Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 243 papers

Serine carboxypeptidase-like acyltransferases from plants.

  • Sam T Mugford‎ et al.
  • Methods in enzymology‎
  • 2012‎

Serine carboxypeptidase-like (SCPL) acyltransferases facilitate transacylation reactions using energy-rich 1-O-β-glucose esters in the synthesis of an array of bioactive compounds and are associated with the diversification of plant natural products. SCPL acyltransferases have evolved from a hydrolytic ancestor by adapting functional elements of the proteases such as the catalytic triad, oxyanion hole, and substrate recognition H-bond network to their new function. As vacuolar proteins, SCPL acyltransferases define an alternative cellular route of transacylation spatially separated from the cytoplasmic enzymes of the BAHD acyltransferase family named according to the first characterized members (BEAT, AHCT, HCBT, and DAT). Recent efforts in cloning and characterization led to the identification of diagnostic peptides for SCPL acyltransferases, enabling the detection of candidate genes in several plant genomes. Detailed biochemical analysis of SCPL acyltransferases is strongly dependent on comprehensive heterologous expression systems, efficient protein purification protocols, and the supply of appropriate substrates. This chapter describes some useful techniques and strategies for identification and characterization of SCPL acyltransferases.


Multifunctional acyltransferases from Tetrahymena thermophila.

  • Eva-Maria Biester‎ et al.
  • Lipids‎
  • 2012‎

Multifunctional acyltransferases are able to catalyze the esterification of various acyl-acceptors with activated fatty acids. Here we describe the identification of four proteins from Tetrahymena thermophila that share certain properties with mammalian acyltransferases regarding their predicted transmembrane structure, their molecular mass and the typical acyltransferase motif. Expression of the Tetrahymena sequences results in production of triacylglycerols and wax esters in recombinant yeast when appropriate substrates are provided. The in vitro characterization shows, that these enzymes are capable of esterifying different acyl-acceptors including fatty alcohols, diols, diacylglycerols and isoprenols with acyl-CoA thioesters. Based on these catalytic activities and the sequence similarities of the Tetrahymena proteins with acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) family members, we conclude that we identified a new group of DGAT2-related multifunctional acyltransferases from protozoan organisms.


Type I polyketide synthases that require discrete acyltransferases.

  • Yi-Qiang Cheng‎ et al.
  • Methods in enzymology‎
  • 2009‎

The diverse structures of polyketide natural products are reflected by the equally diverse polyketide biosynthetic enzymes, namely polyketide synthases (PKSs). Three major classes of PKSs are known-noniterative type I PKSs, iterative type II PKSs and acyl carrier protein-independent type III PKSs, each of which consists of additional variants. One such variant is the noniterative type I PKS in which each PKS module lacks the cognate acyltransferase (AT) domain. The essential AT activity is instead provided by a discrete AT in trans. Termed "AT-less" type I PKSs, the loading of the malonate extender units by the discrete AT enzyme LnmG to each of the AT-less PKS modules of LnmI and LnmJ was confirmed experimentally for biosynthesis of the anticancer antibiotic leinamycin (LNM). The LNM PKS has since served as a model for the continuous discovery of numerous additional AT-less type I PKSs incorporating variable extender units. However, biochemical characterization of AT-less type I PKSs remains very limited, and the mechanism by which AT-less type I PKSs accommodate multiple extender units is unknown. This chapter provides the protocols used to establish and characterize the LNM PKS. Application of these methods to other AT-less type I PKSs should aid the biochemical characterization and hence possible exploitation of these unique PKSs for polyketide natural product structural diversity by combinatorial biosynthetic methods.


Characterisation of acyltransferases from Synechocystis sp. PCC6803.

  • Dagmar Weier‎ et al.
  • Biochemical and biophysical research communications‎
  • 2005‎

As phylogenetic ancestors of plant chloroplasts cyanobacteria resemble plastids with respect to lipid and fatty acid composition. These membrane lipids show the typical prokaryotic fatty acid pattern in which the sn-2 position is exclusively esterified by C(16) acyl groups. In the course of de novo glycerolipid biosynthesis this prokaryotic fatty acid pattern is established by the sequential acylation of glycerol-3-phosphate with acyl-ACPs by the activity of different acyltransferases. In silico approaches allowed the identification of putative Synechocystis acyltransferases involved in glycerolipid metabolism. Functional expression studies in Escherichia coli showed that sll1848 codes for a lysophosphatidic acid acyltransferase with a high specificity for 16:0-ACP, whereas slr2060 encodes a lysophospholipid acyltransferase, with a broad acyl-ACP specificity but a strong preference for lysophosphatidyglycerol especially its sn-2 acyl isomer as acyl-acceptor. The generation and analysis of the corresponding Synechocystis knockout mutants revealed that lysophosphatidic acid acyltransferase unlike the lysophospholipid acyltransferase is essential for the vital functions of the cells.


Functional roles of three cutin biosynthetic acyltransferases in cytokinin responses and skotomorphogenesis.

  • Lei Wu‎ et al.
  • PloS one‎
  • 2015‎

Cytokinins (CKs) regulate plant development and growth via a two-component signaling pathway. By forward genetic screening, we isolated an Arabidopsis mutant named grow fast on cytokinins 1 (gfc1), whose seedlings grew larger aerial parts on MS medium with CK. gfc1 is allelic to a previously reported cutin mutant defective in cuticular ridges (dcr). GFC1/DCR encodes a soluble BAHD acyltransferase (a name based on the first four enzymes characterized in this family: Benzylalcohol O-acetyltransferase, Anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase and Deacetylvindoline 4-O-acetyltransferase) with diacylglycerol acyltransferase (DGAT) activity in vitro and is necessary for normal cuticle formation on epidermis in vivo. Here we show that gfc1 was a CK-insensitive mutant, as revealed by its low regeneration frequency in vitro and resistance to CK in adventitious root formation and dark-grown hypocotyl inhibition assays. In addition, gfc1 had de-etiolated phenotypes in darkness and was therefore defective in skotomorphogenesis. The background expression levels of most type-A Arabidopsis Response Regulator (ARR) genes were higher in the gfc1 mutant. The gfc1-associated phenotypes were also observed in the cutin-deficient glycerol-3-phosphate acyltransferase 4/8 (gpat4/8) double mutant [defective in glycerol-3-phosphate (G3P) acyltransferase enzymes GPAT4 and GPAT8, which redundantly catalyze the acylation of G3P by hydroxyl fatty acid (OH-FA)], but not in the cutin-deficient mutant cytochrome p450, family 86, subfamily A, polypeptide 2/aberrant induction of type three 1 (cyp86A2/att1), which affects the biosynthesis of some OH-FAs. Our results indicate that some acyltransferases associated with cutin formation are involved in CK responses and skotomorphogenesis in Arabidopsis.


Functional divergence of diacylglycerol acyltransferases in the unicellular green alga Haematococcus pluvialis.

  • Haiyan Ma‎ et al.
  • Journal of experimental botany‎
  • 2021‎

Acyl-CoA:diacylglycerol acyltransferase (DGAT) catalyzes the final committed step in triacylglycerol biosynthesis in eukaryotes. In microalgae, the copy number of DGAT genes is extraordinarily expanded, yet the functions of many DGATs remain largely unknown. This study revealed that microalgal DGAT can function as a lysophosphatidic acyltransferase (LPAAT) both in vitro and in vivo while losing its original function as DGAT. Among the five DGAT-encoding genes identified and cloned from the green microalga Haematococcus pluvialis, four encoded HpDGATs that showed triacylglycerol synthase activities in yeast functional complementation analyses; the exception was one of the type II DGAT encoding genes, HpDGTT2. The hydrophobic recombinant HpDGTT2 protein was purified in soluble form and was found to function as a LPAAT via enzymatic assay. Introducing this gene into the green microalga Chlamydomonas reinhardtii led to retarded cellular growth, enlarged cell size, and enhanced triacylglycerol accumulation, identical to the phenotypes of transgenic strains overexpressing CrLPAAT. This study provides a framework for dissecting uncharacterized DGATs, and could pave the way to decrypting the structure-function relationship of this large group of enzymes that are critical to lipid biosynthesis.


Regulatory effects of post-translational modifications on zDHHC S-acyltransferases.

  • Filip Zmuda‎ et al.
  • The Journal of biological chemistry‎
  • 2020‎

The human zDHHC S-acyltransferase family comprises 23 enzymes that mediate the S-acylation of a multitude of cellular proteins, including channels, receptors, transporters, signaling molecules, scaffolds, and chaperones. This reversible post-transitional modification (PTM) involves the attachment of a fatty acyl chain, usually derived from palmitoyl-CoA, to specific cysteine residues on target proteins, which affects their stability, localization, and function. These outcomes are essential to control many processes, including synaptic transmission and plasticity, cell growth and differentiation, and infectivity of viruses and other pathogens. Given the physiological importance of S-acylation, it is unsurprising that perturbations in this process, including mutations in ZDHHC genes, have been linked to different neurological pathologies and cancers, and there is growing interest in zDHHC enzymes as novel drug targets. Although zDHHC enzymes control a diverse array of cellular processes and are associated with major disorders, our understanding of these enzymes is surprisingly incomplete, particularly with regard to the regulatory mechanisms controlling these enzymes. However, there is growing evidence highlighting the role of different PTMs in this process. In this review, we discuss how PTMs, including phosphorylation, S-acylation, and ubiquitination, affect the stability, localization, and function of zDHHC enzymes and speculate on possible effects of PTMs that have emerged from larger screening studies. Developing a better understanding of the regulatory effects of PTMs on zDHHC enzymes will provide new insight into the intracellular dynamics of S-acylation and may also highlight novel approaches to modulate S-acylation for clinical gain.


Protein Dynamics Influence the Enzymatic Activity of Phospholipase A/Acyltransferases 3 and 4.

  • Soumya Deep Chatterjee‎ et al.
  • Biochemistry‎
  • 2021‎

Phospholipase A/acyltransferase 3 (PLAAT3) and PLAAT4 are enzymes involved in the synthesis of bioactive lipids. Despite sequential and structural similarities, the two enzymes differ in activity and specificity. The relation between the activity and dynamics of the N-terminal domains of PLAAT3 and PLAAT4 was studied. PLAAT3 has a much higher melting temperature and exhibits less nanosecond and millisecond dynamics in the active site, in particular in loop L2(B6), as shown by NMR spectroscopy and molecular dynamics calculations. Swapping the L2(B6) loops between the two PLAAT enzymes results in strongly increased phospholipase activity in PLAAT3 but no reduction in PLAAT4 activity, indicating that this loop contributes to the low activity of PLAAT3. The results show that, despite structural similarity, protein dynamics differ substantially between the PLAAT variants, which can help to explain the activity and specificity differences.


Identification and Characterization of Sterol Acyltransferases Responsible for Steryl Ester Biosynthesis in Tomato.

  • Juan A Lara‎ et al.
  • Frontiers in plant science‎
  • 2018‎

Steryl esters (SEs) serve as a storage pool of sterols that helps to maintain proper levels of free sterols (FSs) in cell membranes throughout plant growth and development, and participates in the recycling of FSs and fatty acids released from cell membranes in aging tissues. SEs are synthesized by sterol acyltransferases, a family of enzymes that catalyze the transfer of fatty acil groups to the hydroxyl group at C-3 position of the sterol backbone. Sterol acyltransferases are categorized into acyl-CoA:sterol acyltransferases (ASAT) and phospholipid:sterol acyltransferases (PSAT) depending on whether the fatty acyl donor substrate is a long-chain acyl-CoA or a phospolipid. Until now, only Arabidopsis ASAT and PSAT enzymes (AtASAT1 and AtPSAT1) have been cloned and characterized in plants. Here we report the identification, cloning, and functional characterization of the tomato (Solanum lycopersicum cv. Micro-Tom) orthologs. SlPSAT1 and SlASAT1 were able to restore SE to wild type levels in the Arabidopsis psat1-2 and asat1-1 knock-out mutants, respectively. Expression of SlPSAT1 in the psat1-2 background also prevented the toxicity caused by an external supply of mevalonate and the early senescence phenotype observed in detached leaves of this mutant, whereas expression of SlASAT1 in the asat1-1 mutant revealed a clear substrate preference of the tomato enzyme for the sterol precursors cycloartenol and 24-methylene cycloartanol. Subcellular localization studies using fluorescently tagged SlPSAT1 and SlASAT1 proteins revealed that SlPSAT1 localize in cytoplasmic lipid droplets (LDs) while, in contrast to the endoplasmic reticulum (ER) localization of AtASAT1, SlASAT1 resides in the plasma membrane (PM). The possibility that PM-localized SlASAT1 may act catalytically in trans on their sterol substrates, which are presumably embedded in the ER membrane, is discussed. The widespread expression of SlPSAT1 and SlASAT1 genes in different tomato organs together with their moderate transcriptional response to several stresses suggests a dual role of SlPSAT1 and SlASAT1 in tomato plant and fruit development and the adaptive responses to stress. Overall, this study contributes to enlarge the current knowledge on plant sterol acyltransferases and set the basis for further studies aimed at understanding the role of SE metabolism in tomato plant growth and development.


Molecular Characterization of Two Lysophospholipid:acyl-CoA Acyltransferases Belonging to the MBOAT Family in Nicotiana benthamiana.

  • Donghui Zhang‎ et al.
  • PloS one‎
  • 2015‎

In the remodeling pathway for the synthesis of phosphatidylcholine (PC), acyl-CoA-dependent lysophosphatidylcholine (lysoPC) acyltransferase (LPCAT) catalyzes the reacylation of lysoPC. A number of genes encoding LPCATs have been cloned and characterized from several plants in recent years. Using Arabidopsis and other plant LPCAT sequences to screen the genome database of Nicotiana benthamiana, we identified two cDNAs encoding the putative tobacco LPCATs (NbLPCAT1 and NbLPCAT2). Both of them were predicted to encode a protein of 463 amino acids with high similarity to LPCATs from other plants. Protein sequence features such as the presence of at least eight putative transmembrane regions, four highly conserved signature motifs and several invariant residues indicate that NbLPCATs belong to the membrane bound O-acyltransferase family. Lysophospholipid acyltransferase activity of NbLPCATs was confirmed by testing lyso-platelet-activating factor (lysoPAF) sensitivity through heterologous expression of each full-length cDNA in a yeast mutant Y02431 (lca1△) disrupted in endogenous LPCAT enzyme activity. Analysis of fatty acid profiles of phospholipids from the NbLPCAT-expressing yeast mutant Y02431 cultures supplemented with polyunsaturated fatty acids suggested more incorporation of linoleic acid (18:2n6, LA) and α-linolenic acid (18:3n3, ALA) into PC compared to yeast mutant harbouring empty vector. In vitro enzymatic assay demonstrated that NbLPCAT1had high lysoPC acyltransferase activity with a clear preference for α-linolenoyl-CoA (18:3), while NbLPCAT2 showed a high lysophosphatidic acid (lysoPA) acyltransferase activity towards α-linolenoyl-CoA and a weak lysoPC acyltransferase activity. Tissue-specific expression analysis showed a ubiquitous expression of NbLPCAT1 and NbLPCAT2 in roots, stems, leaves, flowers and seeds, and a strong expression in developing flowers. This is the first report on the cloning and characterization of lysophospholipid acyltransferases from N. benthamiana.


Consecutive action of two BAHD acyltransferases promotes tetracoumaroyl spermine accumulation in chicory.

  • Guillaume Bernard‎ et al.
  • Plant physiology‎
  • 2022‎

Fully substituted phenolamide accumulation in the pollen coat of Eudicotyledons is a conserved evolutionary chemical trait. Interestingly, spermidine derivatives are replaced by spermine derivatives as the main phenolamide accumulated in the Asteraceae family. Here, we show that the full substitution of spermine in chicory (Cichorium intybus) requires the successive action of two enzymes, that is spermidine hydroxycinnamoyl transferase-like proteins 1 and 2 (CiSHT1 and CiSHT2), two members of the BAHD enzyme family. Deletion of these genes in chicory using CRISPR/Cas9 gene editing technology evidenced that CiSHT2 catalyzes the first N-acylation steps, whereas CiSHT1 fulfills the substitution to give rise to tetracoumaroyl spermine. Additional experiments using Nicotiana benthamiana confirmed these findings. Expression of CiSHT2 alone promoted partially substituted spermine accumulation, and coexpression of CiSHT2 and CiSHT1 promoted synthesis and accumulation of the fully substituted spermine. Structural characterization of the main product of CiSHT2 using nuclear magnetic resonance revealed that CiSHT2 preferentially catalyzed N-acylation of secondary amines to form N5,N10-dicoumaroyl spermine, whereas CiSHT1 used this substrate to synthesize tetracoumaroyl spermine. We showed that spermine availability may be a key determinant toward preferential accumulation of spermine derivatives over spermidine derivatives in chicory. Our results reveal a subfunctionalization among the spermidine hydroxycinnamoyl transferase that was accompanied by a modification of free polyamine metabolism that has resulted in the accumulation of this new phenolamide in chicory and most probably in all Asteraceae. Finally, genetically engineered yeast (Saccharomyces cerevisiae) was shown to be a promising host platform to produce these compounds.


Cocktail biosynthesis of triacylglycerol by rational modulation of diacylglycerol acyltransferases in industrial oleaginous Aurantiochytrium.

  • Chuanzeng Lan‎ et al.
  • Biotechnology for biofuels‎
  • 2021‎

Triacylglycerol (TAG) is an important storage lipid in organisms, depending on the degree of unsaturation of fatty acid molecules attached to glycerol; it is usually used as the feedstock for nutrition or biodiesel. However, the mechanism of assembly of saturated fatty acids (SFAs) or polyunsaturated fatty acids (PUFAs) into TAGs remains unclear for industrial oleaginous microorganism.


Diatoms and Plants Acyl-CoA:lysophosphatidylcholine Acyltransferases (LPCATs) Exhibit Diverse Substrate Specificity and Biochemical Properties.

  • Ada Połońska‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The search of the Phaeodactylum tricornutum genome database revealed the existence of six genes potentially encoding lysophospholipid acyltransferases. One of these genes, Phatr3_J20460, after introduction to yeast ale1 mutant disrupted in the LPCAT gene, produced a very active acyl-CoA:lysophosphatidylcholine (LPCAT) enzyme. Using in vitro assays applying different radioactive and non-radioactive substrates and microsomal fractions from such yeast, we have characterized the biochemical properties and substrate specificities of this PtLPCAT1. We have found that the substrate specificity of this enzyme indicates that it can completely supply phosphatidylcholine (PC) with all fatty acids connected with a biosynthetic pathway of very long-chain polyunsaturated fatty acids (VLC-PUFAs) used further for the desaturation process. Additionally, we have shown that biochemical properties of the PtLPCAT1 in comparison to plant LPCATs are in some cases similar (such as the dependency of its activity on pH value), differ moderately (such as in response to temperature changes), or express completely different properties (such as in reaction to calcium and magnesium ions or toward some acyl-CoA with 20C polyunsaturated fatty acids). Moreover, the obtained results suggest that cloned "Phatr3_J20460" gene can be useful in oilseeds plant engineering toward efficient production of VLC-PUFA as LPCAT it encodes can (contrary to plant LPCATs) introduce 20:4-CoA (n-3) to PC for further desaturation to 20:5 (EPA, eicosapentaenoic acid).


Contribution of Eat1 and Other Alcohol Acyltransferases to Ester Production in Saccharomyces cerevisiae.

  • Aleksander J Kruis‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Esters are essential for the flavor and aroma of fermented products, and are mainly produced by alcohol acyl transferases (AATs). A recently discovered AAT family named Eat (Ethanol acetyltransferase) contributes to ethyl acetate synthesis in yeast. However, its effect on the synthesis of other esters is unknown. In this study, the role of the Eat family in ester synthesis was compared to that of other Saccharomyces cerevisiae AATs (Atf1p, Atf2p, Eht1p, and Eeb1p) in silico and in vivo. A genomic study in a collection of industrial S. cerevisiae strains showed that variation of the primary sequence of the AATs did not correlate with ester production. Fifteen members of the EAT family from nine yeast species were overexpressed in S. cerevisiae CEN.PK2-1D and were able to increase the production of acetate and propanoate esters. The role of Eat1p was then studied in more detail in S. cerevisiae CEN.PK2-1D by deleting EAT1 in various combinations with other known S. cerevisiae AATs. Between 6 and 11 esters were produced under three cultivation conditions. Contrary to our expectations, a strain where all known AATs were disrupted could still produce, e.g., ethyl acetate and isoamyl acetate. This study has expanded our understanding of ester synthesis in yeast but also showed that some unknown ester-producing mechanisms still exist.


Exploring the evolutionary process of alkannin/shikonin O-acyltransferases by a reliable Lithospermum erythrorhizon genome.

  • Chengyi Tang‎
  • DNA research : an international journal for rapid publication of reports on genes and genomes‎
  • 2021‎

Increasing genome data are coming out. Genome size estimation plays an essential role in guiding genome assembly. Several months ago, other researchers were the first to publish a draft genome of the red gromwell (i.e. Lithospermum erythrorhizon). However, we considered that the genome size they estimated and assembled was incorrect. This study meticulously estimated the L. erythrorhizon genome size to should be ∼708.74 Mb and further provided a reliable genome version (size ≈ 693.34 Mb; contigN50 length ≈ 238.08 Kb) to support our objection. Furthermore, according to our genome, we identified a gene family of the alkannin/shikonin O-acyltransferases (i.e. AAT/SAT) that catalysed enantiomer-specific acylations in the alkannin/shikonin biosynthesis (a characteristic metabolic pathway in L. erythrorhizon's roots) and further explored its evolutionary process. The results indicated that the existing AAT/SAT were not generated from only one round of gene duplication but three rounds; after different rounds of gene duplication, the existing AAT/SAT and their recent ancestors were under positive selection at different amino acid sites. These suggested that a combined power from gene duplication plus positive selection plausibly propelled AAT/SAT's functional differentiation in evolution.


Systematic identification and expression profiles of the BAHD superfamily acyltransferases in barley (Hordeum vulgare).

  • Zhen Yuan‎ et al.
  • Scientific reports‎
  • 2022‎

BAHD superfamily acyltransferases play an important role in catalyzing and regulating secondary metabolism in plants. Despite this, there is relatively little information regarding the BAHD superfamily in barley. In this study, we identified 116 HvBAHD acyltransferases from the barley genome. Based on phylogenetic analysis and classification in model monocotyledonous and dicotyledonous plants, we divided the genes into eight groups, I-a, I-b, II, III-a, III-b, IV, V-a and V-b. The Clade IV genes, including Agmatine Coumarol Transferase (ACT) that is associated with resistance of plants to Gibberella fungi, were absent in Arabidopsis. Cis-regulatory element analysis of the HvBAHDs showed that the genes respond positively to GA3 treatment. In-silico expression and qPCR analysis showed the HvBAHD genes are expressed in a range of tissues and developmental stages, and highly enriched in the seedling stage, consistent with diverse roles. Single nucleotide polymorphism (SNP) scanning analysis revealed that the natural variation in the coding regions of the HvBAHDs is low and the sequences have been conserved during barley domestication. Our results reveal the complexity of the HvBAHDs and will help facilitate their analysis in further studies.


Involvement of an octose ketoreductase and two acyltransferases in the biosynthesis of paulomycins.

  • Jine Li‎ et al.
  • Scientific reports‎
  • 2016‎

C-4 hydroxyethyl branched octoses have been observed in polysaccharides of several genera of gram negative bacteria and in various antibiotics produced by gram positive bacteria. The C-4 hydroxyethyl branch was proposed to be converted from C-4 acetyl branch by an uncharacterized ketoreduction step. Paulomycins (PAUs) are glycosylated antibiotics with potent inhibitory activity against gram positive bacteria and are structurally defined by its unique C-4' hydroxyethyl branched paulomycose moiety. A novel aldo-keto-reductase, Pau7 was characterized as the enzyme catalyzing the stereospecific ketoreduction of 7'-keto of PAU E (1) to give the C-4' hydroxyethyl branched paulomycose moiety of PAU F (2). An acyltransferase Pau6 further decorates the C-4' hydroxyethyl branch of paulomycose moiety of 2 by attaching various fatty acyl chains to 7'-OH to generate diverse PAUs. In addition, another acyltransferase Pau24 was proposed to be responsible for the 13-O-acetylation of PAUs.


Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol.

  • Jose Aznar-Moreno‎ et al.
  • Journal of experimental botany‎
  • 2015‎

DGAT1 enzymes (acyl-CoA:diacylglycerol acyltransferase 1, EC 2.3.1.20) catalyse the formation of triacylglycerols (TAGs), the most abundant lipids in vegetable oils. Thorough understanding of the enzymology of oil accumulation is critical to the goal of modifying oilseeds for improved vegetable oil production. Four isoforms of BnDGAT1, the final and rate-limiting step in triacylglycerol synthesis, were characterized from Brassica napus, one of the world's most important oilseed crops. Transcriptional profiling of developing B. napus seeds indicated two genes, BnDGAT1-1 and BnDGAT1-2, with high expression and two, BnDGAT1-3 and BnDGAT1-4, with low expression. The activities of each BnDGAT1 isozyme were characterized following expression in a strain of yeast deficient in TAG synthesis. TAG from B. napus seeds contain only 10% palmitic acid (16:0) at the sn-3 position, so it was surprising that all four BnDGAT1 isozymes exhibited strong (4- to 7-fold) specificity for 16:0 over oleic acid (18:1) as the acyl-CoA substrate. However, the ratio of 18:1-CoA to 16:0-CoA in B. napus seeds during the peak period of TAG synthesis is 3:1. When substrate selectivity assays were conducted with 18:1-CoA and 16:0-CoA in a 3:1 ratio, the four isozymes incorporated 18:1 in amounts 2- to 5-fold higher than 16:0. This strong sensitivity of the BnDGAT1 isozymes to the relative concentrations of acyl-CoA substrates substantially explains the observed fatty acid composition of B. napus seed oil. Understanding these enzymes that are critical for triacylglycerol synthesis will facilitate genetic and biotechnological manipulations to improve this oilseed crop.


Defunctionalizing intracellular organelles such as mitochondria and peroxisomes with engineered phospholipase A/acyltransferases.

  • Satoshi Watanabe‎ et al.
  • Nature communications‎
  • 2022‎

Organelles vitally achieve multifaceted functions to maintain cellular homeostasis. Genetic and pharmacological approaches to manipulate individual organelles are powerful in probing their physiological roles. However, many of them are either slow in action, limited to certain organelles, or rely on toxic agents. Here, we design a generalizable molecular tool utilizing phospholipase A/acyltransferases (PLAATs) for rapid defunctionalization of organelles via remodeling of the membrane phospholipids. In particular, we identify catalytically active PLAAT truncates with minimal unfavorable characteristics. Chemically-induced translocation of the optimized PLAAT to the mitochondria surface results in their rapid deformation in a phospholipase activity dependent manner, followed by loss of luminal proteins as well as dissipated membrane potential, thus invalidating the functionality. To demonstrate wide applicability, we then adapt the molecular tool in peroxisomes, and observe leakage of matrix-resident functional proteins. The technique is compatible with optogenetic control, viral delivery and operation in primary neuronal cultures. Due to such versatility, the PLAAT strategy should prove useful in studying organelle biology of diverse contexts.


Variant Amino Acid Residues Alter the Enzyme Activity of Peanut Type 2 Diacylglycerol Acyltransferases.

  • Ling Zheng‎ et al.
  • Frontiers in plant science‎
  • 2017‎

Diacylglycerol acyltransferase (DGAT) catalyzes the final step in triacylglycerol (TAG) biosynthesis via the acyl-CoA-dependent acylation of diacylglycerol. This reaction is a major control point in the Kennedy pathway for biosynthesis of TAG, which is the most important form of stored metabolic energy in most oil-producing plants. In this study, Arachis hypogaea type 2 DGAT (AhDGAT2) genes were cloned from the peanut cultivar 'Luhua 14.' Sequence analysis of 11 different peanut cultivars revealed a gene family of 8 peanut DGAT2 genes (designated AhDGAT2a-h). Sequence alignments revealed 21 nucleotide differences between the eight ORFs, but only six differences result in changes to the predicted amino acid (AA) sequences. A representative full-length cDNA clone (AhDGAT2a) was characterized in detail. The biochemical effects of altering the AhDGAT2a sequence to include single variable AA residues were tested by mutagenesis and functional complementation assays in transgenic yeast systems. All six mutant variants retained enzyme activity and produced lipid droplets in vivo. The N6D and A26P mutants also displayed increased enzyme activity and/or total cellular fatty acid (FA) content. N6D mutant mainly increased the content of palmitoleic acid, and A26P mutant mainly increased the content of palmitic acid. The A26P mutant grew well both in the presence of oleic and C18:2, but the other mutants grew better in the presence of C18:2. AhDGAT2 is expressed in all peanut organs analyzed, with high transcript levels in leaves and flowers. These levels are comparable to that found in immature seeds, where DGAT2 expression is most abundant in other plants. Over-expression of AhDGAT2a in tobacco substantially increased the FA content of transformed tobacco seeds. Expression of AhDGAT2a also altered transcription levels of endogenous tobacco lipid metabolic genes in transgenic tobacco, apparently creating a larger carbon 'sink' that supports increased FA levels.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: