Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 3,588 papers

Role of Activating Transcription Factor 4 in Murine Choroidal Neovascularization Model.

  • Hiroto Yasuda‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Neovascular age-related macular degeneration (nAMD) featuring choroidal neovascularization (CNV) is the principal cause of irreversible blindness in elderly people in the world. Integrated stress response (ISR) is one of the intracellular signals to be adapted to various stress conditions including endoplasmic reticulum (ER) stress. ISR signaling results in the upregulation of activating transcription factor 4 (ATF4), which is a mediator of ISR. Although recent studies have suggested ISR contributes to the progression of some age-related disorders, the effects of ATF4 on the development of CNV remain unclear. Here, we performed a murine model of laser-induced CNV and found that ATF4 was highly expressed in endothelial cells of the blood vessels of the CNV lesion site. Exposure to integrated stress inhibitor (ISRIB) reduced CNV formation, vascular leakage, and the upregulation of vascular endothelial growth factor (VEGF) in retinal pigment epithelium (RPE)-choroid-sclera complex. In human retinal microvascular endothelial cells (HRMECs), ISRIB reduced the level of ATF4 and VEGF induced by an ER stress inducer, thapsigargin, and recombinant human VEGF. Moreover, ISRIB decreased the VEGF-induced cell proliferation and migration of HRMECs. Collectively, our findings showed that pro-angiogenic effects of ATF4 in endothelial cells may be a potentially therapeutic target for patients with nAMD.


Activating transcription factor 4 drives the progression of diabetic cardiac fibrosis.

  • Yu Li‎ et al.
  • ESC heart failure‎
  • 2023‎

Diabetic cardiomyopathy (DC) is one of serious complications of diabetic patients. This study investigated the biological function of activating transcription factor 4 (ATF4) in DC.


Fibroblast growth factor 2 positively regulates expression of activating transcription factor 4 in osteoblasts.

  • Yurong Fei‎ et al.
  • Biochemical and biophysical research communications‎
  • 2010‎

Our previous studies showed that basic fibroblast growth factor 2 (FGF2) null mice display markedly reduced bone mass and bone formation. However, the mechanism by which FGF2 regulates bone mass or bone formation is not fully defined. Activating transcription factor 4 (ATF4), one member of activating transcription factor/cAMP response element binding family, is a transcription factor required for osteoblast terminal differentiation. Here we investigate the ability of FGF2 to increase expression of ATF4 in bone marrow stromal cells (BMSCs) and examine ATF4 expression in Fgf2(-/-) BMSCs. We found that FGF2 stimulated ATF4 mRNA expression as early as 20 min and increased ATF4 protein expression after three hours of treatment. BMSCs from Fgf2(+/+) and Fgf2(-/-) mice were cultured in osteogenesis medium. We observed reduced alkaline phosphatase staining, decreased mineralized nodules and reduced osteocalcin expression, and reduced expression of ATF4 in Fgf2(-/-) BMSC cultures compared to Fgf2(+/+) BMSCs. This study is the first demonstration that ATF4 expression can be stimulated by FGF2 in osteoblasts and that ATF4 expression is significantly reduced in differentiated Fgf2(-/-) BMSCs. These results suggest that impaired bone mass and bone formation in Fgf2 null mice may be due in part to reduced ATF4 expression.


Activating transcription factor 4-dependent hsa-miR-663a transcription mediates mTORC1/p70S6K1 signaling underleucine deprivation.

  • Junki Yamamura‎ et al.
  • Frontiers in nutrition‎
  • 2022‎

The mechanistic target of rapamycin complex 1 (mTORC1) is involved in nutrient-induced signaling and is a master regulator of cell growth and metabolism. Amino acid-deficient conditions affect mTORC1 activity; however, its upstream regulators warrant further investigation. MicroRNAs are key regulators of nutrient-related responses; therefore, the present study aimed to assess the leucine starvation-induced microRNA profile and its impact on mTORC1 activity. Transcriptome analysis of human hepatocellular carcinoma cells (HepG2) under leucine deprivation revealed that hsa-miR-663a and hsa-miR-1469 were altered in a transcription factor 4-dependent manner. Overexpression of these microRNAs induced phosphorylation of the ribosomal protein S6 kinase beta-1, a mTORC1 downstream target. Furthermore, hsa-miR-663a downregulated proline-rich Akt1 substrate of 40 kDa (PRAS40), one of the mTORC1 components. In summary, this study provides new insights into the regulatory role of microRNAs in amino acid metabolism and demonstrates alterations in microRNA profile under leucine deprivation in human hepatocytes.


Drosophila melanogaster activating transcription factor 4 regulates glycolysis during endoplasmic reticulum stress.

  • Ji Eun Lee‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2015‎

Endoplasmic reticulum (ER) stress results from an imbalance between the load of proteins entering the secretory pathway and the ability of the ER to fold and process them. The response to ER stress is mediated by a collection of signaling pathways termed the unfolded protein response, which plays important roles in development and disease. Here we show that in Drosophila melanogaster S2 cells, ER stress induces a coordinated change in the expression of genes involved in carbon metabolism. Genes encoding enzymes that carry out glycolysis were up-regulated, whereas genes encoding proteins in the tricarboxylic acid cycle and respiratory chain complexes were down-regulated. The unfolded protein response transcription factor Atf4 was necessary for the up-regulation of glycolytic enzymes and Lactate dehydrogenase (Ldh). Furthermore, Atf4 binding motifs in promoters for these genes could partially account for their regulation during ER stress. Finally, flies up-regulated Ldh and produced more lactate when subjected to ER stress. Together, these results suggest that Atf4 mediates a shift from a metabolism based on oxidative phosphorylation to one more heavily reliant on glycolysis, reminiscent of aerobic glycolysis or the Warburg effect observed in cancer and other proliferative cells.


Activating transcription factor 4 (ATF4) modulates post-synaptic development and dendritic spine morphology.

  • Jin Liu‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2014‎

The ubiquitously expressed activating transcription factor 4 (ATF4) has been variably reported to either promote or inhibit neuronal plasticity and memory. However, the potential cellular bases for these and other actions of ATF4 in brain are not well-defined. In this report, we focus on ATF4's role in post-synaptic synapse development and dendritic spine morphology. shRNA-mediated silencing of ATF4 significantly reduces the densities of PSD-95 and GluR1 puncta (presumed markers of excitatory synapses) in long-term cultures of cortical and hippocampal neurons. ATF4 knockdown also decreases the density of mushroom spines and increases formation of abnormally-long dendritic filopodia in such cultures. In vivo knockdown of ATF4 in adult mouse hippocampal neurons also reduces mushroom spine density. In contrast, ATF4 over-expression does not affect the densities of PSD-95 puncta or mushrooom spines. Regulation of synaptic puncta and spine densities by ATF4 requires its transcriptional activity and is mediated at least in part by indirectly controlling the stability and expression of the total and active forms of the actin regulatory protein Cdc42. In support of such a mechanism, ATF4 silencing decreases the half-life of Cdc42 in cultured cortical neurons from 31.5 to 18.5 h while knockdown of Cdc42, like ATF4 knockdown, reduces the densities of mushroom spines and PSD-95 puncta. Thus, ATF4 appears to participate in neuronal development and plasticity by regulating the post-synaptic development of synapses and dendritic mushroom spines via a mechanism that includes regulation of Cdc42 levels.


Activating transcription factor 4 promotes angiogenesis of breast cancer through enhanced macrophage recruitment.

  • Chen Liu‎ et al.
  • BioMed research international‎
  • 2015‎

Angiogenesis plays an important role in the progression of tumor. Besides being regulated by tumor cells per se, tumor angiogenesis is also influenced by stromal cells in tumor microenvironment (TME), for example, tumor associated macrophages (TAMs). Activating transcription factor 4 (ATF4), a member of the ATF/CREB family, has been reported to be related to tumor angiogenesis. In this study, we found that exogenous overexpression of ATF4 in mouse breast cancer cells promotes tumor growth via increasing tumor microvascular density. However, ATF4 overexpression failed to increase the expression level of a series of proangiogenic factors including vascular endothelial growth factor A (VEGFA) in tumor cells in this model. Thus, we further investigated the infiltration of proangiogenic macrophages in tumor tissues and found that ATF4-overexpressing tumors could recruit more macrophages via secretion of macrophage colony stimulating factor (M-CSF). Overall, we concluded that exogenous overexpression of ATF4 in breast cancer cells may facilitate the recruitment of macrophages into tumor tissues and promote tumor angiogenesis and tumor growth indirectly.


Activating transcription factor 4 regulates hypoxia inducible factor 1α in chronic hypoxia in pancreatic cancer cells.

  • Nancy T Chee‎ et al.
  • Oncology reports‎
  • 2023‎

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and difficult to treat cancers with tumors typically exhibiting high levels of chronic hypoxia. Hypoxia activates hypoxia-inducible factors (HIFs) that mediate cellular responses to adapt to low oxygen environments. Hypoxia also causes endoplasmic reticulum (ER) stress, increasing activating transcription factor 4 (ATF4), a master regulator of the unfolded protein response (UPR) pathway that mediates cellular response to ER stress. ATF4 is overexpressed in PDAC and is associated with poor prognoses. While ATF4 promotes cell proliferation and tumorigenesis, most studies have been conducted under normoxia or acute hypoxia. The functions of ATF4 in chronic hypoxia remain largely unexplored. Using siRNA knockdown experiments of healthy skin fibroblast cells WS1 and PDAC cell lines PANC-1 and Mia-PaCa2 to analyze mRNA and protein expression levels, a novel ATF4 function was identified, in which it decreases HIF2α mRNA and increases HIF1α mRNA in chronic hypoxia while having no effect in acute hypoxia. A scratch assay was used to show that ATF4 decreases cell migration in chronic hypoxia as opposed to the increase in cell migration ATF4 imparts in acute hypoxia. Colony formation assay and cell viability assay showed that ATF4 promotes colony formation and cell viability in both chronic and acute hypoxia. In addition to the differential response of ATF4 in chronic hypoxia compared with acute hypoxia, this is the first time ATF4 has been implicated in regulation of response to hypoxia via interaction with HIF proteins in PDAC.


Intermedin/adrenomedullin 2 is a stress-inducible gene controlled by activating transcription factor 4.

  • Irina E Kovaleva‎ et al.
  • Gene‎
  • 2016‎

Intermedin or adrenomedullin 2 is a set of calcitonin-related peptides with a putative tumor angiogenesis promoting activity that are formed by proteolytic processing of the ADM2 gene product. It has been proposed that the ADM2 gene is regulated by the estrogen response element (ERE) and hypoxia response elements (HRE) found within its promoter region. In the present study we reveal a functional mechanism by which ADM2 participates in the unfolded protein response (UPR) and in responses to the mitochondrial respiration chain inhibition. We show that the ADM2 gene is controlled by activating transcription factor 4 (ATF4), the principal regulator of the integrated stress response (ISR). The upregulation of ADM2 mRNA could be prevented by the pharmacological ISR inhibitor ISRIB and by the downregulation of ATF4 with specific shRNA, while ectopic expression of ATF4 cDNA resulted in a notable increase in ADM2 gene transcription. A potential ATF4-binding site was identified in the coding region of the ADM2 gene and the requirement of this site during the ATF4-mediated ADM2 gene promoter activation was validated by the luciferase reporter assay. Mutagenesis of the putative ATF4-response element prevented the induction of luciferase activity in response to ATF4 overproduction, as well as in response to mitochondrial electron transfer chain inhibition by piericidin A and ER stress induction by tunicamycin and brefeldin A. Since ADM2 was shown to inhibit ATF4 expression during myocardial ER stress, a feedback mechanism could be proposed for the ADM2 regulation under ER stress conditions.


Upregulation of the coagulation factor VII gene during glucose deprivation is mediated by activating transcription factor 4.

  • Katherine R Cronin‎ et al.
  • PloS one‎
  • 2012‎

Constitutive production of blood coagulation proteins by hepatocytes is necessary for hemostasis. Stressful conditions trigger adaptive cellular responses and delay processing of most proteins, potentially affecting plasma levels of proteins secreted exclusively by hepatocytes. We examined the effect of glucose deprivation on expression of coagulation proteins by the human hepatoma cell line, HepG2.


Activating transcription factor 4 mediates adaptation of human glioblastoma cells to hypoxia and temozolomide.

  • Nadja I Lorenz‎ et al.
  • Scientific reports‎
  • 2021‎

The integrated stress response (ISR) is a central cellular adaptive program that is activated by diverse stressors including ER stress, hypoxia and nutrient deprivation to orchestrate responses via activating transcription factor 4 (ATF4). We hypothesized that ATF4 is essential for the adaptation of human glioblastoma (GB) cells to the conditions of the tumor microenvironment and is contributing to therapy resistance against chemotherapy. ATF4 induction in GB cells was modulated pharmacologically and genetically and investigated in the context of temozolomide treatment as well as glucose and oxygen deprivation. The relevance of the ISR was analyzed by cell death and metabolic measurements under conditions to approximate aspects of the GB microenvironment. ATF4 protein levels were induced by temozolomide treatment. In line, ATF4 gene suppressed GB cells (ATF4sh) displayed increased cell death and decreased survival after temozolomide treatment. Similar results were observed after treatment with the ISR inhibitor ISRIB. ATF4sh and ISRIB treated GB cells were sensitized to hypoxia-induced cell death. Our experimental study provides evidence for an important role of ATF4 for the adaptation of human GB cells to conditions of the tumor microenvironment characterized by low oxygen and nutrient availability and for the development of temozolomide resistance. Inhibiting the ISR in GB cells could therefore be a promising therapeutic approach.


Downregulation of activating transcription factor 4 attenuates lysophosphatidycholine-induced inflammation via the NF-κB pathway.

  • Yingchao Gong‎ et al.
  • European journal of pharmacology‎
  • 2021‎

Lysophosphatidycholine (LPC) is the main active component in oxidized low-density lipoprotein (ox-LDL). The pathological function of ox-LDL has been broadly studied in atherosclerosis. However, the specific relationship between LPC-induced unfolded protein response (UPR) and inflammation in human umbilical vein endothelial cells (HUVECs) remains elusive. In this study, we found elevated serum levels of LPC in atherosclerotic patients. LPC stimulation resulted in elevated secretion of interleukin (IL)-6 and IL-8 in HUVECs, accompanied with the activation of ER stress and NF-κB pathway. Additionally, suppression of ER stress by 4-phenylbutric acid (4-PBA), an ER stress inhibitor, alleviated the activation of the NF-κB pathway and secretion of inflammatory factors. Moreover, activating transcription factor 4 (ATF4) silencing inhibited the transcription and secretion of IL-6 and IL-8, and suppressed the adhesion of THP-1 cells to HUVECs. Activation of the NF-κB pathway and expression of its upstream factors, including Toll like receptor 4 and cellular inhibitor of apoptosis, were also inhibited by ATF4 silencing. The present findings suggest that suppression of UPR alleviates LPC-induced HUVECs inflammation by inhibition of NF-κB pathway, and indicate ATF4 as a potential target for the treatment of atherosclerosis.


Activating transcription factor 4 regulates mitochondrial content, morphology, and function in differentiating skeletal muscle myotubes.

  • Jonathan M Memme‎ et al.
  • American journal of physiology. Cell physiology‎
  • 2023‎

Mitochondrial function is widely recognized as a major determinant of health, emphasizing the importance of understanding the mechanisms promoting mitochondrial quality in various tissues. Recently, the mitochondrial unfolded protein response (UPRmt) has come into focus as a modulator of mitochondrial homeostasis, particularly in stress conditions. In muscle, the necessity for activating transcription factor 4 (ATF4) and its role in regulating mitochondrial quality control (MQC) have yet to be determined. We overexpressed (OE) and knocked down ATF4 in C2C12 myoblasts, differentiated them to myotubes for 5 days, and subjected them to acute (ACA) or chronic (CCA) contractile activity. ATF4 mediated myotube formation through the regulated expression of myogenic factors, mainly Myc and myoblast determination protein 1 (MyoD), and suppressed mitochondrial biogenesis basally through peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1α). However, our data also show that ATF4 expression levels are directly related to mitochondrial fusion and dynamics, UPRmt activation, as well as lysosomal biogenesis and autophagy. Thus, ATF4 promoted enhanced mitochondrial networking, protein handling, and the capacity for clearance of dysfunctional organelles under stress conditions, despite lower levels of mitophagy flux with OE. Indeed, we found that ATF4 promoted the formation of a smaller pool of high-functioning mitochondria that are more responsive to contractile activity and have higher oxygen consumption rates and lower reactive oxygen species levels. These data provide evidence that ATF4 is both necessary and sufficient for mitochondrial quality control and adaptation during both differentiation and contractile activity, thus advancing the current understanding of ATF4 beyond its canonical functions to include the regulation of mitochondrial morphology, lysosomal biogenesis, and mitophagy in muscle cells.


Activating Transcription Factor 4 (ATF4) modulates Rho GTPase levels and function via regulation of RhoGDIα.

  • Silvia Pasini‎ et al.
  • Scientific reports‎
  • 2016‎

In earlier studies, we showed that ATF4 down-regulation affects post-synaptic development and dendritic spine morphology in neurons through increased turnover of the Rho GTPase Cell Division Cycle 42 (Cdc42) protein. Here, we find that ATF4 down-regulation in both hippocampal and cortical neuron cultures reduces protein and message levels of RhoGDIα, a stabilizer of the Rho GTPases including Cdc42. This effect is rescued by an shATF4-resistant active form of ATF4, but not by a mutant that lacks transcriptional activity. This is, at least in part, due to the fact that Arhgdia, the gene encoding RhoGDIα, is a direct transcriptional target of ATF4 as is shown in ChIP assays. This pathway is not restricted to neurons. This is seen in an impairment of cell migration on ATF4 reduction in non-neuronal cells. In conclusion, we have identified a new cellular pathway in which ATF4 regulates the expression of RhoGDIα that in turn affects Rho GTPase protein levels, and thereby, controls cellular functions as diverse as memory and cell motility.


Activating transcription factor 4 aggravates angiotensin II-induced cell dysfunction in human vascular aortic smooth muscle cells via transcriptionally activating fibroblast growth factor 21.

  • Ke Tao‎ et al.
  • The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology‎
  • 2022‎

Abdominal aortic aneurysm (AAA) is a life-threatening disorder worldwide. Fibroblast growth factor 21 (FGF21) was shown to display a high level in the plasma of patients with AAA; however, its detailed functions underlying AAA pathogenesis are unclear. An in vitro AAA model was established in human aortic vascular smooth muscle cells (HASMCs) by angiotensin II (Ang-II) stimulation. Cell counting kit-8, wound healing, and Transwell assays were utilized for measuring cell proliferation and migration. RT-qPCR was used for detecting mRNA expression of FGF21 and activating transcription factor 4 (ATF4). Western blotting was utilized for assessing protein levels of FGF21, ATF4, and markers for the contractile phenotype of HASMCs. ChIP and luciferase reporter assays were implemented for identifying the binding relation between AFT4 and FGF21 promoters. FGF21 and ATF4 were both upregulated in Ang-II-treated HASMCs. Knocking down FGF21 attenuated Ang-II-induced proliferation, migration, and phenotype switch of HASMCs. ATF4 activated FGF21 transcription by binding to its promoter. FGF21 overexpression reversed AFT4 silencing-mediated inhibition of cell proliferation, migration, and phenotype switch. ATF4 transcriptionally upregulates FGF21 to promote the proliferation, migration, and phenotype switch of Ang-II-treated HASMCs.


Brain-Derived Neurotrophic Factor Elevates Activating Transcription Factor 4 (ATF4) in Neurons and Promotes ATF4-Dependent Induction of Sesn2.

  • Jin Liu‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2018‎

Activating transcription factor 4 (ATF4) plays important physiologic roles in the brain including regulation of learning and memory as well as neuronal survival and death. Yet, outside of translational regulation by the eIF2α-dependent stress response pathway, there is little information about how its levels are controlled in neurons. Here, we show that brain-derived neurotrophic factor (BDNF) promotes a rapid and sustained increase in neuronal ATF4 transcripts and protein levels. This increase is dependent on tropomyosin receptor kinase (TrkB) signaling, but independent of levels of phosphorylated eIF2α. The elevation in ATF4 protein occurs both in nuclei and processes. Transcriptome analysis revealed that ATF4 mediates BDNF-promoted induction of Sesn2 which encodes Sestrin2, a protector against oxidative and genotoxic stresses and a mTor complex 1 inhibitor. In contrast, BDNF-elevated ATF4 did not affect expression of a number of other known ATF4 targets including several with pro-apoptotic activity. The capacity of BDNF to elevate neuronal ATF4 may thus represent a means to maintain this transcription factor at levels that provide neuroprotection and optimal brain function without risk of triggering neurodegeneration.


Intestinal activating transcription factor 4 regulates stress-related behavioral alterations via paraventricular thalamus in male mice.

  • Feixiang Yuan‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Chronic stress induces depression- and anxiety-related behaviors, which are common mental disorders accompanied not only by dysfunction of the brain but also of the intestine. Activating transcription factor 4 (ATF4) is a stress-induced gene, and we previously show that it is important for gut functions; however, the contribution of the intestinal ATF4 to stress-related behaviors is not known. Here, we show that chronic stress inhibits the expression of ATF4 in gut epithelial cells. ATF4 overexpression in the colon relieves stress-related behavioral alterations in male mice, as measured by open-field test, elevated plus-maze test, and tail suspension test, whereas intestine-specific ATF4 knockout induces stress-related behavioral alterations in male mice. Furthermore, glutamatergic neurons are inhibited in the paraventricular thalamus (PVT) of two strains of intestinal ATF4-deficient mice, and selective activation of these neurons alleviates stress-related behavioral alterations in intestinal ATF4-deficient mice. The highly expressed gut-secreted peptide trefoil factor 3 (TFF3) is chosen from RNA-Seq data from ATF4 deletion mice and demonstrated decreased in gut epithelial cells, which is directly regulated by ATF4. Injection of TFF3 reverses stress-related behaviors in ATF4 knockout mice, and the beneficial effects of TFF3 are blocked by inhibiting PVT glutamatergic neurons using DREADDs. In summary, this study demonstrates the function of ATF4 in the gut-brain regulation of stress-related behavioral alterations, via TFF3 modulating PVT neural activity. This research provides evidence of gut signals regulating stress-related behavioral alterations and identifies possible drug targets for the treatment of stress-related behavioral disorders.


Transcription factor activating protein 4 is synthetically lethal and a master regulator of MYCN-amplified neuroblastoma.

  • Shuobo Boboila‎ et al.
  • Oncogene‎
  • 2018‎

Despite the identification of MYCN amplification as an adverse prognostic marker in neuroblastoma, MYCN inhibitors have yet to be developed. Here, by integrating evidence from a whole-genome shRNA library screen and the computational inference of master regulator proteins, we identify transcription factor activating protein 4 (TFAP4) as a critical effector of MYCN amplification in neuroblastoma, providing a novel synthetic lethal target. We demonstrate that TFAP4 is a direct target of MYCN in neuroblastoma cells, and that its expression and activity strongly negatively correlate with neuroblastoma patient survival. Silencing TFAP4 selectively inhibits MYCN-amplified neuroblastoma cell growth both in vitro and in vivo, in xenograft mouse models. Mechanistically, silencing TFAP4 induces neuroblastoma differentiation, as evidenced by increased neurite outgrowth and upregulation of neuronal markers. Taken together, our results demonstrate that TFAP4 is a key regulator of MYCN-amplified neuroblastoma and may represent a valuable novel therapeutic target.


Critical role of activating transcription factor 4 in the anabolic actions of parathyroid hormone in bone.

  • Shibing Yu‎ et al.
  • PloS one‎
  • 2009‎

Parathyroid hormone (PTH) is a potent anabolic agent for the treatment of osteoporosis. However, its mechanism of action in osteoblast and bone is not well understood. In this study, we show that the anabolic actions of PTH in bone are severely impaired in both growing and adult ovariectomized mice lacking bone-related activating transcription factor 4 (ATF4). Our study demonstrates that ATF4 deficiency suppresses PTH-stimulated osteoblast proliferation and survival and abolishes PTH-induced osteoblast differentiation, which, together, compromise the anabolic response. We further demonstrate that the PTH-dependent increase in osteoblast differentiation is correlated with ATF4-dependent up-regulation of Osterix. This regulation involves interactions of ATF4 with a specific enhancer sequence in the Osterix promoter. Furthermore, actions of PTH on Osterix require this same element and are associated with increased binding of ATF4 to chromatin. Taken together these experiments establish a fundamental role for ATF4 in the anabolic actions of PTH on the skeleton.


Activating transcription factor 4-dependent lactate dehydrogenase activation as a protective response to amyloid beta toxicity.

  • Teresa Niccoli‎ et al.
  • Brain communications‎
  • 2021‎

Accumulation of amyloid beta peptides is thought to initiate the pathogenesis of Alzheimer's disease. However, the precise mechanisms mediating their neurotoxicity are unclear. Our microarray analyses show that, in Drosophila models of amyloid beta 42 toxicity, genes involved in the unfolded protein response and metabolic processes are upregulated in brain. Comparison with the brain transcriptome of early-stage Alzheimer's patients revealed a common transcriptional signature, but with generally opposing directions of gene expression changes between flies and humans. Among these differentially regulated genes, lactate dehydrogenase (Ldh) was up-regulated by the greatest degree in amyloid beta 42 flies and the human orthologues (LDHA and LDHB) were down-regulated in patients. Functional analyses revealed that either over-expression or inhibition of Ldh by RNA interference (RNAi) slightly exacerbated climbing defects in both healthy and amyloid beta 42-induced Drosophila. This suggests that metabolic responses to lactate dehydrogenase must be finely-tuned, and that its observed upregulation following amyloid beta 42 production could potentially represent a compensatory protection to maintain pathway homeostasis in this model, with further manipulation leading to detrimental effects. The increased Ldh expression in amyloid beta 42 flies was regulated partially by unfolded protein response signalling, as ATF4 RNAi diminished the transcriptional response and enhanced amyloid beta 42-induced climbing phenotypes. Further functional studies are required to determine whether Ldh upregulation provides compensatory neuroprotection against amyloid beta 42-induced loss of activating transcription factor 4 activity and endoplasmatic reticulum stress. Our study thus reveals dysregulation of lactate dehydrogenase signalling in Drosophila models and patients with Alzheimer's disease, which may lead to a detrimental loss of metabolic homeostasis. Importantly, we observed that down-regulation of ATF4-dependent endoplasmic reticulum-stress signalling in this context appears to prevent Ldh compensation and to exacerbate amyloid beta 42-dependent neuronal toxicity. Our findings, therefore, suggest caution in the use of therapeutic strategies focussed on down-regulation of this pathway for the treatment of Alzheimer's disease, since its natural response to the toxic peptide may induce beneficial neuroprotective effects.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: