Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 122 papers

E3 ubiquitin ligase Mindbomb 1 facilitates nuclear delivery of adenovirus genomes.

  • Stephanie L Sarbanes‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

The journey from plasma membrane to nuclear pore is a critical step in the lifecycle of DNA viruses, many of which must successfully deposit their genomes into the nucleus for replication. Viral capsids navigate this vast distance through the coordinated hijacking of a number of cellular host factors, many of which remain unknown. We performed a gene-trap screen in haploid cells to identify host factors for adenovirus (AdV), a DNA virus that can cause severe respiratory illness in immune-compromised individuals. This work identified Mindbomb 1 (MIB1), an E3 ubiquitin ligase involved in neurodevelopment, as critical for AdV infectivity. In the absence of MIB1, we observed that viral capsids successfully traffic to the proximity of the nucleus but ultimately fail to deposit their genomes within. The capacity of MIB1 to promote AdV infection was dependent on its ubiquitination activity, suggesting that MIB1 may mediate proteasomal degradation of one or more negative regulators of AdV infection. Employing complementary proteomic approaches to characterize proteins proximal to MIB1 upon AdV infection and differentially ubiquitinated in the presence or absence of MIB1, we observed an intersection between MIB1 and ribonucleoproteins (RNPs) largely unexplored in mammalian cells. This work uncovers yet another way that viruses utilize host cell machinery for their own replication, highlighting a potential target for therapeutic interventions that counter AdV infection.


Crystal structure of adenovirus E3-19K bound to HLA-A2 reveals mechanism for immunomodulation.

  • Lenong Li‎ et al.
  • Nature structural & molecular biology‎
  • 2012‎

E3-19K binds to and retains MHC class I molecules in the endoplasmic reticulum, suppressing anti-adenovirus activities of T cells. We determined the structure of the adenovirus serotype 2 (Ad2, species C) E3-19K-HLA-A2 complex to 1.95-Å resolution. Ad2 E3-19K binds to the N terminus of the HLA-A2 groove, contacting the α1, α2 and α3 domains and β(2)m. Ad2 E3-19K has a unique structure comprising a large N-terminal domain, formed by two partially overlapping β-sheets arranged in a V shape, and a C-terminal α-helix and tail. The structure reveals determinants in E3-19K and HLA-A2 that are important for complex formation; conservation of some of these determinants in E3-19K proteins of different species and MHC I molecules of different loci suggests a universal binding mode for all E3-19K proteins. Our structure is important for understanding the immunomodulatory function of E3-19K.


The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Enhances E1A Functional Activity.

  • Frédéric Dallaire‎ et al.
  • mSphere‎
  • 2016‎

Human adenovirus (Ad) E1A proteins have long been known as the central regulators of virus infection as well as the major source of adenovirus oncogenic potential. Not only do they activate expression of other early viral genes, they make viral replication possible in terminally differentiated cells, at least in part, by binding to the retinoblastoma (Rb) tumor suppressor family of proteins to activate E2F transcription factors and thus viral and cellular DNA synthesis. We demonstrate in an accompanying article (F. Dallaire et al., mSphere 1:00014-15, 2016) that the human adenovirus E3 ubiquitin ligase complex formed by the E4orf6 and E1B55K proteins is able to mimic E1A activation of E2F transactivation factors. Acting alone in the absence of E1A, the Ad5 E4orf6 protein in complex with E1B55K was shown to bind E2F, disrupt E2F/Rb complexes, and induce hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis, as well as stimulation of early and late viral gene expression and production of viral progeny. While these activities were significantly lower than those exhibited by E1A, we report here that this ligase complex appeared to enhance E1A activity in two ways. First, the E4orf6/E1B55K complex was shown to stabilize E1A proteins, leading to higher levels in infected cells. Second, the complex was demonstrated to enhance the activation of E2F by E1A products. These findings indicated a new role of the E4orf6/E1B55K ligase complex in promoting adenovirus replication. IMPORTANCE Following our demonstration that adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins is able to mimic the activation of E2F by E1A, we conducted a series of studies to determine if this complex might also promote the ability of E1A to do so. We found that the complex both significantly stabilizes E1A proteins and also enhances their ability to activate E2F. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication by enhancing the action of E1A products.


Adenovirus oncoprotein E4orf6 triggers Cullin5 neddylation to activate the CLR5 E3 ligase for p53 degradation.

  • Haoran Guo‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

The human adenovirus oncoprotein E4orf6 hijacks intracellular Cullin 5-based E3 ubiquitin ligases (CRL5s) to induce the degradation of host proteins, including p53, that impede efficient viral replication. The complex also relies on another viral protein, E1B55K, to recruit substrates for ubiquitination. However, the determinants of adenoviral E4orf6-CRL5 E3 ligase-mediated p53 degradation in the scaffolding protein Cullin5 remain rarely investigated. Here, we demonstrated that the viral protein E4orf6 triggered relocalization of the Cullin5 protein from the cytoplasm to the nucleus and induced activation of the CRL5 E3 ligase via facilitating neddylation. The expression of the deneddylase SENP8/Den1 was significantly downregulated by E4orf6. We then identified SENP8 as a natural restriction factor for E4orf6-induced p53 degradation. Furthermore, our results indicated that the NEDD8-conjugating E2 enzyme UBE2M was essential for E4orf6-mediated p53 degradation and that its dominant negative mutant UBE2M C111S dramatically blocked E4orf6 functions. The Nedd8-activating enzyme inhibitor MLN4924 decreased E4orf6-induced neddylation of the cullin5 protein and subsequently suppressed p53 degradation. Collectively, our findings illuminate the strategy by which this viral oncoprotein specifically utilizes the neddylation pathway to activate host CRL E3 ligases to degrade host restriction factors. Disrupting this post-translational modification is an attractive pharmacological intervention against human adenoviruses.


The UPR sensor IRE1α and the adenovirus E3-19K glycoprotein sustain persistent and lytic infections.

  • Vibhu Prasad‎ et al.
  • Nature communications‎
  • 2020‎

Persistent viruses cause chronic disease, and threaten the lives of immunosuppressed individuals. Here, we elucidate a mechanism supporting the persistence of human adenovirus (AdV), a virus that can kill immunosuppressed patients. Cell biological analyses, genetics and chemical interference demonstrate that one of five AdV membrane proteins, the E3-19K glycoprotein specifically triggers the unfolded protein response (UPR) sensor IRE1α in the endoplasmic reticulum (ER), but not other UPR sensors, such as protein kinase R-like ER kinase (PERK) and activating transcription factor 6 (ATF6). The E3-19K lumenal domain activates the IRE1α nuclease, which initiates mRNA splicing of X-box binding protein-1 (XBP1). XBP1s binds to the viral E1A-enhancer/promoter sequence, and boosts E1A transcription, E3-19K levels and lytic infection. Inhibition of IRE1α nuclease interrupts the five components feedforward loop, E1A, E3-19K, IRE1α, XBP1s, E1A enhancer/promoter. This loop sustains persistent infection in the presence of the immune activator interferon, and lytic infection in the absence of interferon.


The E3 Ubiquitin Ligase Mind Bomb 1 Controls Adenovirus Genome Release at the Nuclear Pore Complex.

  • Michael Bauer‎ et al.
  • Cell reports‎
  • 2019‎

Adenoviruses (AdVs) cause respiratory, ocular, and gastrointestinal tract infection and inflammation in immunocompetent people and life-threatening disease upon immunosuppression. AdV vectors are widely used in gene therapy and vaccination. Incoming particles attach to nuclear pore complexes (NPCs) of post-mitotic cells, then rupture and deliver viral DNA (vDNA) to the nucleus or misdeliver to the cytosol. Our genome-wide RNAi screen in AdV-infected cells identified the RING-type E3 ubiquitin ligase Mind bomb 1 (Mib1) as a proviral host factor for AdV infection. Mib1 is implicated in Notch-Delta signaling, ciliary biogenesis, and RNA innate immunity. Mib1 depletion arrested incoming AdVs at NPCs. Induced expression of full-length but not ligase-defective Mib1 in knockout cells triggered vDNA uncoating from NPC-tethered virions, nuclear import, misdelivery of vDNA, and vDNA expression. Mib1 is an essential host factor for AdV uncoating in human cells, and it provides a new concept for licensing virion DNA delivery through the NPC.


The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Can Mimic E1A Effects on E2F.

  • Frédéric Dallaire‎ et al.
  • mSphere‎
  • 2016‎

The human adenovirus E4orf6/E1B55K E3 ubiquitin ligase is well known to promote viral replication by degrading an increasing number of cellular proteins that inhibit the efficient production of viral progeny. We report here a new function of the adenovirus 5 (Ad5) viral ligase complex that, although at lower levels, mimics effects of E1A products on E2F transcription factors. When expressed in the absence of E1A, the E4orf6 protein in complex with E1B55K binds E2F, disrupts E2F/retinoblastoma protein (Rb) complexes, and induces hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis as well as stimulation of early and late viral gene expression and production of viral progeny of E1/E3-defective adenovirus vectors. These new and previously undescribed functions of the E4orf6/E1B55K E3 ubiquitin ligase could play an important role in promoting the replication of wild-type viruses. IMPORTANCE During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication.


Complete genome analysis of a novel E3-partial-deleted human adenovirus type 7 strain isolated in Southern China.

  • Xiaobo Su‎ et al.
  • Virology journal‎
  • 2011‎

Human adenovirus (HAdV) is a causative agent of acute respiratory disease, which is prevalent throughout the world. Recently there are some reports which found that the HAdV-3 and HAdV-5 genomes were very stable across 50 years of time and space. But more and more recombinant genomes have been identified in emergent HAdV pathogens and it is a pathway for the molecular evolution of types. In our paper, we found a HAdV-7 GZ07 strain isolated from a child with acute respiratory disease, whose genome was E3-partial deleted. The whole genome was 32442 bp with 2864 bp deleted in E3 region and was annotated in detail (GenBank: HQ659699). The growth character was the same as that of another HAdV-7 wild strain which had no gene deletion. By comparison with E3 regions of the other HAdV-B, we found that only left-end two proteins were remained: 12.1 kDa glycoprotein and 16.1 kDa protein. E3 MHC class I antigen-binding glycoprotein, hypothetical 20.6 kDa protein, 20.6 kDa protein, 7.7 kDa protein., 10.3 kDa protein, 14.9 kDa protein and E3 14.7 kDa protein were all missing. It is the first report about E3 deletion in human adenovirus, which suggests that E3 region is also a possible recombination region in adenovirus molecular evolution.


Herpesviruses possess conserved proteins for interaction with Nedd4 family ubiquitin E3 ligases.

  • Tetsuo Koshizuka‎ et al.
  • Scientific reports‎
  • 2018‎

Nedd4 is a family of ubiquitin E3 ligases that regulate numerous cellular processes. In this report, we showed that alpha- and beta-herpesviruses have membrane proteins that regulate the function of the Nedd4 family members. Although the homology search score was quite low, UL56 of herpes simplex virus type 1 and 2, ORF0 of varicella-zoster virus, UL42 of human cytomegalovirus, and U24 of human herpesvirus 6A, 6B, and 7 all possess at least one PPxY (PY) motif in their cytoplasmic domain, and are able to bind with Itch, a member of the Nedd4 family. These viral proteins altered the localization of Itch and decreased Itch expression in co-expressing cells. In addition, these viral proteins reduced the production of retrovirus vectors through the regulation of the Nedd4 family of proteins. U24, but not the other proteins, effectively reduced CD3ε expression on the T cell surface. These viral molecules are thought to contribute to the specific function of each virus through the regulation of Nedd4 family activity.


Normal human cell proteins that interact with the adenovirus type 5 E1B 55kDa protein.

  • George Hung‎ et al.
  • Virology‎
  • 2017‎

Several of the functions of the human adenovirus type 5 E1B 55kDa protein are fulfilled via the virus-specific E3 ubiquitin ligase it forms with the viral E4 Orf6 protein and several cellular proteins. Important substrates of this enzyme have not been identified, and other functions, including repression of transcription of interferon-sensitive genes, do not require the ligase. We therefore used immunoaffinity purification and liquid chromatography-mass spectrometry of lysates of normal human cells infected in parallel with HAdV-C5 and E1B 55kDa protein-null mutant viruses to identify specifically E1B 55kDa-associated proteins. The resulting set of >90 E1B-associated proteins contained the great majority identified previously, and was enriched for those associated with the ubiquitin-proteasome system, RNA metabolism and the cell cycle. We also report very severe inhibition of viral genome replication when cells were exposed to both specific or non-specific siRNAs and interferon prior to infection.


Functional characterisation of the WW minimal domain for delivering therapeutic proteins by adenovirus dodecahedron.

  • Ana Villegas-Méndez‎ et al.
  • PloS one‎
  • 2012‎

Protein transduction offers a great therapeutic potential by efficient delivery of biologically active cargo into cells. The Adenovirus Dd (Dodecahedron) has recently been shown to deliver proteins fused to the tandem WW(2-3-4) structural domains from the E3 ubiquitin ligase Nedd4. In this study, we conclusively show that Dd is able to efficiently deliver cargo inside living cells, which mainly localize in fast moving endocytic vesicles, supporting active transport along the cytoskeleton. We further improve this delivery system by expressing a panel of 13 WW-GFP mutant forms to characterize their binding properties towards Dd. We identified the domain WW(3) and its mutant form WW(3)_10_13 to be sufficient for optimal binding to Dd. We greatly minimise the interacting WW modules from 20 to 6 kDa without compromising its efficient delivery by Dd. Using these minimal WW domains fused to the tumor suppressor p53 protein, we show efficient cellular uptake and distribution into cancer cells, leading to specific induction of apoptosis in these cells. Taken together, these findings represent a step further towards the development of a Dd-based delivery system for future therapeutic application.


A rapid strategy for constructing novel simian adenovirus vectors with high viral titer and expressing highly antigenic proteins applicable for vaccine development.

  • Shengxue Luo‎ et al.
  • Virus research‎
  • 2019‎

Adenoviral vectors have been widely used for the development of infectious disease vaccines. However, the challenge of human adenoviral vector rooted from the predominant adenovirus serotype 5 strain limiting its usefulness by the widespread pre-existing neutralizing antibodies in recipients. To circumvent this obstacle, we generated an ad-hoc adenovirus vector in human or primates. Here, a chimeric simian adenoviral vector Sad23 was constructed consisting in deleting of E1 and E3 regions of the full-length simian adenovirus serotype 23 genome (SAdV23) by Gibson assembly. To improve Sad23 virus propagating efficiency, the E4 region open reading frame 6 (orf6) was replaced by the corresponding element of human adenovirus type 5 (Ad5), designated Sad23L. The procedure for cloning this novel vector took a single week, and recombinant adenovirus was packaged with high titer in HEK293 cells. To verify the ability of this novel adenoviral vector to deliver foreign genes, Zika virus (ZIKV) prM-E genes were used as target genes for antigen expression. Recombinant adenoviruses Sad23L-prM-E, Sad23-prM-E and Ad5-prM-E were intramuscularly inoculated into Ad5-eGFP none pre-exposed or pre-exposed mice, and the immune response to ZIKV prM-E was compared between vectors. Sad23L-prM-E induced a fairly robust immune response and maintained immunogenicity in Ad5 pre-exposed mice, which suggested that Ad5 pre-existing immunity did not affect Sad23L-prM-E immunization. These preliminary results suggest that the proposed rapid strategy was effective in constructing a new adenoviral vector platform (Sad23 L) usable for the development of human vaccines.


A new look at adenovirus splicing.

  • Hongxing Zhao‎ et al.
  • Virology‎
  • 2014‎

Adenovirus type 2 RNA splicing events were quantitatively mapped by using deep cDNA sequencing. The majority of the previously identified splice sites were detected. The lack of complete consistency between the present and previous results is because of some sites which were incorrectly mapped in previous studies, such as the splice sites for pVII, pVIII and E3-11.6K. Several previously predicted splice sites such as that for E3-14.5K and E4ORF3/4 were not detected. In addition, several new splice sites were identified. The novel RNAs may code for hitherto undetected proteins or alternatively spliced mRNAs for known proteins. The open reading frames downstream of two novel splice sites, located in the major late transcription unit region, were shown to be highly conserved. Another interesting possibility is that some of them are non-coding RNAs. Finally, the adenovirus mRNA polyadenylation sites were accurately mapped and in some cases shown to be heterogeneous.


Adenovirus entry: Stability, uncoating, and nuclear import.

  • Urs F Greber‎ et al.
  • Molecular microbiology‎
  • 2022‎

Adenoviruses (AdVs) are widespread in vertebrates. They infect the respiratory and gastrointestinal tracts, the eyes, heart, liver, and kidney, and are lethal to immunosuppressed people. Mastadenoviruses infecting mammals comprise several hundred different types, and many specifically infect humans. Human adenoviruses are the most widely used vectors in clinical applications, including cancer treatment and COVID-19 vaccination. AdV vectors are physically and genetically stable and generally safe in humans. The particles have an icosahedral coat and a nucleoprotein core with a DNA genome. We describe the concept of AdV cell entry and highlight recent advances in cytoplasmic transport, uncoating, and nuclear import of the viral DNA. We highlight a recently discovered "linchpin" function of the virion protein V ensuring cytoplasmic particle stability, which is relaxed at the nuclear pore complex by cues from the E3 ubiquitin ligase Mind bomb 1 (MIB1) and the proteasome triggering disruption. Capsid disruption by kinesin motor proteins and microtubules exposes the linchpin and renders protein V a target for MIB1 ubiquitination, which dissociates V from viral DNA and enhances DNA nuclear import. These advances uncover mechanisms controlling capsid stability and premature uncoating and provide insight into nuclear transport of nucleic acids.


Mechanism of Adenovirus E4-ORF3-Mediated SUMO Modifications.

  • Sook-Young Sohn‎ et al.
  • mBio‎
  • 2019‎

Regulation of a variety of different cellular processes, including posttranslational modifications, is critical for the ability of many viruses to replicate efficiently within host cells. The adenovirus (Ad) E4-ORF3 protein assembles into polymers and forms a unique nuclear scaffold that leads to the relocalization and sequestration of cellular proteins, including small ubiquitin-like modifiers (SUMOs). Previously, we showed that E4-ORF3 functions as a SUMO E3 ligase of transcriptional intermediary factor-1 gamma (TIF-1γ) and promotes poly-SUMO chain formation. Here, we present cellular and biochemical data to further understand E4-ORF3 SUMO ligase activity. E4-ORF3 proteins from five different Ad species were found to possess SUMO E3 ligase activities in vitro In infected cells, SUMO modifications of target proteins occurred only when the proteins were recruited into E4-ORF3 polymeric structures. By analyzing SUMO-deficient TIF-1γ, we demonstrated that SUMO conjugations are not required for E4-ORF3-mediated relocalization of target proteins in infected cells, implying that sequestration is followed by SUMO modification. In vitro SUMO conjugation assays revealed the Ad E1B-55K oncoprotein as a new viral target of E4-ORF3-mediated SUMOylation. We also verified a direct function of E4-ORF3 as a SUMO ligase for multiple cellular proteins, including transcription factor II-I (TFII-I), Nbs1, and Mre11. Moreover, we discovered that E4-ORF3 associates with SUMO-bound UBC9, and E4-ORF3 polymerization is crucial for this ternary interaction. Together, our findings characterize E4-ORF3 as a novel polymer-type SUMO E3 ligase and provide mechanistic insights into the role of E4-ORF3 in SUMO conjugation.IMPORTANCE Viruses interplay with the host SUMOylation system to manipulate diverse cellular responses. The Ad E4-ORF3 protein forms a dynamic nuclear network to interfere with and exploit different host processes, including the DNA damage and interferon responses. We previously reported that E4-ORF3 is a SUMO E3 ligase. Here, we demonstrate that this activity is a conserved function of evolutionarily diverse human Ad E4-ORF3 proteins and that E4-ORF3 functions directly to promote SUMO conjugations to multiple cellular proteins. Recruitment of cellular substrates into E4-ORF3 nuclear inclusions is required for SUMO conjugation to occur in vivo We probed the mechanism by which E4-ORF3 functions as a SUMO E3 ligase. Only multimeric, but not dimeric, E4-ORF3 binds to the SUMO E2 conjugation enzyme UBC9 in vitro only in a trimeric complex with SUMO. These results reveal a novel mechanism by which a conserved viral protein usurps the cellular SUMO conjugation machinery.


Mouse Adenovirus Type 1 E4orf6 Induces PKR Degradation.

  • Berto Tejera-Hernández‎ et al.
  • Journal of virology‎
  • 2022‎

Protein kinase R (PKR) is a cellular kinase involved in the antiviral response. The inactivation or inhibition of this protein is a conserved activity in DNA and RNA virus infections. In contrast to human adenovirus type 5, mouse adenovirus type 1 (MAV-1) inhibits PKR activity through proteasome-dependent degradation. However, the molecular mechanism by which this process takes place is not fully understood. We investigated whether ubiquitination, MAV-1 early region 1B 55k (E1B 55k), and early region 4 orf6 (E4orf6) play a role in PKR degradation in MAV-1 infection, because the enzyme 3 (E3) ubiquitin ligase activity with these viral proteins is conserved among the Adenoviridae family. We provide evidence that E4orf6 is sufficient to induce mouse PKR degradation and that proteasome pathway inhibition blocks PKR degradation. Inhibition of neddylation of cullin, a component of E3 ubiquitin ligase complex, blocked efficient PKR degradation in MAV-1-infected cells. Finally, we demonstrated that MAV-1 degradation of PKR is specific for mouse PKR. These results indicate that counteracting PKR is mechanistically different in two species of adenoviruses. IMPORTANCE Viruses have evolved to counteract the immune system to successfully replicate in the host. Downregulation of several antiviral proteins is important for productive viral infection. Protein kinase R (PKR) is an antiviral protein that belongs to the first line of defense of the host. Because PKR senses dsRNA and blocks the cellular translation process during viral infections, it is not surprising that many viruses counteract this antiviral activity. We previously reported PKR degradation during mouse adenovirus type 1 (MAV-1) infection; however, the molecular mechanism of this activity was not fully known. This work provides evidence about the MAV-1 protein that induces PKR degradation and expands knowledge about involvement of the proteasome pathway.


Molecular Evolution of Human Adenovirus (HAdV) Species C.

  • Akshay Dhingra‎ et al.
  • Scientific reports‎
  • 2019‎

Currently, 88 different Human Adenovirus (HAdV) types are grouped into seven HAdV species A to G. Most types (57) belong to species HAdV-D. Recombination between capsid genes (hexon, penton and fiber) is the main factor contributing to the diversity in species HAdV-D. Noteworthy, species HAdV-C contains so far only five types, although species HAdV-C is highly prevalent and clinically significant in immunosuppressed patients. Therefore, the evolution of species HAdV-C was studied by generating 51 complete genome sequences from circulating strains. Clustering of the whole genome HAdV-C sequences confirmed classical typing results (fifteen HAdV-C1, thirty HAdV-C2, four HAdV-C5, two HAdV-C6). However, two HAdV-C2 strains had a novel penton base sequence and thus were re-labeled as the novel type HAdV-C89. Fiber and early gene region 3 (E3) sequences clustered always with the corresponding prototype sequence but clustering of the E4 region indicated recombination events in 26 out of the 51 sequenced specimens. Recombination of the E1 gene region was detected in 16 circulating strains. As early gene region sequences are not considered in the type definition of HAdVs, evolution of HAdV-C remains on the subtype level. Nonetheless, recombination of the E1 and E4 gene regions may influence the virulence of HAdV-C strains.


Genomic characterization of human adenovirus 36, a putative obesity agent.

  • John Arnold‎ et al.
  • Virus research‎
  • 2010‎

Increased levels of serum antibody titers against human adenovirus 36 (HAdV-D36) are associated with human obesity and experimental obesity in laboratory animals. While HAdV-D36 has been studied as an infectious agent implicated in obesity for over a decade, the complete genome sequence and its analysis have yet to be reported. A detailed analysis of the genome sequence of HAdV-D36 may be important to understand its role in obesity. Genomic and bioinformatic comparisons with other HAdVs identified differences that suggested unique functions. Global pairwise genome alignment with all sequenced human adenovirus D (HAdV-D) genomes revealed areas of nonconserved sequences in the hexon, E3 CR1 beta, E3 CR1 gamma, and fiber genes. Phylogenetic analysis of all HAdV-D36 proteins confirmed that this virus belongs to species Human adenovirus D. This genomic analysis of HAdV-D36 provides an important tool for comprehending the role that this unique adenovirus may play in human obesity. Low amino acid sequence identity in the E3 CR1 beta and CR1 gamma genes may suggest distinctive roles for these proteins. Furthermore, the predicted molecular models of the HAdV-D36 fiber protein seem to implicate a unique tissue tropism for HAdV-D36.


Adeno-associated virus induces apoptosis during coinfection with adenovirus.

  • Jennifer M Timpe‎ et al.
  • Virology‎
  • 2007‎

Adeno-associated virus (AAV) is a nonpathogenic parvovirus that efficiently replicates in the presence of adenovirus (Ad). Exogenous expression of the AAV replication proteins induces caspase-dependent apoptosis, but determining if AAV infection causes apoptosis during viral infection is complicated by Ad-mediated programmed cell death. To eliminate Ad-induced cytolysis, we used an E3 adenoviral death protein (ADP) mutant, pm534. AAV and pm534-coinfected cells exhibited increased cell killing compared to pm534 alone. Relative to cells infected with Ad alone, AAV and wild-type Ad-infected cells displayed decreased ADP expression, increased cytolysis until the third day of the infection, and decreased cytolysis thereafter. Biochemical and morphological characteristics of apoptosis were observed during coinfections with AAV and pm534 or Ad, including a moderate degree of caspase activation that was not present during infections with pm534 or Ad alone. AAV coinfection also increased extracellular pH. These studies suggest that AAV induces caspase-dependent and caspase-independent apoptosis.


An oncolytic adenovirus 11p vector expressing adenovirus death protein in the E1 region showed significant apoptosis and tumour-killing ability in metastatic prostate cells.

  • Haidong Wu‎ et al.
  • Oncotarget‎
  • 2019‎

The usefulness for cancer therapy of replication-competent adenoviral vectors expressing therapeutic genes from the E3 region has been evaluated, but few reports have described replication-competent adenoviruses with insertions at the E1 region in the full viral genome. We investigated in different prostate cancer cells the oncolytic efficacy of the replication-competent adenovirus 11p vectors expressing adenovirus death (RCAd11pADP) and red fluorescence (RCAd11pRFP) proteins from the upstream E1 region. ADP/RFP gene expression was 2-3 logs higher in PC3 and DU145 cells than in LNCaP and RWPE-1 cells. E1A protein expression in PC3 and DU145 cells was notably increased after infection with the RCAd11pADP or RCAd11pRFP vector compared with the Ad11pwt virus. Toxicity assays revealed 2-5-fold greater oncolytic effects of RCAd11pADP compared to Ad11pwt. Although all three viruses suppressed subcutaneous PC3 tumour growth in nude mice, RCAd11pRFP had greater oncolytic effects than did the Ad11pwt virus, and RCAd11pADP exhibited significant anti-tumour effects via apoptosis in a xenograft model. Interestingly, the apoptosis triggered by RCAd11pADP was markedly enhanced in comparison to that by the vector expressing ADP from E3 region. Taken together, our findings suggest that RCAd11pADP can potentially be used for the treatment of prostate metastases in clinical settings.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: