mice and performed glucose and insulin tolerance tests. HFD mice with or without ovalbumin sensitization and challenge were also treated with an anti-TGF-β1 neutralizing antibody. AHR to methacholine, inflammatory cells in the bronchoalveolar lavage fluid (BALF), and histological features were evaluated. Insulin was intranasally administered to normal diet (ND) mice, and in vitro insulin stimulation of BEAS-2b cells was performed. HFD-induced obesity mice had increased insulin resistance, enhanced AHR, peribronchial and perivascular fibrosis, and increased numbers of macrophages in the BALF. However, they did not have meaningful eosinophilic or neutrophilic inflammation in the lungs compared with ND mice. The HFD enhanced TGF-β1 expression in the bronchial epithelium, but we found no differences in the expression of interleukin (IL)-4 or IL-5 in lung homogenates. Administration of the anti-TGF-β1 antibody attenuated HFD-induced AHR and lung fibrosis. It also attenuated goblet cell hyperplasia, but did not affect the AHR and inflammatory cell infiltration induced by OVA challenge. The intranasal administration of insulin enhanced TGF-β1 expression in the bronchial epithelium and lung fibrosis. Stimulating BEAS-2b cells with insulin also increased TGF-β1 production by 24 h. We concluded that HFD-induced obesity-associated insulin resistance enhances TGF-β1 expression in the bronchial epithelium, which may play an important role in the development of lung fibrosis and AHR in obesity.


Increased airway glucose increases airway bacterial load in hyperglycaemia.

  • Simren K Gill‎ et al.
  • Scientific reports‎
  • 2016‎

Diabetes is associated with increased frequency of hospitalization due to bacterial lung infection. We hypothesize that increased airway glucose caused by hyperglycaemia leads to increased bacterial loads. In critical care patients, we observed that respiratory tract bacterial colonisation is significantly more likely when blood glucose is high. We engineered mutants in genes affecting glucose uptake and metabolism (oprB, gltK, gtrS and glk) in Pseudomonas aeruginosa, strain PAO1. These mutants displayed attenuated growth in minimal medium supplemented with glucose as the sole carbon source. The effect of glucose on growth in vivo was tested using streptozocin-induced, hyperglycaemic mice, which have significantly greater airway glucose. Bacterial burden in hyperglycaemic animals was greater than control animals when infected with wild type but not mutant PAO1. Metformin pre-treatment of hyperglycaemic animals reduced both airway glucose and bacterial load. These data support airway glucose as a critical determinant of increased bacterial load during diabetes.


Indices of airway resistance and reactance from impulse oscillometry correlate with aerosol particle emission in different age groups.

  • Benedikt Schumm‎ et al.
  • Scientific reports‎
  • 2024‎

Airborne transmission of pathogens plays a major role in the spread of infectious diseases. Aerosol particle production from the lung is thought to occur in the peripheral airways. In the present study we investigated eighty lung-healthy subjects of two age groups (20-39, 60-76 years) at rest and during exercise whether lung function parameters indicative of peripheral airway function were correlated with individual differences in aerosol particle emission. Lung function comprised spirometry and impulse oscillometry during quiet breathing and an expiratory vital capacity manoeuvre, using resistance (R5) and reactance at 5 Hz (X5) as indicators potentially related to peripheral airway function. The association between emission at different ventilation rates relative to maximum ventilation and lung function was assessed by regression analysis. In multiple regression analyses including age group, only vital capacity manoeuvre R5 at 15% to 50% of end-expiratory vital capacity as well as quiet breathing X5 were independently linked to particle emission at 20% to 50% of maximum ventilation, in addition to age group. The fact that age as predictive factor was still significant, although to a lower degree, points towards further effects of age, potentially involving surface properties not accounted for by impulse oscillometry parameters.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: