Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 41 papers

Adenylosuccinate lyase deficiency.

  • Agnieszka Jurecka‎ et al.
  • Journal of inherited metabolic disease‎
  • 2015‎

Adenylosuccinate lyase ADSL) deficiency is a defect of purine metabolism affecting purinosome assembly and reducing metabolite fluxes through purine de novo synthesis and purine nucleotide recycling pathways. Biochemically this defect manifests by the presence in the biologic fluids of two dephosphorylated substrates of ADSL enzyme: succinylaminoimidazole carboxamide riboside (SAICAr) and succinyladenosine (S-Ado). More than 80 individuals with ADSL deficiency have been identified, but incidence of the disease remains unknown. The disorder shows a wide spectrum of symptoms from slowly to rapidly progressing forms. The fatal neonatal form has onset from birth and presents with fatal neonatal encephalopathy with a lack of spontaneous movement, respiratory failure, and intractable seizures resulting in early death within the first weeks of life. Patients with type I (severe form) present with a purely neurologic clinical picture characterized by severe psychomotor retardation, microcephaly, early onset of seizures, and autistic features. A more slowly progressing form has also been described (type II, moderate or mild form), as having later onset, usually within the first years of life, slight to moderate psychomotor retardation and transient contact disturbances. Diagnosis is facilitated by demonstration of SAICAr and S-Ado in extracellular fluids such as plasma, cerebrospinal fluid and/or followed by genomic and/or cDNA sequencing and characterization of mutant proteins. Over 50 ADSL mutations have been identified and their effects on protein biogenesis, structural stability and activity as well as on purinosome assembly were characterized. To date there is no specific and effective therapy for ADSL deficiency.


Molecular comparison of Neanderthal and Modern Human adenylosuccinate lyase.

  • Bart Van Laer‎ et al.
  • Scientific reports‎
  • 2018‎

The availability of genomic data from extinct homini such as Neanderthals has caused a revolution in palaeontology allowing the identification of modern human-specific protein substitutions. Currently, little is known as to how these substitutions alter the proteins on a molecular level. Here, we investigate adenylosuccinate lyase, a conserved enzyme involved in purine metabolism for which several substitutions in the modern human protein (hADSL) have been described to affect intelligence and behaviour. During evolution, modern humans acquired a specific substitution (Ala429Val) in ADSL distinguishing it from the ancestral variant present in Neanderthals (nADSL). We show here that despite this conservative substitution being solvent exposed and located distant from the active site, there is a difference in thermal stability, but not enzymology or ligand binding between nADSL and hADSL. Substitutions near residue 429 which do not profoundly affect enzymology were previously reported to cause neurological symptoms in humans. This study also reveals that ADSL undergoes conformational changes during catalysis which, together with the crystal structure of a hitherto undetermined product bound conformation, explains the molecular origin of disease for several modern human ADSL mutants.


Structural and kinetic analysis of Schistosoma mansoni Adenylosuccinate Lyase (SmADSL).

  • Larissa Romanello‎ et al.
  • Molecular and biochemical parasitology‎
  • 2017‎

Schistosoma mansoni is the parasite responsible for schistosomiasis, a disease that affects about 218 million people worldwide. Currently, both direct treatment and disease control initiatives rely on chemotherapy using a single drug, praziquantel. Concerns over the possibility of resistance developing to praziquantel, have stimulated efforts to develop new drugs for the treatment of schistosomiasis. Schistosomes do not have the de novo purine biosynthetic pathway, and instead depend entirely on the purine salvage pathway to supply its need for purines. The purine salvage pathway has been reported as a potential target for developing new drugs against schistosomiasis. Adenylosuccinate lyase (SmADSL) is an enzyme in this pathway, which cleaves adenylosuccinate (ADS) into adenosine 5'-monophosphate (AMP) and fumarate. SmADSL kinetic characterization was performed by isothermal titration calorimetry (ITC) using both ADS and SAICAR as substrates. Structures of SmADSL in Apo form and in complex with AMP were elucidated by x-ray crystallography revealing a highly conserved tetrameric structure required for their function since the active sites are formed from residues of three different subunits. The active sites are also highly conserved between species and it is difficult to identify a potent species-specific inhibitor for the development of new therapeutic agents. In contrast, several mutagenesis studies have demonstrated the importance of dimeric interface residues in the stability of the quaternary structure of the enzyme. The lower conservation of these residues between SmADSL and human ADSL could be used to lead the development of anti-schistosomiasis drugs based on disruption of subunit interfaces. These structures and kinetics data add another layer of information to Schistosoma mansoni purine salvage pathway.


Adenylosuccinate lyase deficiency affects neurobehavior via perturbations to tyramine signaling in Caenorhabditis elegans.

  • Corinna A Moro‎ et al.
  • PLoS genetics‎
  • 2023‎

Adenylosuccinate lyase deficiency is an ultrarare congenital metabolic disorder associated with muscle weakness and neurobehavioral dysfunction. Adenylosuccinate lyase is required for de novo purine biosynthesis, acting twice in the pathway at non-sequential steps. Genetic models can contribute to our understanding of the etiology of disease phenotypes and pave the way for development of therapeutic treatments. Here, we establish the first model to specifically study neurobehavioral aspects of adenylosuccinate lyase deficiency. We show that reduction of adsl-1 function in C. elegans is associated with a novel learning phenotype in a gustatory plasticity assay. The animals maintain capacity for gustatory plasticity, evidenced by a change in their behavior in response to cue pairing. However, their behavioral output is distinct from that of control animals. We link substrate accumulation that occurs upon adsl-1 deficiency to an unexpected perturbation in tyrosine metabolism and show that a lack of tyramine mediates the behavioral changes through action on the metabotropic TYRA-2 tyramine receptor. Our studies reveal a potential for wider metabolic perturbations, beyond biosynthesis of purines, to impact behavior under conditions of adenylosuccinate lyase deficiency.


Very mild isolated intellectual disability caused by adenylosuccinate lyase deficiency: a new phenotype.

  • Marina Macchiaiolo‎ et al.
  • Molecular genetics and metabolism reports‎
  • 2020‎

Adenylosuccinate lyase deficiency is a rare neurometabolic recessive disorder of purine metabolism characterized by a wide range of clinical manifestations. We present a very mild phenotype of two siblings characterized by mild isolated cognitive disability, in absence of brain anomalies, seizures, EEG anomalies and without progression of disease. The two patients had unsuccessfully been investigated until clinical exome was performed. In both siblings, compound heterozygosity for two inherited missense variants in ADSL gene, c.76A>T (p.Met26Leu) and c.1187G>A (p.Arg396His), were detected. Analysis of the catabolic pathway of autophagy on EBV-transformed B lymphoblastoid cell derived from the male patient excluded the presence of any autophagy alterations at the basal level. Further studies are necessary to understand the pathogenesis of the disease and to elucidate the potential role of autophagy in the development of ADSL deficiency.


Prolyl hydroxylase substrate adenylosuccinate lyase is an oncogenic driver in triple negative breast cancer.

  • Giada Zurlo‎ et al.
  • Nature communications‎
  • 2019‎

Protein hydroxylation affects protein stability, activity, and interactome, therefore contributing to various diseases including cancers. However, the transiency of the hydroxylation reaction hinders the identification of hydroxylase substrates. By developing an enzyme-substrate trapping strategy coupled with TAP-TAG or orthogonal GST- purification followed by mass spectrometry, we identify adenylosuccinate lyase (ADSL) as an EglN2 hydroxylase substrate in triple negative breast cancer (TNBC). ADSL expression is higher in TNBC than other breast cancer subtypes or normal breast tissues. ADSL knockout impairs TNBC cell proliferation and invasiveness in vitro and in vivo. An integrated transcriptomics and metabolomics analysis reveals that ADSL activates the oncogenic cMYC pathway by regulating cMYC protein level via a mechanism requiring ADSL proline 24 hydroxylation. Hydroxylation-proficient ADSL, by affecting adenosine levels, represses the expression of the long non-coding RNA MIR22HG, thus upregulating cMYC protein level. Our findings highlight the role of ADSL hydroxylation in controlling cMYC and TNBC tumorigenesis.


Broadening phenotype of adenylosuccinate lyase deficiency: A novel clinical pattern resembling neuronal ceroid lipofuscinosis.

  • Mario Mastrangelo‎ et al.
  • Molecular genetics and metabolism reports‎
  • 2019‎

We describe a 7-year-old boy presenting with a developmental encephalopathy, severe epilepsy, retinopathy with salt and pepper fundus, and ultrastructural skin alterations resembling a neuronal ceroid lipofuscinosis. Whole exome-sequencing detected biallelic variants in the ADSL gene (c.65C > T [p.(Ala22Val)] and c.340 T > C [p.(Tyr114His)]). The increase of SAICAR and S-Ado in blood and urine was consistent with the pattern of adenylosuccinate lyase deficiency (OMIM 103050). An unusual increase of AICAR, that was due to a residual ADSL enzyme activity of about 28%, was also detected. Neither salt and pepper retinopathy nor ultrastructural skin alterations had been reported in ADSL deficiency before. Impaired purinergic signaling inside the retina is probably involved in visual failure. Ultrastructural alterations in fibroblasts suggest a possible damage of autophagic processes, whose role in the pathogenesis of neurological dysfunction deserves further study.


The structure of adenylosuccinate lyase, an enzyme with dual activity in the de novo purine biosynthetic pathway.

  • E A Toth‎ et al.
  • Structure (London, England : 1993)‎
  • 2000‎

Adenylosuccinate lyase is an enzyme that plays a critical role in both cellular replication and metabolism via its action in the de novo purine biosynthetic pathway. Adenylosuccinate lyase is the only enzyme in this pathway to catalyze two separate reactions, enabling it to participate in the addition of a nitrogen at two different positions in adenosine monophosphate. Both reactions catalyzed by adenylosuccinate lyase involve the beta-elimination of fumarate. Enzymes that catalyze this type of reaction belong to a superfamily, the members of which are homotetramers. Because adenylosuccinate lyase plays an integral part in maintaining proper cellular metabolism, mutations in the human enzyme can have severe clinical consequences, including mental retardation with autistic features.


Carcinogenic effect of adenylosuccinate lyase (ADSL) in prostate cancer development and progression through the cell cycle pathway.

  • Jinling Liao‎ et al.
  • Cancer cell international‎
  • 2021‎

Prostate cancer (PCa) is still a serious male malignant disease across the world. However, no exact pathogenesis had been explained. Although adenylosuccinate lyase (ADSL) gene was identified to be important in PCa early in 1987, its comprehensive functions for PCa have not been presented.


Novel mutations in ADSL for Adenylosuccinate Lyase Deficiency identified by the combination of Trio-WES and constantly updated guidelines.

  • Xiao Mao‎ et al.
  • Scientific reports‎
  • 2017‎

Whole-exome sequencing (WES), one of the next-generation sequencing (NGS), has become a powerful tool to identify exonic variants. Investigating causality of the sequence variants in human disease becomes an important part in NGS for the research and clinical applications. Recently, important guidelines on them have been published and will keep on updating. In our study, two Chinese families, with the clinical diagnosis of "Epilepsy", which presented with seizures, psychomotor retardation, hypotonia and etc. features, were sequenced by Trio-WES (including the proband and the unaffected parents), and a standard interpretation of the identified variants was performed referring to the recently updated guidelines. Finally, we identified three novel mutations (c.71 C > T, p.P24L; c.1387-1389delGAG, p.E463-; c.134 G > A, p.W45*; NM_000026) in ADSL in the two Chinese families, and confirmed them as the causal variants to the disease-Adenylosuccinate Lyase Deficiency. Previous reported specific therapy was also introduced to the patients after our refined molecular diagnosis, however, the effect was very limited success. In summary, our study demonstrated the power and advantages of WES in exploring the etiology of human disease. Using the constantly updated guidelines to conduct the WES study and to interpret the sequence variants are a necessary strategy to make the molecular diagnosis and to guide the individualized treatment of human disease.


Molecular characterization of the AdeI mutant of Chinese hamster ovary cells: a cellular model of adenylosuccinate lyase deficiency.

  • Lydia K Vliet‎ et al.
  • Molecular genetics and metabolism‎
  • 2011‎

Adenylosuccinate lyase (ADSL, E. C. 4.3.2.2) carries out two non-sequential steps in de novo AMP synthesis, the conversion of succinylaminoimidazole carboxamide ribotide (SAICAR) to aminoimidazolecarboxamide ribotide (AICAR) and the conversion of succinyl AMP (AMPS) to AMP. In humans, mutations in ADSL lead to an inborn error of metabolism originally characterized by developmental delay, often with autistic features. There is no effective treatment for ADSL deficiency. Hypotheses regarding the pathogenesis include toxicity of high levels of SAICAR, AMPS, or their metabolites, deficiency of the de novo purine biosynthetic pathway, or lack of a completely functional purine cycle in muscle and brain. One important approach to understand ADSL deficiency is to develop cell culture models that allow investigation of the properties of ADSL mutants and the consequences of ADSL deficiency at the cellular level. We previously reported the isolation and initial characterization of mutants of Chinese hamster ovary (CHO-K1) cells (AdeI) that lack detectable ADSL activity, accumulate SAICAR and AMPS, and require adenine for growth. Here we report the cDNA sequences of ADSL from CHO-K1 and AdeI cells and describe a mutation resulting in an alanine to valine amino acid substitution at position 291 (A291V) in AdeI ADSL. This substitution lies in the "signature sequence" of ADSL, inactivates the enzyme, and validates AdeI as a cellular model of ADSL deficiency.


Adenylosuccinate lyase is oncogenic in colorectal cancer by causing mitochondrial dysfunction and independent activation of NRF2 and mTOR-MYC-axis.

  • Stephanie Taha-Mehlitz‎ et al.
  • Theranostics‎
  • 2021‎

Rationale: Adenylosuccinate lyase (ADSL) is an essential enzyme for de novo purine biosynthesis. Here we sought to investigate the putative role of ADSL in colorectal carcinoma (CRC) carcinogenesis and response to antimetabolites. Methods: ADSL expression levels were assessed by immunohistochemistry or retrieved from The Cancer Genome Atlas (TCGA) dataset. The effects of ADSL silencing or overexpression were evaluated on CRC cell proliferation, cell migration and cell-cycle. In vivo tumor growth was assessed by the chicken chorioallantoic membrane (CAM). Transfected cell lines or patient-derived organoids (PDO) were treated with 5-fluorouracil (5-FU) and 6-mercaptopurine (6-MP) and drug response was correlated with ADSL expression levels. Metabolomic and transcriptomic profiling were performed to identify dysregulated pathways and ADSL downstream effectors. Mitochondrial respiration and glycolytic capacity were measured using Seahorse; mitochondrial membrane potential and the accumulation of ROS were measured by FACS using MitoTracker Red and MitoSOX staining, respectively. Activation of canonical pathways was assessed by immunohistochemistry and immunoblotting. Results: ADSL expression is significantly increased in CRC tumors compared to non-tumor tissue. ADSL-high CRCs show upregulation of genes involved in DNA synthesis, DNA repair and cell cycle. Accordingly, ADSL overexpression accelerated progression through the cell cycle and significantly increased proliferation and migration in CRC cell lines. Additionally, ADSL expression increased tumor growth in vivo and sensitized CRCs to 6-MP in vitro, ex vivo (PDOs) and in vivo (CAM model). ADSL exerts its oncogenic function by affecting mitochondrial function via alteration of the TCA cycle and impairment of mitochondrial respiration. The KEAP1-NRF2 and mTORC1-cMyc axis are independently activated upon ADSL overexpression and may favor the survival and proliferation of ROS-accumulating cells, favoring DNA damage and tumorigenesis. Conclusions: Our results suggest that ADSL is a novel oncogene in CRC, modulating mitochondrial function, metabolism and oxidative stress, thus promoting cell cycle progression, proliferation and migration. Our results also suggest that ADSL is a predictive biomarker of response to 6-mercaptopurine in the pre-clinical setting.


MicroRNA-21 guide and passenger strand regulation of adenylosuccinate lyase-mediated purine metabolism promotes transition to an EGFR-TKI-tolerant persister state.

  • Wen Cai Zhang‎ et al.
  • Cancer gene therapy‎
  • 2022‎

In EGFR-mutant lung cancer, drug-tolerant persister cells (DTPCs) show prolonged survival when receiving EGFR tyrosine kinase inhibitor (TKI) treatments. They are a likely source of drug resistance, but little is known about how these cells tolerate drugs. Ribonucleic acids (RNAs) molecules control cell growth and stress responses. Nucleic acid metabolism provides metabolites, such as purines, supporting RNA synthesis and downstream functions. Recently, noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), have received attention due to their capacity to repress gene expression via inhibitory binding to downstream messenger RNAs (mRNAs). Here, our study links miRNA expression to purine metabolism and drug tolerance. MiR-21-5p (guide strand) is a commonly upregulated miRNA in disease states, including cancer and drug resistance. However, the expression and function of miR-21-3p (passenger strand) are not well understood. We found that upregulation of miR-21-5p and miR-21-3p tune purine metabolism leading to increased drug tolerance. Metabolomics data demonstrated that purine metabolism was the top pathway in the DTPCs compared with the parental cells. The changes in purine metabolites in the DTPCs were partially rescued by targeting miR-21. Analysis of protein levels in the DTPCs showed that reduced expression of adenylosuccinate lyase (ADSL) was reversed after the miR-21 knockdown. ADSL is an essential enzyme in the de novo purine biosynthesis pathway by converting succino-5-aminoimidazole-4-carboxamide riboside (succino-AICAR or SAICAR) to AICAR (or acadesine) as well as adenylosuccinate to adenosine monophosphate (AMP). In the DTPCs, miR-21-5p and miR-21-3p repress ADSL expression. The levels of top decreased metabolite in the DTPCs, AICAR was reversed when miR-21 was blocked. AICAR induced oxidative stress, evidenced by increased reactive oxygen species (ROS) and reduced expression of nuclear factor erythroid-2-related factor 2 (NRF2). Concurrently, miR-21 knockdown induced ROS generation. Therapeutically, a combination of AICAR and osimertinib increased ROS levels and decreased osimertinib-induced NRF2 expression. In a MIR21 knockout mouse model, MIR21 loss-of-function led to increased purine metabolites but reduced ROS scavenging capacity in lung tissues in physiological conditions. Our data has established a link between ncRNAs, purine metabolism, and the redox imbalance pathway. This discovery will increase knowledge of the complexity of the regulatory RNA network and potentially enable novel therapeutic options for drug-resistant patients.


Structure of Staphylococcus aureus adenylosuccinate lyase (PurB) and assessment of its potential as a target for structure-based inhibitor discovery.

  • Paul K Fyfe‎ et al.
  • Acta crystallographica. Section D, Biological crystallography‎
  • 2010‎

The medium-resolution structure of adenylosuccinate lyase (PurB) from the bacterial pathogen Staphylococcus aureus in complex with AMP is presented. Oxalate, which is likely to be an artifact of crystallization, has been modelled in the active site and occupies a position close to that where succinate is observed in orthologous structures. PurB catalyzes reactions that support the provision of purines and the control of AMP/fumarate levels. As such, the enzyme is predicted to be essential for the survival of S. aureus and to be a potential therapeutic target. Comparisons of this pathogen PurB with the enzyme from Escherichia coli are presented to allow discussion concerning the enzyme mechanism. Comparisons with human PurB suggest that the close similarity of the active sites would make it difficult to identify species-specific inhibitors for this enzyme. However, there are differences in the way that the subunits are assembled into dimers. The distinct subunit-subunit interfaces may provide a potential area to target by exploiting the observation that creation of the enzyme active site is dependent on oligomerization.


Homology Modelling and Molecular Docking Studies of Selected Substituted Benzo[d]imidazol-1-yl)methyl)benzimidamide Scaffolds on Plasmodium falciparum Adenylosuccinate Lyase Receptor.

  • Gbolahan O Oduselu‎ et al.
  • Bioinformatics and biology insights‎
  • 2019‎

Plasmodium falciparum adenylosuccinate lyase (PfADSL) is an important enzyme in purine metabolism. Although several benzimidazole derivatives have been commercially developed into drugs, the template design as inhibitor against PfADSL has not been fully explored. This study aims to model the 3-dimensional (3D) structure of PfADSL, design and predict in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) of 8 substituted benzo[d]imidazol-1-yl)methyl)benzimidamide compounds as well as predict the potential interaction modes and binding affinities of the designed ligands with the modelled PfADSL. PfADSL 3D structure was modelled using SWISS-MODEL, whereas the compounds were designed using ChemDraw Professional. ADMET predictions were done using OSIRIS Property Explorer and Swiss ADME, whereas molecular docking was done with AutoDock Tools. All designed compounds exhibited good in silico ADMET properties, hence can be considered safe for drug development. Binding energies ranged from -6.85 to -8.75 kcal/mol. Thus, they could be further synthesised and developed into active commercial antimalarial drugs.


Mutation of a nuclear respiratory factor 2 binding site in the 5' untranslated region of the ADSL gene in three patients with adenylosuccinate lyase deficiency.

  • S Marie‎ et al.
  • American journal of human genetics‎
  • 2002‎

Adenylosuccinate lyase (ADSL; also called "adenylosuccinase") catalyzes two steps in the synthesis of purine nucleotides: (1) the conversion of succinylaminoimidazolecarboxamide ribotide into aminoimidazolecarboxamide ribotide and (2) the conversion of adenylosuccinate into adenosine monophosphate. ADSL deficiency, a recessively inherited disorder, causes variable-but most often severe-mental retardation, frequently accompanied by epilepsy and/or autism. It is characterized by the accumulation, in body fluids, of succinylaminoimidazolecarboxamide riboside and succinyladenosine, the dephosphorylated derivatives of the two substrates of the enzyme. Analysis of the ADSL gene of three unrelated patients with ADSL deficiency, in whom one of the ADSL alleles displayed a normal coding sequence, revealed a -49T-->C mutation in the 5' untranslated region of this allele. Measurements of the amount of mRNA transcribed from the latter allele showed that it was reduced to approximately 33% of that transcribed from the alleles mutated in their coding sequence. Further investigations showed that the -49T-->C mutation provokes a reduction to 25% of wild-type control of promoter function, as evaluated by luciferase activity and mRNA level in transfection experiments. The mutation also affects the binding of nuclear respiratory factor 2 (NRF-2), a known activator of transcription, as assessed by gel-shift studies. Our findings indicate that a mutation of a regulatory region of the ADSL gene might be an unusually frequent cause of ADSL deficiency, and they suggest a role for NRF-2 in the gene regulation of the purine biosynthetic pathway.


Electroclinical features and phenotypic differences in adenylosuccinate lyase deficiency: Long-term follow-up of seven patients from four families and appraisal of the literature.

  • Gianni Cutillo‎ et al.
  • Epilepsia open‎
  • 2024‎

Adenylosuccinate lyase (ADSL) deficiency is a rare inherited metabolic disorder with a wide phenotypic presentation, classically grouped into three types (neonatal, type I, and type II). We aim to better delineate the pathological spectrum, focusing on the electroclinical characteristics and phenotypic differences of patients with ADSL deficiency.


Adenylosuccinate Is an Insulin Secretagogue Derived from Glucose-Induced Purine Metabolism.

  • Jessica R Gooding‎ et al.
  • Cell reports‎
  • 2015‎

Pancreatic islet failure, involving loss of glucose-stimulated insulin secretion (GSIS) from islet β cells, heralds the onset of type 2 diabetes (T2D). To search for mediators of GSIS, we performed metabolomics profiling of the insulinoma cell line 832/13 and uncovered significant glucose-induced changes in purine pathway intermediates, including a decrease in inosine monophosphate (IMP) and an increase in adenylosuccinate (S-AMP), suggesting a regulatory role for the enzyme that links the two metabolites, adenylosuccinate synthase (ADSS). Inhibition of ADSS or a more proximal enzyme in the S-AMP biosynthesis pathway, adenylosuccinate lyase, lowers S-AMP levels and impairs GSIS. Addition of S-AMP to the interior of patch-clamped human β cells amplifies exocytosis, an effect dependent upon expression of sentrin/SUMO-specific protease 1 (SENP1). S-AMP also overcomes the defect in glucose-induced exocytosis in β cells from a human donor with T2D. S-AMP is, thus, an insulin secretagogue capable of reversing β cell dysfunction in T2D.


Regulation of purine metabolism connects KCTD13 to a metabolic disorder with autistic features.

  • Jon M Madison‎ et al.
  • iScience‎
  • 2021‎

Genetic variation of the 16p11.2 deletion locus containing the KCTD13 gene and of CUL3 is linked with autism. This genetic connection suggested that substrates of a CUL3-KCTD13 ubiquitin ligase may be involved in disease pathogenesis. Comparison of Kctd13 mutant (Kctd13 -/- ) and wild-type neuronal ubiquitylomes identified adenylosuccinate synthetase (ADSS), an enzyme that catalyzes the first step in adenosine monophosphate (AMP) synthesis, as a KCTD13 ligase substrate. In Kctd13 -/- neurons, there were increased levels of succinyl-adenosine (S-Ado), a metabolite downstream of ADSS. Notably, S-Ado levels are elevated in adenylosuccinate lyase deficiency, a metabolic disorder with autism and epilepsy phenotypes. The increased S-Ado levels in Kctd13 -/- neurons were decreased by treatment with an ADSS inhibitor. Lastly, functional analysis of human KCTD13 variants suggests that KCTD13 variation may alter ubiquitination of ADSS. These data suggest that succinyl-AMP metabolites accumulate in Kctd13 -/- neurons, and this observation may have implications for our understanding of 16p11.2 deletion syndrome.


Modulation of de novo purine biosynthesis leads to activation of AMPK and results in improved glucose handling and insulin sensitivity.

  • Satish Kumar Sadasivan‎ et al.
  • Journal of diabetes and metabolic disorders‎
  • 2014‎

AMP activated protein kinase (AMPK) regulates key metabolic reactions and plays a major role in glucose homeostasis. Activating the AMPK is considered as one of the potential therapeutic strategies in treating type-2 diabetes. However, targeting AMPK by small molecule mediated approach can be challenging owing to diverse isoforms of the enzyme and their varied combination in different tissues. In the current study we employ a novel strategy of achieving AMPK activation through increasing the levels of cellular AMP (an allosteric activator of AMPK) levels by activating the enzyme involved in AMP biosynthesis namely Adenylosuccinate lyase (ADSL).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: