Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 130 papers

HIF1α is a direct regulator of steroidogenesis in the adrenal gland.

  • Deepika Watts‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2021‎

Endogenous steroid hormones, especially glucocorticoids and mineralocorticoids, derive from the adrenal cortex, and drastic or sustained changes in their circulatory levels affect multiple organ systems. Although hypoxia signaling in steroidogenesis has been suggested, knowledge on the true impact of the HIFs (Hypoxia-Inducible Factors) in the adrenocortical cells of vertebrates is scant. By creating a unique set of transgenic mouse lines, we reveal a prominent role for HIF1α in the synthesis of virtually all steroids in vivo. Specifically, mice deficient in HIF1α in adrenocortical cells displayed enhanced levels of enzymes responsible for steroidogenesis and a cognate increase in circulatory steroid levels. These changes resulted in cytokine alterations and changes in the profile of circulatory mature hematopoietic cells. Conversely, HIF1α overexpression resulted in the opposite phenotype of insufficient steroid production due to impaired transcription of necessary enzymes. Based on these results, we propose HIF1α to be a vital regulator of steroidogenesis as its modulation in adrenocortical cells dramatically impacts hormone synthesis with systemic consequences. In addition, these mice can have potential clinical significances as they may serve as essential tools to understand the pathophysiology of hormone modulations in a number of diseases associated with metabolic syndrome, auto-immunity or even cancer.


Adrenal gland volume, intra-abdominal and pericardial adipose tissue in major depressive disorder.

  • Kai G Kahl‎ et al.
  • Psychoneuroendocrinology‎
  • 2015‎

Major depressive disorder (MDD) is associated with an increased risk for the development of cardio-metabolic diseases. Increased intra-abdominal (IAT) and pericardial adipose tissue (PAT) have been found in depression, and are discussed as potential mediating factors. IAT and PAT are thought to be the result of a dysregulation of the hypothalamus-pituitary-adrenal axis (HPAA) with subsequent hypercortisolism. Therefore we examined adrenal gland volume as proxy marker for HPAA activation, and IAT and PAT in depressed patients. Twenty-seven depressed patients and 19 comparison subjects were included in this case-control study. Adrenal gland volume, pericardial, intraabdominal and subcutaneous adipose tissue were measured by magnetic resonance imaging. Further parameters included factors of the metabolic syndrome, fasting cortisol, fasting insulin, and proinflammatory cytokines. Adrenal gland and pericardial adipose tissue volumes, serum concentrations of cortisol and insulin, and serum concentrations tumor-necrosis factor-α were increased in depressed patients. Adrenal gland volume was positively correlated with intra-abdominal and pericardial adipose tissue, but not with subcutaneous adipose tissue. Our findings point to the role of HPAA dysregulation and hypercortisolism as potential mediators of IAT and PAT enlargement. Further studies are warranted to examine whether certain subtypes of depression are more prone to cardio-metabolic diseases.


Stereotactic body radiation therapy (SBRT) of adrenal gland metastases in oligometastatic and oligoprogressive disease.

  • Leonid B Reshko‎ et al.
  • Reports of practical oncology and radiotherapy : journal of Greatpoland Cancer Center in Poznan and Polish Society of Radiation Oncology‎
  • 2021‎

Stereotactic body radiation therapy (SBRT) as a form of noninvasive treatment that is becoming increasingly used to manage cancers with adrenal gland metastases. There is a paucity of data on safety and efficacy of this modality. The aim of the study was to evaluate the safety and efficacy of adrenal gland SBRT in oligometastatic and oligoprogressive disease.


Bacteremia and adrenal gland abscess due to Nocardia cyriacigeorgica: a case report and review.

  • Florian Saunier‎ et al.
  • BMC infectious diseases‎
  • 2022‎

Nocardia cyriacigeorgica is one of the most common Nocardia species found in human infections, recently reclassified. Even though Nocardia may affect all organs by hematogenous dissemination, bacteremia are uncommon. Among all possible dissemination sites, the involvement of the adrenal glands is particularly rare.


Short treatment with antalarmin alters adrenal gland receptors in the rat model of endometriosis.

  • Annelyn Torres-Reverón‎ et al.
  • PloS one‎
  • 2020‎

Endometriosis is a chronic inflammatory disorder in which endometrial tissue is found outside the uterine cavity. Previous reports suggest that there is a dysregulation of the hypothalamic pituitary adrenal axis during the progression of endometriosis. Our previous report showed that a short-term treatment with antalarmin, a corticotrophin releasing hormone receptor type 1 (CRHR1) antagonist decreases the number and size of endometriotic vesicles in the auto-transplantation rat model of endometriosis. Our current goal was to examine the mRNA expression of intra-adrenal receptors to better understand the mechanisms of the hypothalamic pituitary adrenal (HPA) axis involvement in endometriosis. We used two groups of female rats. The first received sham surgery or endometriosis surgery before collecting the adrenals after 7 days of the disease progression. The second group of animals received endometriosis surgery and a treatment of either vehicle or antalarmin (20 mg/kg, i.p.) during the first 7 days after endometriosis induction and then the disease was allowed to progress until day 60. Rats with sham surgery served as controls. Results showed that the mRNA expression of the mineralocorticoid (MRC2) receptor was lower in the rats after 7 days of endometriosis surgery and in rats with endometriosis that received antalarmin. In addition, the CRHR1 was significantly elevated in animals that received antalarmin and this was counteracted by a non-significant elevation in CRHR2 mRNA. The glucocorticoid receptor mRNA within the adrenals was not affected by endometriosis or antalarmin treatment. This report is one of the first to explore intra-adrenal mRNA for receptors involved in the HPA axis signaling as well as in the sympatho-adrenal signaling, calling for additional research towards understanding the role of the adrenal glands in chronic inflammatory diseases such as endometriosis.


Auricular Acupuncture to Lower Blood Pressure Involves the Adrenal Gland in Spontaneously Hypertensive Rats.

  • Huong Thi Mai Nguyen‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2020‎

Auricular acupuncture is used to treat cardiac-related diseases such as hypertension. Therefore, the purpose of the present study was to investigate the effects of auricular acupuncture on blood pressure (BP) in spontaneously hypertensive rats (SHRs). The treatment group (TG) received auricular electroacupuncture (EA) at the auricle heart (CO15) and auricle shenmen (TEF3) points. Heart rate (HR) and BP, GABA-A expression, catecholamine, and neurotransmitter levels were measured. The HR was reduced after 7 auricular EA treatments compared with controls (all p < 0.05). Systolic BP and diastolic BP also decreased immediately and throughout the treatments compared with controls (all p < 0.05). The reduction of BP and HR was reversed by bicuculline injection 30 min before auricular EA treatment (all p < 0.05). GABA levels in the adrenal gland were higher with auricular EA treatment compared with the control group at 4 h (p < 0.05). Levels of serum noradrenaline and adrenaline were reduced at 15 min after final auricular EA treatment compared with the normal control group (both p < 0.05). The lowering of BP and HR by auricular EA is possibly mediated via vagal afferents from the concha to the nucleus of the solitary tract. After signal integration in the medulla oblongata, it may be transmitted through sympathetic efferent or vagal efferent or through multiple signaling pathways simultaneously to the atrionector of heart and the adrenal medulla. Further study is warranted.


Molecular determinants of the adrenal gland functioning related to stress-sensitive hypertension in ISIAH rats.

  • Larisa A Fedoseeva‎ et al.
  • BMC genomics‎
  • 2016‎

The adrenals are known as an important link in pathogenesis of arterial hypertensive disease. The study was directed to the adrenal transcriptome analysis in ISIAH rats with stress-sensitive arterial hypertension and predominant involvement in pathogenesis of the hypothalamic-pituitary-adrenal and sympathoadrenal systems.


Influence of pentobarbital-Na on stimulation-evoked catecholamine secretion in the perfused rat adrenal gland.

  • D Y Lim‎ et al.
  • The Korean journal of internal medicine‎
  • 1997‎

The present study was attempted to investigate the effects of pentobarbital-Na, one of the barbiturates which are known to depress excitatory synaptic transmission in the central nervous system at concentrations similar to those required for the induction and maintenance of anesthesia, on catecholamines (CA) secretion evoked by cholinergic stimulation and membrane-depolarization from the isolated perfused rat adrenal gland, and to clarify the mechanism of its action.


RNA-Seq reveals ACTH-induced steroid hormone pathway participating in goat adrenal gland response to castration.

  • Haijing Jing‎ et al.
  • Scientific reports‎
  • 2023‎

The content of androgen from adrenal is elevated under castration, and the mechanisms of compensatory secretion of adrenal androgen remain unknown. This study was designed to compare the transcript profiles between adrenals from noncastrated, orchiectomized and immunocastrated Yiling goats. Fifteen goats were randomly divided into three groups: pVAX-asd injection (control) group, pVAX-B2L-(G4S)3-kisspeptin-54-asd immunization (PBK-asd) group, and surgical castration (SC) group. Subsequently, serum was collected every two weeks after the initial immunization for hormone assays. At week 14 after immunization, adrenal glands were collected for transcriptome sequencing and qPCR. Serum testosterone concentration was significantly reduced in PBK-asd and SC group, demonstrating the effectiveness of castration. Both surgical and immunized castration resulted in adrenal hyperplasia, and thickness of adrenal cortex elevated. The specific genes involving castration were enriched in many pathways, including Steroid hormone biosynthesis pathway. The adrenocorticotropic hormone (ACTH), which promotes the production of adrenal steroids, and dehydroepiandrosterone (DHEA), a steroid hormone secreted by adrenal glands, both increased after castration. Further construction of co-expression network for transcription genes and traits (including adrenal weight and cortex thickness, ACTH and DHEA concentration) showed that the trait-related genes were enriched in multiple steroid-related pathways. These results showed that adrenal compensatory hyperplasia and androgen secretion caused by castration may involve in ACTH-induced steroid hormone synthesis.


In Situ Spatial Reconstruction of Distinct Normal and Pathological Cell Populations Within the Human Adrenal Gland.

  • Rui Fu‎ et al.
  • Journal of the Endocrine Society‎
  • 2023‎

The human adrenal gland consists of concentrically organized, functionally distinct regions responsible for hormone production. Dysregulation of adrenocortical cell differentiation alters the proportion and organization of the functional zones of the adrenal cortex leading to disease. Current models of adrenocortical cell differentiation are based on mouse studies, but there are known organizational and functional differences between human and mouse adrenal glands. This study aimed to investigate the centripetal differentiation model in the human adrenal cortex and characterize aldosterone-producing micronodules (APMs) to better understand adrenal diseases such as primary aldosteronism. We applied spatially resolved in situ transcriptomics to human adrenal tissue sections from 2 individuals and identified distinct cell populations and their positional relationships. The results supported the centripetal differentiation model in humans, with cells progressing from the outer capsule to the zona glomerulosa, zona fasciculata, and zona reticularis. Additionally, we characterized 2 APMs in a 72-year-old woman. Comparison with earlier APM transcriptomes indicated a subset of core genes, but also heterogeneity between APMs. The findings contribute to our understanding of normal and pathological cellular differentiation in the human adrenal cortex.


Selection and verification of the combination of reference genes for RT-qPCR analysis in rat adrenal gland development.

  • Xuan Xia‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2021‎

Quantitative reverse transcription polymerase chain reaction (RT-qPCR) is commonly used for gene expression analysis, and the accuracy of its results depends greatly on chosen reference genes. Adrenal gland is the core of the occurrence and development of fetal-originated adult diseases. Its dysplasia or dysfunction may increase susceptibility to adult disease, which has apparent sex differences. To explore the optimal combination of reference genes for RT-qPCR in female and male rats adrenal development, we selected seven reference genes (GAPDH, β-actin, etc.), and use RT-qPCR to detect genes expression during different stages of rats adrenal development under physiological conditions. Then we analysed data using GeNorm, NormFinder and BestKeeper to select the optimal combination of reference genes. Further, we used the intrauterine growth retardation (IUGR) model of rat caused by prenatal caffeine exposure (PCE) to verify the stability and accuracy of the selected combination of reference genes under physiological conditions. The results showed that TBP + β-actin could be the optimal combination of reference genes for fetal rat adrenals under physiological conditions, without obvious sex differences. In infancy and adolescence, the optimal combination of reference genes for adrenals had sex differences, and females were GAPDH + β-actin, while males were GAPDH + SDHA. In PCE model, the optimal combination of reference genes was consistent with physiological conditions. Using combination of reference genes to analyze target genes can improve the accuracy of the results. In summary, this study provided reliable combination of reference genes for RT-qPCR and experimental supports for researches on adrenal development.


Responses to chronic corticosterone on brain glucocorticoid receptors, adrenal gland, and gut microbiota in mice lacking neuronal serotonin.

  • Mariana Angoa-Pérez‎ et al.
  • Brain research‎
  • 2021‎

Dysregulation of the stress-induced activation of the hypothalamic-pituitary-adrenocortical axis can result in disease. Bidirectional communication exists between the brain and the gut, and alterations in these interactions appear to be involved in stress regulation and in the pathogenesis of neuropsychiatric diseases, such as depression. Serotonin (5HT) plays a crucial role in the functions of these two major organs but its direct influence under stress conditions remains unclear. To investigate the role of neuronal 5HT on chronic stress responses and its influence on the gut microbiome, mice lacking the gene for tryptophan hydroxylase-2 were treated with the stress hormone corticosterone (CORT) for 21 days. The intake of fluid and food, as well as body weights were recorded daily. CORT levels, expression of glucocorticoid receptors (GR) in the brain and the size of the adrenal gland were evaluated. Caecum was used for 16S rRNA gene characterization of the gut microbiota. Results show that 5HT depletion produced an increase in food intake and a paradoxical reduction in body weight that were enhanced by CORT. Neuronal 5HT depletion impaired the feedback regulation of CORT levels but had no putative effect on the CORT-induced decrease in hippocampal GR expression and the reduction of the adrenal cortex size. Finally, the composition and structure of the gut microbiota were significantly impacted by the absence of neuronal 5HT, and these alterations were enhanced by chronic CORT treatment. Therefore, we conclude that neuronal 5HT influences the stress-related responses at different levels involving CORT levels regulation and the gut microbiome.


Computer-assisted prediction of atherosclerotic intimal thickness based on weight of adrenal gland, interleukin-6 concentration, and neural networks.

  • Ling-Bing Meng‎ et al.
  • The Journal of international medical research‎
  • 2020‎

Atherosclerosis (AS) is the main pathological basis of ischemic cardio-cerebrovascular diseases, and the intimal thickness (IT) of large arteries is regarded as a powerful evaluation indicator for AS. We established an effective neural network model for automatic prediction of the IT and analyzed the high-risk warning indicators of IT.


Long-Term Calorie Restriction Alters Anxiety-like Behaviour and the Brain and Adrenal Gland Transcriptomes of the Ageing Male Rat.

  • Antonina Govic‎ et al.
  • Nutrients‎
  • 2022‎

Further examination of the molecular regulators of long-term calorie restriction (CR), reported to have an anxiolytic effect, may highlight novel therapeutic targets for anxiety disorders. Here, adult male Hooded Wistar rats were exposed to a 25% CR whilst anxiety-like behaviour was assessed at 6-, 12-, and 18-months of age via the elevated plus maze, open field, and acoustic startle tests. Next-generation sequencing was then used to measure transcriptome-wide gene expression in the hypothalamus, amygdala, pituitary, and adrenal glands. Results showed an anxiolytic behavioural profile across early, middle, and late adulthood by CR, with the strongest effects noted at 6-months. Transcriptomic analysis by seven attribute weighting algorithms, including Info Gain Ratio, Rule, Chi Squared, Gini Index, Uncertainty, Relief, and Info Gain, led to the development of a signature of long-term CR, independent of region. Complement C1q A chain (C1qa), an extracellular protein, expression was significantly decreased by CR in most regions examined. Furthermore, text mining highlighted the positive involvement of C1qa in anxiety, depression, neurodegeneration, stress, and ageing, collectively identifying a suitable biomarker candidate for CR. Overall, the current study identified anxiety-related phenotypic changes and a novel transcriptome signature of long-term CR, indicating potential therapeutic targets for anxiety, depression, and neurodegeneration.


A Novel Population of Inner Cortical Cells in the Adrenal Gland That Displays Sexually Dimorphic Expression of Thyroid Hormone Receptor-β1.

  • Chen-Che Jeff Huang‎ et al.
  • Endocrinology‎
  • 2015‎

The development of the adrenal cortex involves the formation and then subsequent regression of immature or fetal inner cell layers as the mature steroidogenic outer layers expand. However, controls over this remodeling, especially in the immature inner layer, are incompletely understood. Here we identify an inner cortical cell population that expresses thyroid hormone receptor-β1 (TRβ1), one of two receptor isoforms encoded by the Thrb gene. Using mice with a Thrb(b1) reporter allele that expresses lacZ instead of TRβ1, β-galactosidase was detected in the inner cortex from early stages. Expression peaked at juvenile ages in an inner zone that included cells expressing 20-α-hydroxysteroid dehydrogenase, a marker of the transient, so-called X-zone in mice. The β-galactosidase-positive zone displayed sexually dimorphic regression in males after approximately 4 weeks of age but persisted in females into adulthood in either nulliparous or parous states. T3 treatment promoted hypertrophy of inner cortical cells, induced some markers of mature cortical cells, and, in males, delayed the regression of the TRβ1-positive zone, suggesting that TRβ1 could partly divert the differentiation fate and counteract male-specific regression of inner zone cells. TRβ1-deficient mice were resistant to these actions of T3, supporting a functional role for TRβ1 in the inner cortex.


Adrenal Gland and Lung Lesions in Gulf of Mexico Common Bottlenose Dolphins (Tursiops truncatus) Found Dead following the Deepwater Horizon Oil Spill.

  • Stephanie Venn-Watson‎ et al.
  • PloS one‎
  • 2015‎

A northern Gulf of Mexico (GoM) cetacean unusual mortality event (UME) involving primarily bottlenose dolphins (Tursiops truncatus) in Louisiana, Mississippi, and Alabama began in February 2010 and continued into 2014. Overlapping in time and space with this UME was the Deepwater Horizon (DWH) oil spill, which was proposed as a contributing cause of adrenal disease, lung disease, and poor health in live dolphins examined during 2011 in Barataria Bay, Louisiana. To assess potential contributing factors and causes of deaths for stranded UME dolphins from June 2010 through December 2012, lung and adrenal gland tissues were histologically evaluated from 46 fresh dead non-perinatal carcasses that stranded in Louisiana (including 22 from Barataria Bay), Mississippi, and Alabama. UME dolphins were tested for evidence of biotoxicosis, morbillivirus infection, and brucellosis. Results were compared to up to 106 fresh dead stranded dolphins from outside the UME area or prior to the DWH spill. UME dolphins were more likely to have primary bacterial pneumonia (22% compared to 2% in non-UME dolphins, P = .003) and thin adrenal cortices (33% compared to 7% in non-UME dolphins, P = .003). In 70% of UME dolphins with primary bacterial pneumonia, the condition either caused or contributed significantly to death. Brucellosis and morbillivirus infections were detected in 7% and 11% of UME dolphins, respectively, and biotoxin levels were low or below the detection limit, indicating that these were not primary causes of the current UME. The rare, life-threatening, and chronic adrenal gland and lung diseases identified in stranded UME dolphins are consistent with exposure to petroleum compounds as seen in other mammals. Exposure of dolphins to elevated petroleum compounds present in coastal GoM waters during and after the DWH oil spill is proposed as a cause of adrenal and lung disease and as a contributor to increased dolphin deaths.


In vivo production of novel vitamin D2 hydroxy-derivatives by human placentas, epidermal keratinocytes, Caco-2 colon cells and the adrenal gland.

  • Andrzej T Slominski‎ et al.
  • Molecular and cellular endocrinology‎
  • 2014‎

We investigated the metabolism of vitamin D2 to hydroxyvitamin D2 metabolites ((OH)D2) by human placentas ex-utero, adrenal glands ex-vivo and cultured human epidermal keratinocytes and colonic Caco-2 cells, and identified 20(OH)D2, 17,20(OH)₂D2, 1,20(OH)₂D2, 25(OH)D2 and 1,25(OH)₂D2 as products. Inhibition of product formation by 22R-hydroxycholesterol indicated involvement of CYP11A1 in 20- and 17-hydroxylation of vitamin D2, while use of ketoconazole indicated involvement of CYP27B1 in 1α-hydroxylation of products. Studies with purified human CYP11A1 confirmed the ability of this enzyme to convert vitamin D2 to 20(OH)D2 and 17,20(OH)₂D2. In placentas and Caco-2 cells, production of 20(OH)D2 was higher than 25(OH)D2 while in human keratinocytes the production of 20(OH)D2 and 25(OH)D2 were comparable. HaCaT keratinocytes showed high accumulation of 1,20(OH)₂D2 relative to 20(OH)D2 indicating substantial CYP27B1 activity. This is the first in vivo evidence for a novel pathway of vitamin D2 metabolism initiated by CYP11A1 and modified by CYP27B1, with the product profile showing tissue- and cell-type specificity.


Adrenal myelolipoma: Controversies in its management.

  • Vasanth G Shenoy‎ et al.
  • Indian journal of urology : IJU : journal of the Urological Society of India‎
  • 2015‎

Adrenal myelolipomas (AMLs) are rare, benign neoplasms of the adrenal gland with varied clinical presentations. The rarity of these tumors precludes any case-controlled or randomized study into their management. The available literature is limited to case reports and short series from referral centers. This review is an effort to put the available literature into perspective such that clinical decision making can be done with some clarity. The PubMed and Cochrane databases were searched with key words Adrenal Myelolipoma, Adrenal Incidentaloma (AI) and Adrenal Collision Tumor (ACT). From over 1300 search results, 547 relevant publications dating from 1954 to 2014 were reviewed. Details of about 1231 AMLs in the indexed literature were analyzed. Increasing usage of imaging studies has significantly increased the discovery of AMLs. Although AMLs are benign tumors, those measuring larger than 6 cm are prone to rupture and hemorrhage. Thorough endocrine work-up may benefit a selected group of patients, especially those who are hypertensive, diabetic/pre-diabetic, young patients (<50 years) and those with bilateral AML. Regular observation is needed for AML patients who are being treated non-operatively, as many of them may require surgery during follow-up. Although the AACE/AAES guidelines for AI (2009) exclude AML from mandatory metabolic work-up for a newly discovered AI, we feel that a significant number of patients with AML would benefit from metabolic work-up. In the literature, endocrine dysfunction in AML is 7% as compared with 11% in AI. Endocrine dysfunction in AML is probably underdiagnosed.


SCARB1 downregulation in adrenal insufficiency with Allgrove syndrome.

  • Giacomo Bitetto‎ et al.
  • Orphanet journal of rare diseases‎
  • 2023‎

Allgrove disease is a rare genetic syndrome characterized by adrenal insufficiency, alacrimia, achalasia and complex neurological involvement. Allgrove disease is due to recessive mutations in the AAAS gene, which encodes for the nucleoporin Aladin, implicated in the nucleocytoplasmic transport. The adrenal insufficiency has been suggested to rely on adrenal gland-ACTH resistance. However, the link between the molecular pathology affecting the nucleoporin Aladin and the glucocorticoid deficiency is still unknown.


Adrenal androgens, adrenarche, and zona reticularis: A human affair?

  • Typhanie Dumontet‎ et al.
  • Molecular and cellular endocrinology‎
  • 2021‎

In humans, reticularis cells of the adrenal cortex fuel the production of androgen steroids, constituting the driver of numerous morphological changes during childhood. These steps are considered a precocious stage of sexual maturation and are grouped under the term "adrenarche". This review describes the molecular and enzymatic characteristics of the zona reticularis, along with the possible signals and mechanisms that control its emergence and the associated clinical features. We investigate the differences between species and discuss new studies such as genetic lineage tracing and transcriptomic analysis, highlighting the rodent inner cortex's cellular and molecular heterogeneity. The recent development and characterization of mouse models deficient for Prkar1a presenting with adrenocortical reticularis-like features prompt us to review our vision of the mouse adrenal gland maturation. We expect these new insights will help increase our understanding of the adrenarche process and the pathologies associated with its deregulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: