Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,436 papers

Characterization of the adaptor-related protein complex, AP-3.

  • F Simpson‎ et al.
  • The Journal of cell biology‎
  • 1997‎

We have recently shown that two proteins related to two of the adaptor subunits of clathrincoated vesicles, p47 (mu3) and beta-NAP (beta3B), are part of an adaptor-like complex not associated with clathrin (Simpson, F., N.A. Bright, M.A. West, L.S. Newman, R.B. Darnell, and M.S. Robinson, 1996. J. Cell Biol. 133:749-760). In the present study we have searched the EST database and have identified, cloned, and sequenced a ubiquitously expressed homologue of beta-NAP, beta3A, as well as homologues of the alpha/gamma and sigma adaptor subunits, delta and sigma3, which are also ubiquitously expressed. Antibodies raised against recombinant delta and sigma3 show that they are the other two subunits of the adaptor-like complex. We are calling this complex AP-3, a name that has also been used for the neuronalspecific phosphoprotein AP180, but we feel that it is a more appropriate designation for an adaptor-related heterotetramer. Immunofluorescence using anti-delta antibodies reveals that the AP-3 complex is associated with the Golgi region of the cell as well as with more peripheral structures. These peripheral structures show only limited colocalization with endosomal markers and may correspond to a postTGN biosynthetic compartment. The delta subunit is closely related to the protein product of the Drosophila garnet gene, which when mutated results in reduced pigmentation of the eyes and other tissues. Because pigment granules are believed to be similar to lysosomes, this suggests either that the AP-3 complex may be directly involved in trafficking to lysosomes or alternatively that it may be involved in another pathway, but that missorting in that pathway may indirectly lead to defects in pigment granules.


AP-3: an adaptor-like protein complex with ubiquitous expression.

  • E C Dell'Angelica‎ et al.
  • The EMBO journal‎
  • 1997‎

We have identified two closely related human proteins (sigma3A and sigma3B) that are homologous to the small chains, sigma1 and sigma2, of clathrin-associated adaptor complexes. Northern and Western blot analyses demonstrate that the products of both the sigma3A and sigma3B genes are expressed in a wide variety of tissues and cell lines. sigma3A and sigma3B are components of a large complex, named AP-3, that also contains proteins of apparent molecular masses of 47, 140 and 160 kDa. In non-neuronal cells, the 47 kDa protein most likely corresponds to the medium chain homolog p47A, and the 140 kDa protein is a homolog of the neuron-specific protein beta-NAP. Like other members of the medium-chain family, the p47A chain is capable of interacting with the tyrosine-based sorting signal YQRL from TGN38. Immunofluorescence microscopy analyses show that the sigma3-containing complex is present both in the area of the TGN and in peripheral structures, some of which contain the transferrin receptor. These results suggest that the sigma3 chains are components of a novel, ubiquitous adaptor-like complex involved in the recognition of tyrosine-based sorting signals.


The fifth adaptor protein complex.

  • Jennifer Hirst‎ et al.
  • PLoS biology‎
  • 2011‎

Adaptor protein (AP) complexes sort cargo into vesicles for transport from one membrane compartment of the cell to another. Four distinct AP complexes have been identified, which are present in most eukaryotes. We report the existence of a fifth AP complex, AP-5. Tagged AP-5 localises to a late endosomal compartment in HeLa cells. AP-5 does not associate with clathrin and is insensitive to brefeldin A. Knocking down AP-5 subunits interferes with the trafficking of the cation-independent mannose 6-phosphate receptor and causes the cell to form swollen endosomal structures with emanating tubules. AP-5 subunits can be found in all five eukaryotic supergroups, but they have been co-ordinately lost in many organisms. Concatenated phylogenetic analysis provides robust resolution, for the first time, into the evolutionary order of emergence of the adaptor subunit families, showing AP-3 as the basal complex, followed by AP-5, AP-4, and AP-1 and AP-2. Thus, AP-5 is an evolutionarily ancient complex, which is involved in endosomal sorting, and which has links with hereditary spastic paraplegia.


Prognostic and immunological role of adaptor related protein complex 3 subunit mu2 in colon cancer.

  • Qianqian Jin‎ et al.
  • Scientific reports‎
  • 2024‎

The expression levels and prognostic role of AP3M2 in colorectal adenocarcinoma (CRAC) have yet to be fully unveiled. Our study comprehensively investigated the clinical significance of AP3M2 in colorectal cancer through an extensive bioinformatics data mining process (TCGA, GEO, GEPIA, Timer, Ualcan, ROCPLOT, and David), followed by experimental validation. We found AP3M2 is a cancer gene, which can be used to distinguish between colorectal cancer and colorectal adenomas, liver metastasis, lung metastasis, colorectal polyp. Higher AP3M2 expression levels were associated with longer overall survival in colon adenocarcinoma. AP3M2 might be the primary biomarker for oxaliplatin in colon cancer and an acquired resistance biomarker for oxaliplatin and 5-fu. AP3M2 was positively associated with CD274, CTLA4. AP3M2 might be associated with T-cell, NF-kappaB transcription factor activity, and response to hypoxia. AP3M2 could predict chemotherapy effectiveness and prognosis for colon cancer patients. AP3M2 might inhibit tumor growth via influencing tumor-infiltrating immune cells in the context of Tumor microenvironment. AP3M2 plays as an oncogene in CRAC and is suggested as a new potential biotarget for therapy.


Adaptor Protein Complex 1 Sigma 3 Is Highly Expressed in Glioma and Could Enhance Its Progression.

  • Tingting Ye‎ et al.
  • Computational and mathematical methods in medicine‎
  • 2021‎

Glioma is the widely occurring deadly neoplasm induced by glial cell canceration in the central nervous system, including the brain and spinal cord. The function of AP1S3 is special in numerous diseases, but its exact role in glioma remains unknown.


Adaptor protein-3 complex is required for Vangl2 trafficking and planar cell polarity of the inner ear.

  • Cristy Tower-Gilchrist‎ et al.
  • Molecular biology of the cell‎
  • 2019‎

Planar cell polarity (PCP) regulates coordinated cellular polarity among neighboring cells to establish a polarity axis parallel to the plane of the tissue. Disruption in PCP results in a range of developmental anomalies and diseases. A key feature of PCP is the polarized and asymmetric localization of several membrane PCP proteins, which is essential to establish the polarity axis to orient cells coordinately. However, the machinery that regulates the asymmetric partition of PCP proteins remains largely unknown. In the present study, we show Van gogh-like 2 (Vangl2) in early and recycling endosomes as made evident by colocalization with diverse endosomal Rab proteins. Vangl2 biochemically interacts with adaptor protein-3 complex (AP-3). Using short hairpin RNA knockdown, we found that Vangl2 subcellular localization was modified in AP-3-depleted cells. Moreover, Vangl2 membrane localization within the cochlea is greatly reduced in AP-3-deficient mocha mice, which exhibit profound hearing loss. In inner ears from AP-3-deficient mocha mice, we observed PCP-dependent phenotypes, such as misorientation and deformation of hair cell stereociliary bundles and disorganization of hair cells characteristic of defects in convergent extension that is driven by PCP. These findings demonstrate a novel role of AP-3-mediated sorting mechanisms in regulating PCP proteins.


Involvement of the adaptor protein 3 complex in lignocellulase secretion in Neurospora crassa revealed by comparative genomic screening.

  • Xue Pei‎ et al.
  • Biotechnology for biofuels‎
  • 2015‎

Lignocellulase hypersecretion has been achieved in industrial fungal workhorses such as Trichoderma reesei, but the underlying mechanism associated with this process is not well understood. Although previous comparative genomic studies have revealed that the mutagenic T. reesei strain RUT-C30 harbors hundreds of mutations compared with its parental strain QM6a, how these mutations actually contribute to the hypersecretion phenotype remains to be elucidated.


Interaction of the Human Respiratory Syncytial Virus matrix protein with cellular adaptor protein complex 3 plays a critical role in trafficking.

  • Casey Ward‎ et al.
  • PloS one‎
  • 2017‎

Human Respiratory Syncytial Virus (HRSV) is a leading cause of bronchopneumonia in infants and the elderly. To date, knowledge of viral and host protein interactions within HRSV is limited and are critical areas of research. Here, we show that HRSV Matrix (M) protein interacts with the cellular adaptor protein complex 3 specifically via its medium subunit (AP-3Mu3A). This novel protein-protein interaction was first detected via yeast-two hybrid screen and was further confirmed in a mammalian system by immunofluorescence colocalization and co-immunoprecipitation. This novel interaction is further substantiated by the presence of a known tyrosine-based adaptor protein MU subunit sorting signal sequence, YXXФ: where Ф is a bulky hydrophobic residue, which is conserved across the related RSV M proteins. Analysis of point-mutated HRSV M derivatives indicated that AP-3Mu3A- mediated trafficking is contingent on the presence of the tyrosine residue within the YXXL sorting sequence at amino acids 197-200 of the M protein. AP-3Mu3A is up regulated at 24 hours post-infection in infected cells versus mock-infected HEp2 cells. Together, our data suggests that the AP-3 complex plays a critical role in the trafficking of HRSV proteins specifically matrix in epithelial cells. The results of this study add new insights and targets that may lead to the development of potential antivirals and attenuating mutations suitable for candidate vaccines in the future.


Polypharmacological Perturbation of the 14-3-3 Adaptor Protein Interactome Stimulates Neurite Outgrowth.

  • Andrew Kaplan‎ et al.
  • Cell chemical biology‎
  • 2020‎

Targeting protein-protein interactions (PPIs) is a promising approach in the development of drugs for many indications. 14-3-3 proteins are a family of phosphoprotein-binding molecules with critical functions in dozens of cell signaling networks. 14-3-3s are abundant in the central nervous system, and the small molecule fusicoccin-A (FC-A), a tool compound that can be used to manipulate 14-3-3 PPIs, enhances neurite outgrowth in cultured neurons. New semisynthetic FC-A derivatives with improved binding affinity for 14-3-3 complexes have recently been developed. Here, we use a series of screens that identify these compounds as potent inducers of neurite outgrowth through a polypharmacological mechanism. Using proteomics and X-ray crystallography, we discover that these compounds extensively regulate the 14-3-3 interactome by stabilizing specific PPIs, while disrupting others. These results provide new insights into the development of drugs to target 14-3-3 PPIs, a potential therapeutic strategy for CNS diseases.


Targeted Protein Degradation through Recruitment of the CUL4A Complex Adaptor Protein DDB1.

  • Margot Meyers‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Targeted protein degradation has arisen as a powerful therapeutic modality for eliminating proteins. Thus far, most heterobifunctional Proteolysis Targeting Chimeras (PROTACs) have utilized recruiters against substrate receptors of Cullin RING E3 ubiquitin ligases, such as cereblon and VHL. However, previous studies have surprisingly uncovered molecular glue degraders that exploit a CUL4A adaptor protein DDB1 to degrade neosubstrate proteins. Here, we sought to investigate whether DDB1 recruiters can be discovered that can be exploited for PROTAC applications. We utilized activity-based protein profiling and cysteine chemoproteomic screening to identify a covalent recruiter that targets C173 on DDB1 and exploited this recruiter to develop PROTACs against BRD4 and androgen receptor (AR). We demonstrated that the BRD4 PROTAC results in selective degradation of the short BRD4 isoform over the long isoform in a proteasome, NEDDylation, and DDB1-dependent manner. We also demonstrated degradation of AR with the AR PROTAC in prostate cancer cells. Our study demonstrated that covalent chemoproteomic approaches can be used to discover recruiters against Cullin RING adapter proteins and that these recruiters can be used for PROTAC applications to degrade neo-substrates.


Chemical-genetic disruption of clathrin function spares adaptor complex 3-dependent endosome vesicle biogenesis.

  • Stephanie A Zlatic‎ et al.
  • Molecular biology of the cell‎
  • 2013‎

A role for clathrin in AP-3-dependent vesicle biogenesis has been inferred from biochemical interactions and colocalization between this adaptor and clathrin. The functionality of these molecular associations, however, is controversial. We comprehensively explore the role of clathrin in AP-3-dependent vesicle budding, using rapid chemical-genetic perturbation of clathrin function with a clathrin light chain-FKBP chimera oligomerizable by the drug AP20187. We find that AP-3 interacts and colocalizes with endogenous and recombinant FKBP chimeric clathrin polypeptides in PC12-cell endosomes. AP-3 displays, however, a divergent behavior from AP-1, AP-2, and clathrin chains. AP-3 cofractionates with clathrin-coated vesicle fractions isolated from PC12 cells even after clathrin function is acutely inhibited by AP20187. We predicted that AP20187 would inhibit AP-3 vesicle formation from endosomes after a brefeldin A block. AP-3 vesicle formation continued, however, after brefeldin A wash-out despite impairment of clathrin function by AP20187. These findings indicate that AP-3-clathrin association is dispensable for endosomal AP-3 vesicle budding and suggest that endosomal AP-3-clathrin interactions differ from those by which AP-1 and AP-2 adaptors productively engage clathrin in vesicle biogenesis.


The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole.

  • C R Cowles‎ et al.
  • Cell‎
  • 1997‎

Three distinct adaptor protein (AP) complexes involved in protein trafficking have been identified. AP-1 and AP-2 mediate protein sorting at the trans-Golgi network and plasma membrane, respectively, whereas the function of AP-3 has not been defined. A screen for factors specifically involved in transport of alkaline phosphatase (ALP) from the Golgi to the vacuole/lysosome has identified Ap16p and Ap15p of the yeast AP-3 complex. Deletion of each of the four AP-3 subunits results in selective mislocalization of ALP and the vacuolar t-SNARE, Vam3p (but not CPS and CPY), while deletion of AP-1 and AP-2 subunits has no effect on vacuolar protein delivery. This study, therefore, provides evidence that the AP-3 complex functions in cargo-selective protein transport from the Golgi to the vacuole/lysosome.


Autosomal-Recessive Mutations in AP3B2, Adaptor-Related Protein Complex 3 Beta 2 Subunit, Cause an Early-Onset Epileptic Encephalopathy with Optic Atrophy.

  • Mirna Assoum‎ et al.
  • American journal of human genetics‎
  • 2016‎

Early-onset epileptic encephalopathy (EOEE) represents a heterogeneous group of severe disorders characterized by seizures, interictal epileptiform activity with a disorganized electroencephalography background, developmental regression or retardation, and onset before 1 year of age. Among a cohort of 57 individuals with epileptic encephalopathy, we ascertained two unrelated affected individuals with EOEE associated with developmental impairment and autosomal-recessive variants in AP3B2 by means of whole-exome sequencing. The targeted sequencing of AP3B2 in 86 unrelated individuals with EOEE led to the identification of an additional family. We gathered five additional families with eight affected individuals through the Matchmaker Exchange initiative by matching autosomal-recessive mutations in AP3B2. Reverse phenotyping of 12 affected individuals from eight families revealed a homogeneous EOEE phenotype characterized by severe developmental delay, poor visual contact with optic atrophy, and postnatal microcephaly. No spasticity, albinism, or hematological symptoms were reported. AP3B2 encodes the neuron-specific subunit of the AP-3 complex. Autosomal-recessive variations of AP3B1, the ubiquitous isoform, cause Hermansky-Pudlak syndrome type 2. The only isoform for the δ subunit of the AP-3 complex is encoded by AP3D1. Autosomal-recessive mutations in AP3D1 cause a severe disorder cumulating the symptoms of the AP3B1 and AP3B2 defects.


ADP-Ribosylation factor 1 (ARF1) regulates recruitment of the AP-3 adaptor complex to membranes.

  • C E Ooi‎ et al.
  • The Journal of cell biology‎
  • 1998‎

Small GTP-binding proteins such as ADP- ribosylation factor 1 (ARF1) and Sar1p regulate the membrane association of coat proteins involved in intracellular membrane trafficking. ARF1 controls the clathrin coat adaptor AP-1 and the nonclathrin coat COPI, whereas Sar1p controls the nonclathrin coat COPII. In this study, we demonstrate that membrane association of the recently described AP-3 adaptor is regulated by ARF1. Association of AP-3 with membranes in vitro was enhanced by GTPgammaS and inhibited by brefeldin A (BFA), an inhibitor of ARF1 guanine nucleotide exchange. In addition, recombinant myristoylated ARF1 promoted association of AP-3 with membranes. The role of ARF1 in vivo was examined by assessing AP-3 subcellular localization when the intracellular level of ARF1-GTP was altered through overexpression of dominant ARF1 mutants or ARF1- GTPase-activating protein (GAP). Lowering ARF1-GTP levels resulted in redistribution of AP-3 from punctate membrane-bound structures to the cytosol as seen by immunofluorescence microscopy. In contrast, increasing ARF1-GTP levels prevented redistribution of AP-3 to the cytosol induced by BFA or energy depletion. Similar experiments with mutants of ARF5 and ARF6 showed that these other ARF family members had little or no effect on AP-3. Taken together, our results indicate that membrane recruitment of AP-3 is promoted by ARF1-GTP. This finding suggests that ARF1 is not a regulator of specific coat proteins, but rather is a ubiquitous molecular switch that acts as a transducer of diverse signals influencing coat assembly.


The p97-FAF1 protein complex reveals a common mode of p97 adaptor binding.

  • Caroline A Ewens‎ et al.
  • The Journal of biological chemistry‎
  • 2014‎

p97, also known as valosin-containing protein, is a versatile participant in the ubiquitin-proteasome system. p97 interacts with a large network of adaptor proteins to process ubiquitylated substrates in different cellular pathways, including endoplasmic reticulum-associated degradation and transcription factor activation. p97 and its adaptor Fas-associated factor-1 (FAF1) both have roles in the ubiquitin-proteasome system during NF-κB activation, although the mechanisms are unknown. FAF1 itself also has emerging roles in other cell-cycle pathways and displays altered expression levels in various cancer cell lines. We have performed a detailed study the p97-FAF1 interaction. We show that FAF1 binds p97 stably and in a stoichiometry of 3 to 6. Cryo-EM analysis of p97-FAF1 yielded a 17 Å reconstruction of the complex with FAF1 above the p97 ring. Characteristics of p97-FAF1 uncovered in this study reveal common features in the interactions of p97, providing mechanistic insight into how p97 mediates diverse functionalities.


The yeast adaptor protein complex, AP-3, is essential for the efficient delivery of alkaline phosphatase by the alternate pathway to the vacuole.

  • J D Stepp‎ et al.
  • The Journal of cell biology‎
  • 1997‎

A novel clathrin adaptor-like complex, adaptor protein (AP)-3, has recently been described in yeast and in animals. To gain insight into the role of yeast AP-3, a genetic strategy was devised to isolate gene products that are required in the absence of the AP-3 mu chain encoded by APM3. One gene identified by this synthetic lethal screen was VPS45. The Vps pathway defines the route that several proteins, including carboxypeptidase Y, take from the late Golgi to the vacuole. However, vacuolar alkaline phosphatase (ALP) is transported via an alternate, intracellular route. This suggested that the apm3-Delta vps45 synthetic phenotype could be caused by a block in both the alternate and the Vps pathways. Here we demonstrate that loss of function of the AP-3 complex results in slowed processing and missorting of ALP. ALP is no longer localized to the vacuole membrane by immunofluorescence, but is found in small punctate structures throughout the cell. This pattern is distinct from the Golgi marker Kex2p, which is unaffected in AP-3 mutants. We also show that in the apm3-Delta mutant some ALP is delivered to the vacuole by diversion into the Vps pathway. Class E vps mutants accumulate an exaggerated prevacuolar compartment containing membrane proteins on their way to the vacuole or destined for recycling to the Golgi. Surprisingly, in AP-3 class E vps double mutants these proteins reappear on the vacuole. We suggest that some AP-3-dependent cargo proteins that regulate late steps in Golgi to vacuole transport are diverted into the Vps pathway allowing completion of transfer to the vacuole in the class E vps mutant.


Adaptor protein-3: A key player in RBL-2H3 mast cell mediator release.

  • Elaine Zayas Marcelino da Silva‎ et al.
  • PloS one‎
  • 2017‎

Mast cell (MC) secretory granules are Lysosome-Related Organelles (LROs) whose biogenesis is associated with the post-Golgi secretory and endocytic pathways in which the sorting of proteins destined for a specific organelle relies on the recognition of sorting signals by adaptor proteins that direct their incorporation into transport vesicles. The adaptor protein 3 (AP-3) complex mediates protein trafficking between the trans-Golgi network (TGN) and late endosomes, lysosomes, and LROs. AP-3 has a recognized role in LROs biogenesis and regulated secretion in several cell types, including many immune cells such as neutrophils, natural killer cells, and cytotoxic T lymphocytes. However, the relevance of AP-3 for these processes in MCs has not been previously investigated. AP-3 was found to be expressed and distributed in a punctate fashion in rat peritoneal mast cells ex vivo. The rat MC line RBL-2H3 was used as a model system to investigate the role of AP-3 in mast cell secretory granule biogenesis and mediator release. By immunofluorescence and immunoelectron microscopy, AP-3 was localized both to the TGN and early endosomes indicating that AP-3 dependent sorting of proteins to MC secretory granules originates in these organelles. ShRNA mediated depletion of the AP-3 δ subunit was shown to destabilize the AP-3 complex in RBL-2H3 MCs. AP-3 knockdown significantly affected MC regulated secretion of β-hexosaminidase without affecting total cellular enzyme levels. Morphometric evaluation of MC secretory granules by electron microscopy revealed that the area of MC secretory granules in AP-3 knockdown MCs was significantly increased, indicating that AP-3 is involved in MC secretory granule biogenesis. Furthermore, AP-3 knockdown had a selective impact on the secretion of newly formed and newly synthesized mediators. These results show for the first time that AP-3 plays a critical role in secretory granule biogenesis and mediator release in MCs.


The adaptor protein 14-3-3zeta modulates intestinal immunity and aging in Drosophila.

  • Xiaolan Fan‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

The proteins that coordinate the complex transcriptional networks of aging have not been completely documented. Protein 14-3-3zeta is an adaptor protein that coordinates signaling and transcription factor networks, but its function in aging is not fully understood. Here, we showed that the protein expression of 14-3-3zeta gradually increased during aging. High levels of 14-3-3zeta led to shortened lifespan and imbalance of intestinal immune homeostasis in Drosophila, but the decrease in 14-3-3zeta protein levels by RNAi was able to significantly promote the longevity and intestinal immune homeostasis of fruit flies. Importantly, we demonstrate that adult-onset administration of TIC10, a compound that reduces the aging-related AKT and extracellular signal-regulated kinase (ERK) signaling pathways, rescues the shortened lifespan of 14-3-3zeta-overexpressing flies. This finding suggests that 14-3-3zeta plays a critical role in regulating the aging process. Our study elucidates the role of 14-3-3zeta in natural aging and provides the rationale for subsequent 14-3-3zeta-based antiaging research.


Highly pathogenic avian influenza virus nucleoprotein interacts with TREX complex adaptor protein Aly/REF.

  • Vinod R M T Balasubramaniam‎ et al.
  • PloS one‎
  • 2013‎

We constructed a novel chicken (Gallus gallus) lung cDNA library fused inside yeast acting domain vector (pGADT7). Using yeast two-hybrid screening with highly pathogenic avian influenza (HPAI) nucleoprotein (NP) from the strain (A/chicken/Malaysia/5858/2004(H5N1)) as bait, and the Gallus gallus lung cDNA library as prey, a novel interaction between the Gallus gallus cellular RNA export adaptor protein Aly/REF and the viral NP was identified. This interaction was confirmed and validated with mammalian two hybrid studies and co-immunoprecipitation assay. Cellular localization studies using confocal microscopy showed that NP and Aly/REF co-localize primarily in the nucleus. Further investigations by mammalian two hybrid studies into the binding of NP of other subtypes of influenza virus such as the swine A/New Jersey/1976/H1N1 and pandemic A/Malaysia/854/2009(H1N1) to human Aly/REF, also showed that the NP of these viruses interacts with human Aly/REF. Our findings are also supported by docking studies which showed tight and favorable binding between H5N1 NP and human Aly/REF, using crystal structures from Protein Data Bank. siRNA knockdown of Aly/REF had little effect on the export of HPAI NP and other viral RNA as it showed no significant reduction in virus titer. However, UAP56, another component of the TREX complex, which recruits Aly/REF to mRNA was found to interact even better with H5N1 NP through molecular docking studies. Both these proteins also co-localizes in the nucleus at early infection similar to Aly/REF. Intriguingly, knockdown of UAP56 in A549 infected cells shows significant reduction in viral titer (close to 10 fold reduction). Conclusively, our study have opened new avenues for research of other cellular RNA export adaptors crucial in aiding viral RNA export such as the SRSF3, 9G8 and ASF/SF2 that may play role in influenza virus RNA nucleocytoplasmic transport.


Multifaceted control of E-cadherin dynamics by Adaptor Protein Complex 1 during epithelial morphogenesis.

  • Miguel Ramírez Moreno‎ et al.
  • Molecular biology of the cell‎
  • 2022‎

Intracellular trafficking regulates the distribution of transmembrane proteins including the key determinants of epithelial polarity and adhesion. The Adaptor Protein 1 (AP-1) complex is the key regulator of vesicle sorting, which binds many specific cargoes. We examined roles of the AP-1 complex in epithelial morphogenesis, using the Drosophila wing as a paradigm. We found that AP-1 knockdown leads to ectopic tissue folding, which is consistent with the observed defects in integrin targeting to the basal cell-extracellular matrix adhesion sites. This occurs concurrently with an integrin-independent induction of cell death, which counteracts elevated proliferation and prevents hyperplasia. We discovered a distinct pool of AP-1 that localizes at the subapical adherens junctions. Upon AP-1 knockdown, E-cadherin is hyperinternalized from these junctions and becomes enriched at the Golgi and recycling endosomes. We then provide evidence that E-cadherin hyperinternalization acts upstream of cell death in a potential tumor-suppressive mechanism. Simultaneously, cells compensate for elevated internalization of E-cadherin by increasing its expression to maintain cell-cell adhesion.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: