Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 87 papers

Role of Activins in Hepcidin Regulation during Malaria.

  • Natasha Spottiswoode‎ et al.
  • Infection and immunity‎
  • 2017‎

Epidemiological observations have linked increased host iron with malaria susceptibility, and perturbed iron handling has been hypothesized to contribute to the potentially life-threatening anemia that may accompany blood-stage malaria infection. To improve our understanding of these relationships, we examined the pathways involved in regulation of the master controller of iron metabolism, the hormone hepcidin, in malaria infection. We show that hepcidin upregulation in Plasmodium berghei murine malaria infection was accompanied by changes in expression of bone morphogenetic protein (BMP)/sons of mothers against decapentaplegic (SMAD) pathway target genes, a key pathway involved in hepcidin regulation. We therefore investigated known agonists of the BMP/SMAD pathway and found that Bmp gene expression was not increased in infection. In contrast, activin B, which can signal through the BMP/SMAD pathway and has been associated with increased hepcidin during inflammation, was upregulated in the livers of Plasmodium berghei-infected mice; hepatic activin B was also upregulated at peak parasitemia during infection with Plasmodium chabaudi Concentrations of the closely related protein activin A increased in parallel with hepcidin in serum from malaria-naive volunteers infected in controlled human malaria infection (CHMI) clinical trials. However, antibody-mediated neutralization of activin activity during murine malaria infection did not affect hepcidin expression, suggesting that these proteins do not stimulate hepcidin upregulation directly. In conclusion, we present evidence that the BMP/SMAD signaling pathway is perturbed in malaria infection but that activins, although raised in malaria infection, may not have a critical role in hepcidin upregulation in this setting.


Drosophila activins adapt gut size to food intake and promote regenerative growth.

  • Christian F Christensen‎ et al.
  • Nature communications‎
  • 2024‎

Rapidly renewable tissues adapt different strategies to cope with environmental insults. While tissue repair is associated with increased intestinal stem cell (ISC) proliferation and accelerated tissue turnover rates, reduced calorie intake triggers a homeostasis-breaking process causing adaptive resizing of the gut. Here we show that activins are key drivers of both adaptive and regenerative growth. Activin-β (Actβ) is produced by stem and progenitor cells in response to intestinal infections and stimulates ISC proliferation and turnover rates to promote tissue repair. Dawdle (Daw), a divergent Drosophila activin, signals through its receptor, Baboon, in progenitor cells to promote their maturation into enterocytes (ECs). Daw is dynamically regulated during starvation-refeeding cycles, where it couples nutrient intake with progenitor maturation and adaptive resizing of the gut. Our results highlight an activin-dependent mechanism coupling nutrient intake with progenitor-to-EC maturation to promote adaptive resizing of the gut and further establish activins as key regulators of adult tissue plasticity.


Activins as Dual Specificity TGF-β Family Molecules: SMAD-Activation via Activin- and BMP-Type 1 Receptors.

  • Oddrun Elise Olsen‎ et al.
  • Biomolecules‎
  • 2020‎

Activins belong to the transforming growth factor (TGF)-β family of multifunctional cytokines and signal via the activin receptors ALK4 or ALK7 to activate the SMAD2/3 pathway. In some cases, activins also signal via the bone morphogenetic protein (BMP) receptor ALK2, causing activation of the SMAD1/5/8 pathway. In this study, we aimed to dissect how activin A and activin B homodimers, and activin AB and AC heterodimers activate the two main SMAD branches. We compared the activin-induced signaling dynamics of ALK4/7-SMAD2/3 and ALK2-SMAD1/5 in a multiple myeloma cell line. Signaling via the ALK2-SMAD1/5 pathway exhibited greater differences between ligands than signaling via ALK4/ALK7-SMAD2/3. Interestingly, activin B and activin AB very potently activated SMAD1/5, resembling the activation commonly seen with BMPs. As SMAD1/5 was also activated by activins in other cell types, we propose that dual specificity is a general mechanism for activin ligands. In addition, we found that the antagonist follistatin inhibited signaling by all the tested activins, whereas the antagonist cerberus specifically inhibited activin B. Taken together, we propose that activins may be considered dual specificity TGF-β family members, critically affecting how activins may be considered and targeted clinically.


IGSF1 Does Not Regulate Spermatogenesis or Modify FSH Synthesis in Response to Inhibins or Activins.

  • Emilie Brûlé‎ et al.
  • Journal of the Endocrine Society‎
  • 2021‎

Loss-of-function mutations in the X-linked immunoglobulin superfamily, member 1 (IGSF1) gene result in central hypothyroidism, often associated with macroorchidism. Testicular enlargement in these patients might be caused by increases in follicle-stimulating hormone (FSH) levels, as IGSF1 has been proposed to function as an inhibin B receptor or as an inhibitor of activin type I receptor (ALK4) activity in pituitary gonadotrope cells. If true, loss of IGSF1 should lead to reduced inhibin B action or disinhibition of activin signaling, thereby increasing FSH synthesis. Here, we show that FSH levels and sperm counts are normal in male Igsf1 knockout mice, although testis size is mildly increased. Sperm parameters are also normal in men with IGSF1 deficiency, although their FSH levels may trend higher and their testes are enlarged. Inhibin B retains the ability to suppress FSH synthesis in pituitaries of Igsf1-knockout mice and IGSF1 does not interact with ALK4 or alter activin A/ALK4 stimulation of FSHβ (Fshb/FSHB) subunit transcription or expression. In light of these results, it is unlikely that macroorchidism in IGSF1 deficiency derives from alterations in spermatogenesis or inhibin/activin regulation of FSH.


Profiling Activins and Follistatin in Colorectal Cancer According to Clinical Stage, Tumour Sidedness and Smad4 Status.

  • Bassem Refaat‎ et al.
  • Pathology oncology research : POR‎
  • 2021‎

This study explored the roles of activins and follistatin in colorectal cancers. Paired malignant and normal colonic tissues were collected from archived paraffin-embedded (n = 90 patients) alongside fresh (n = 40 patients) specimen cohorts. Activin β-subunits, follistatin and Smad4 mRNAs and proteins were measured by real-time PCR and immunohistochemistry (IHC). Mature activin-A, -B, -AB and follistatin proteins were measured by ELISA. Cancer tissues having ≤ the 20th percentile of the Smad4 IHC score were considered as low (L-S4) group. The Smad4-intact SW480 and Smad4-null HT29 colon cancer cell lines were treated with activins and follistatin, and cell cycle was analysed by flow cytometry. The cell cycle inducing (CCND1/CCND3) and inhibitory (p21/p27) proteins alongside the survival (survivin/BCL2) and pro-apoptosis (Casp-8/Casp-3) markers were measured by immunofluorescence. Thirty-nine patients had right-sided cancers (30%) and showed higher rates of L-S4 tumours (n = 17; 13.1%) alongside worse clinicopathological characteristics relative to left-sided cancers. The βA-subunit and activin-A increased, whilst βB-subunit and activin-AB decreased, in malignant sites and the late-stage cancers revealed the greatest abnormalities. Interestingly, follistatin declined markedly in early-stage malignant tissues, whilst increased significantly in the advanced stages. All activin molecules were comparable between the early stage right- and left-sided tumours, whereas the late-stage right-sided cancers and L-S4 tumours showed more profound deregulations. In vitro, activin-A increased the numbers of the SW480 cells in sub-G1 and G0/G1-phases, whereas reduced the HT29 cell numbers in the sub-G1 phase with simultaneous increases in the G0/G1 and S phases. The p21/p27/Casp-8/Casp-3 proteins escalated, whilst CCND1/CCND3/BCL2/survivin declined in the SW480 cells following activin-A, whereas activin-A only promoted p21 and p27 alongside reduced CCND3 in the HT29 cells. By contrast, activin-AB increased the numbers of SW480 and HT29 cells in Sub-G1 and G0/G1-phases and promoted the anti-cancer and reduced the oncogenic proteins in both cell lines. In conclusion, activins and follistatin displayed stage-dependent dysregulations and were markedly altered during the advanced stages of right-sided and L-S4 cancers. Moreover, the activin-A actions in CRC could be Smad4-dependent, whereas activin-AB may act as a Smad4-independent tumour suppressor protein.


Activins A and B Regulate Fate-Determining Gene Expression in Islet Cell Lines and Islet Cells From Male Mice.

  • Danielle Andrzejewski‎ et al.
  • Endocrinology‎
  • 2015‎

TGFβ superfamily ligands, receptors, and second messengers, including activins A and B, have been identified in pancreatic islets and proposed to have important roles regulating development, proliferation, and function. We previously demonstrated that Fstl3 (an antagonist of activin activity) null mice have larger islets with β-cell hyperplasia and improved glucose tolerance and insulin sensitivity in the absence of altered β-cell proliferation. This suggested the hypothesis that increased activin signaling influences β-cell expansion by destabilizing the α-cell phenotype and promoting transdifferentiation to β-cells. We tested the first part of this hypothesis by treating α- and β-cell lines and sorted mouse islet cells with activin and related ligands. Treatment of the αTC1-6 α cell line with activins A or B suppressed critical α-cell gene expression, including Arx, glucagon, and MafB while also enhancing β-cell gene expression. In INS-1E β-cells, activin A treatment induced a significant increase in Pax4 (a fate determining β-cell gene) and insulin expression. In sorted primary islet cells, α-cell gene expression was again suppressed by activin treatment in α-cells, whereas Pax4 was enhanced in β-cells. Activin treatment in both cell lines and primary cells resulted in phosphorylated mothers against decapentaplegic-2 phosphorylation. Finally, treatment of αTC1-6 cells with activins A or B significantly inhibited proliferation. These results support the hypothesis that activin signaling destabilized the α-cell phenotype while promoting a β-cell fate. Moreover, these results support a model in which the β-cell expansion observed in Fstl3 null mice may be due, at least in part, to enhanced α- to β-cell transdifferentiation.


Activins and their related proteins in colon carcinogenesis: insights from early and advanced azoxymethane rat models of colon cancer.

  • Bassem Refaat‎ et al.
  • BMC cancer‎
  • 2016‎

Activin-A may exert pro- or anti-tumorigenic activities depending on cellular context. However, little is known about its role, or the other mature activin proteins, in colorectal carcinoma (CRC). This study measured the expression of activin βA- & βB-subunits, activin type IIA & IIB receptors, smads 2/3/4/6/7 and follistatin in CRC induced by azoxymethane (AOM) in rats. The results were compared with controls and disseminated according to the characteristics of histopathological lesions.


Muscle NAD+ depletion and Serpina3n as molecular determinants of murine cancer cachexia-the effects of blocking myostatin and activins.

  • J J Hulmi‎ et al.
  • Molecular metabolism‎
  • 2020‎

Cancer cachexia and muscle loss are associated with increased morbidity and mortality. In preclinical animal models, blocking activin receptor (ACVR) ligands has improved survival and prevented muscle wasting in cancer cachexia without an effect on tumour growth. However, the underlying mechanisms are poorly understood. This study aimed to identify cancer cachexia and soluble ACVR (sACVR) administration-evoked changes in muscle proteome.


Transcription factor GATA2 may potentiate follicle-stimulating hormone production in mice via induction of the BMP antagonist gremlin in gonadotrope cells.

  • Gauthier Schang‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Mammalian reproduction depends on the gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone, which are secreted by pituitary gonadotrope cells. The zinc-finger transcription factor GATA2 was previously implicated in FSH production in male mice; however, its mechanisms of action and role in females were not determined. To directly address GATA2 function in gonadotropes, we generated and analyzed gonadotrope-specific Gata2 KO mice using the Cre-lox system. We found that while conditional KO (cKO) males exhibited ∼50% reductions in serum FSH levels and pituitary FSHβ subunit (Fshb) expression relative to controls, FSH production was apparently normal in cKO females. In addition, RNA-seq analysis of purified gonadotropes from control and cKO males revealed a profound decrease in expression of gremlin (Grem1), a bone morphogenetic protein (BMP) antagonist. We show Grem1 was expressed in gonadotropes, but not other cell lineages, in the adult male mouse pituitary. Furthermore, Gata2, Grem1, and Fshb mRNA levels were significantly higher in the pituitaries of WT males relative to females but decreased in males treated with estradiol and increased following ovariectomy in control but not cKO females. Finally, we found that recombinant gremlin stimulated Fshb expression in pituitary cultures from WT mice. Collectively, the data suggest that GATA2 promotes Grem1 expression in gonadotropes and that the gremlin protein potentiates FSH production. The mechanisms of gremlin action have not yet been established but may involve attenuation of BMP binding to activin type II receptors in gonadotropes, facilitating induction of Fshb transcription by activins or related ligands.


Differential expression of follistatin and FLRG in human breast proliferative disorders.

  • Enrrico Bloise‎ et al.
  • BMC cancer‎
  • 2009‎

Activins are growth factors acting on cell growth and differentiation. Activins are expressed in high grade breast tumors and they display an antiproliferative effect inducing G0/G1 cell cycle arrest in breast cancer cell lines. Follistatin and follistatin- related gene (FLRG) bind and neutralize activins. In order to establish if these activin binding proteins are involved in breast tumor progression, the present study evaluated follistatin and FLRG pattern of mRNA and protein expression in normal human breast tissue and in different breast proliferative diseases.


Follistatin attenuates radiation-induced fibrosis in a murine model.

  • Helen B Forrester‎ et al.
  • PloS one‎
  • 2017‎

Fibrosis can be a disabling, severe side effect of radiotherapy that can occur in patients, and for which there is currently no effective treatment. The activins, proteins which are members of the TGFβ superfamily, have a major role in stimulating the inflammatory response and subsequent fibrosis. Follistatin is an endogenous protein that binds the activins virtually irreversibly and inhibits their actions. These studies test if follistatin can attenuate the fibrotic response using a murine model of radiation-induced fibrosis.


Bone morphogenetic protein 2 stimulates noncanonical SMAD2/3 signaling via the BMP type 1A receptor in gonadotrope-like cells: implications for FSH synthesis.

  • Ying Wang‎ et al.
  • Endocrinology‎
  • 2014‎

FSH is an essential regulator of mammalian reproduction. Its synthesis by pituitary gonadotrope cells is regulated by multiple endocrine and paracrine factors, including TGFβ superfamily ligands, such as the activins and inhibins. Activins stimulate FSH synthesis via transcriptional regulation of its β-subunit gene (Fshb). More recently, bone morphogenetic proteins (BMPs) were shown to stimulate murine Fshb transcription alone and in synergy with activins. BMP2 signals via its canonical type I receptor, BMPR1A (or activin receptor-like kinase 3 [ALK3]), and SMAD1 and SMAD5 to stimulate transcription of inhibitor of DNA binding proteins. Inhibitor of DNA binding proteins then potentiate the actions of activin-stimulated SMAD3 to regulate the Fshb gene in the gonadotrope-like LβT2 cell line. Here, we report the unexpected observation that BMP2 also stimulates the SMAD2/3 pathway in these cells and that it does so directly via ALK3. Indeed, this novel, noncanonical ALK3 activity is completely independent of ALK4, ALK5, and ALK7, the type I receptors most often associated with SMAD2/3 pathway activation. Induction of the SMAD2/3 pathway by ALK3 is dependent upon its own previous activation by associated type II receptors, which phosphorylate conserved serine and threonine residues in the ALK3 juxtamembrane glycine-serine-rich domain. ALK3 signaling via SMAD3 is necessary for the receptor to stimulate Fshb transcription, whereas its activation of the SMAD1/5/8 pathway alone is insufficient. These data challenge current dogma that ALK3 and other BMP type I receptors signal via SMAD1, SMAD5, and SMAD8 and not SMAD2 or SMAD3. Moreover, they suggest that BMPs and activins may use similar intracellular signaling mechanisms to activate the murine Fshb promoter in immortalized gonadotrope-like cells.


Murine FSH Production Depends on the Activin Type II Receptors ACVR2A and ACVR2B.

  • Gauthier Schang‎ et al.
  • Endocrinology‎
  • 2020‎

Activins are selective regulators of FSH production by pituitary gonadotrope cells. In a gonadotrope-like cell line, LβT2, activins stimulate FSH via the activin type IIA receptor (ACVR2A) and/or bone morphogenetic protein type II receptor (BMPR2). Consistent with these observations, FSH is greatly reduced, though still present, in global Acvr2a knockout mice. In contrast, FSH production is unaltered in gonadotrope-specific Bmpr2 knockout mice. In light of these results, we questioned whether an additional type II receptor might mediate the actions of activins or related TGF-β ligands in gonadotropes. We focused on the activin type IIB receptor (ACVR2B), even though it does not mediate activin actions in LβT2 cells. Using a Cre-lox strategy, we ablated Acvr2a and/or Acvr2b in murine gonadotropes. The resulting conditional knockout (cKO) animals were compared with littermate controls. Acvr2a cKO (cKO-A) females were subfertile (~70% reduced litter size), cKO-A males were hypogonadal, and both sexes showed marked decreases in serum FSH levels compared with controls. Acvr2b cKO (cKO-B) females were subfertile (~20% reduced litter size), cKO-B males had a moderate decrease in testicular weight, but only males showed a significant decrease in serum FSH levels relative to controls. Simultaneous deletion of both Acvr2a and Acvr2b in gonadotropes led to profound hypogonadism and FSH deficiency in both sexes; females were acyclic and sterile. Collectively, these data demonstrate that ACVR2A and ACVR2B are the critical type II receptors through which activins or related TGF-β ligands induce FSH production in mice in vivo.


Activin B can signal through both ALK4 and ALK7 in gonadotrope cells.

  • Daniel J Bernard‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2006‎

Activins stimulate pituitary FSH synthesis via transcriptional regulation of the FSHbeta subunit gene (Fshb). Like other members of the TGFbeta superfamily, these ligands signal through complexes of type I and type II receptor serine/threonine kinases. The type I receptors, or activin receptor-like kinases (ALKs), propagate intracellular signals upon ligand binding and phosphorylation by associated type II receptors. ALK4 is generally regarded as the type I receptor for activins; however, recent data suggested that activin B and AB might also signal through ALK7. Here, we examined a role for ALK7 in activin B-regulated Fshb transcription.


Follistatin alleviates synovitis and articular cartilage degeneration induced by carrageenan.

  • Jun Yamada‎ et al.
  • International journal of inflammation‎
  • 2014‎

Activins are proinflammatory cytokines which belong to the TGFβ superfamily. Follistatin is an extracellular decoy receptor for activins. Since both activins and follistatin are expressed in articular cartilage, we hypothesized that activin-follistatin signaling participates in the process of joint inflammation and cartilage degeneration. To test this hypothesis, we examined the effects of follistatin in a carrageenan-induced mouse arthritis model. Synovitis induced by intra-articular injection of carrageenan was significantly alleviated by preinjection with follistatin. Macrophage infiltration into the synovial membrane was significantly reduced in the presence of follistatin. In addition, follistatin inhibited proteoglycan erosion induced by carrageenan in articular cartilage. These data indicate that activin-follistatin signaling is involved in joint inflammation and cartilage homeostasis. Our data suggest that follistatin can be a new therapeutic target for inflammation-induced articular cartilage degeneration.


Activin E is a TGFβ ligand that signals specifically through activin receptor-like kinase 7.

  • Kylie A Vestal‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Activins are one of the three distinct subclasses within the greater Transforming Growth Factor β (TGFβ) superfamily. First discovered for their critical roles in reproductive biology, activins have since been shown to alter cellular differentiation and proliferation. At present, members of the activin subclass include activin A (ActA), ActB, ActC, ActE, and the more distant members myostatin and GDF11. While the biological roles and signaling mechanisms of most activins class members have been well-studied, the signaling potential of ActE has remained largely unknown. Here, we characterized the signaling capacity of homodimeric ActE. Molecular modeling of the ligand:receptor complexes showed that ActC and ActE shared high similarity in both the type I and type II receptor binding epitopes. ActE signaled specifically through ALK7, utilized the canonical activin type II receptors, ActRIIA and ActRIIB, and was resistant to the extracellular antagonists follistatin and WFIKKN. In mature murine adipocytes, ActE invoked a SMAD2/3 response via ALK7, similar to ActC. Collectively, our results establish ActE as an ALK7 ligand, thereby providing a link between genetic and in vivo studies of ActE as a regulator of adipose tissue.


Differential regulation of follicle stimulating hormone by activin A and TGFB1 in murine gonadotropes.

  • A Jesse Gore‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2005‎

Activins stimulate the synthesis of follicle stimulating hormone (FSH) in pituitary gonadotropes, at least in part, by inducing transcription of its beta subunit (Fshb). Evidence from several laboratories studying transformed murine LbetaT2 gonadotropes indicates that activins signal through Smad-dependent and/or Smad-independent pathways, similar to those used by transforming growth factor beta-1 (TGFB1) in other cell types. Therefore, given common intracellular signaling mechanisms of these two ligands, we examined whether TGFBs can also induce transcription of Fshb in LbetaT2 cells as well as in purified primary murine gonadotropes.


Cloning of a novel signaling molecule, AMSH-2, that potentiates transforming growth factor beta signaling.

  • Nieves Ibarrola‎ et al.
  • BMC cell biology‎
  • 2004‎

Transforming growth factor-betas (TGF-betas), bone morphogenetic proteins (BMPs) and activins are important regulators of developmental cell growth and differentiation. Signaling by these factors is mediated chiefly by the Smad family of latent transcription factors.


Suppression of activin A signals inhibits growth of malignant pleural mesothelioma cells.

  • M A Hoda‎ et al.
  • British journal of cancer‎
  • 2012‎

Activins control the growth of several tumour types including thoracic malignancies. In the present study, we investigated their expression and function in malignant pleural mesothelioma (MPM).


Inhibin/activin expression in human and rodent liver: subunits α and βB as new players in human hepatocellular carcinoma?

  • K Frost‎ et al.
  • British journal of cancer‎
  • 2011‎

Activins and inhibins belong to the TGFβ-superfamily, which controls cell proliferation and differentiation in many organs. Activin A, the dimer of inhibin βA subunit, acts strongly anti-proliferative in hepatocytes. Little is known on the other activin/inhibin subunits in human liver and hepatocellular carcinoma (HCC).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: