Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 658 papers

Acrosome reaction inactivation in sea urchin sperm.

  • A Guerrero‎ et al.
  • Biochimica et biophysica acta‎
  • 1998‎

Acrosome reaction inactivation (ARI) is a process that renders sperm irreversibly refractory to the egg jelly (the natural inducer of the acrosome reaction, AR). This process triggered by the egg jelly, is associated with an increase in [Ca2+]i. However, we show here that a rise in [Ca2+]i alone is not sufficient to induce ARI, since artificially increasing [Ca2+]i with either an ionophore or rising external pH, does not trigger ARI. Contrary to the AR which strictly requires Ca2+, ARI can be triggered almost equally well by Sr2+. On the other hand, Mn2+ inhibits ARI and, as we showed earlier, does not affect AR. These observations indicate that the mechanisms involved in ARI differ from those leading to AR. In addition, we report here that high external pH (a non-physiological inducer of AR) triggers the AR in previously inactivated sperm by opening the same Ca2+ channels activated by the egg jelly. Considering that the opening of Ca2+ channels is one of the earliest responses triggered by the egg jelly and that ARI requires the egg jelly receptor to be activated, we have concluded that ARI involves the uncoupling between the egg jelly receptor and Ca2+ channels. Furthermore, intracellular pH (pHi) determinations, in the presence or absence of ionomycin to substitute for the uncoupled Ca2+ channels, indicate that pHi regulation is also impaired in inactivated sperm. In conclusion, ARI is a manifestation of the uncoupling of the egg jelly receptor from the different ion transport systems required for the acrosome reaction.


Ezrin protects bovine spermatozoa from spontaneous acrosome reaction.

  • Y Huta‎ et al.
  • Theriogenology‎
  • 2020‎

To interact and penetrate the egg, the spermatozoon must undergo a maturation step called the acrosome reaction (AR) in close proximity to the egg. This process can take place only after a series of biochemical changes to the sperm occur in the female reproductive tract, collectively called capacitation. Spermatozoa can undergo spontaneous-acrosome reaction (sAR) before reaching the vicinity of the egg, preventing successful fertilization. Several mechanisms were shown to protect spermatozoa from undergoing sAR. Here we describe the involvement of the actin cross-linker, Ezrin in the mechanism that protects spermatozoa from sAR. Inhibition of Ezrin stimulates sAR and inhibits actin polymerization. Ezrin is highly phosphorylated/activated during the first hour of the capacitation process, and its phosphorylation rate is subsequently decreased. Ezrin phosphorylation depends on protein kinase A (PKA) and calmodulin kinase II (CaMKII) activities, and to some extent on phosphatidyl-inositol-4-kinase (PI4K) activity. Inhibition of these three kinases stimulates sAR, in which the effect of PI4K inhibition, but not PKA or CaMKII inhibition, can be reversed by increasing p-Ezrin using a phosphatase inhibitor. All together, we showed that three kinases mediate Ezrin activation during spermatozoa capacitation, leading to actin polymerization in a mechanism that prevents sAR.


The Fer tyrosine kinase protects sperm from spontaneous acrosome reaction.

  • Elina Grinshtain‎ et al.
  • Developmental biology‎
  • 2022‎

The physiological acrosome reaction occurs after mammalian spermatozoa undergo a process called capacitation in the female reproductive tract. Only acrosome reacted spermatozoon can penetrate the egg zona-pellucida and fertilize the egg. Sperm also contain several mechanisms that protect it from undergoing spontaneous acrosome reaction (sAR), a process that can occur in sperm before reaching proximity to the egg and that abrogates fertilization. We previously showed that calmodulin-kinase II (CaMKII) and phospholipase D (PLD) are involved in preventing sAR through two distinct pathways that enhance F-actin formation during capacitation. Here, we describe a novel additional pathway involving the tyrosine kinase Fer in a mechanism that also prevents sAR by enhancing actin polymerization during sperm capacitation. We further show that protein-kinase A (PKA) and the tyrosine-kinase Src, as well as PLD, direct Fer phosphorylation/activation. Activated Fer inhibits the Ser/Thr phosphatase PP1, thereby leading to CaMKII activation, actin polymerization, and sAR inhibition.


Globozoospermia and lack of acrosome formation in GM130-deficient mice.

  • Feng Han‎ et al.
  • Cell death & disease‎
  • 2017‎

Globozoospermia is a common reproductive disorder that causes male infertility in humans, and the malformation or loss of acrosomes is the prominent feature of this disease. Although the acrosome is thought to be derived from the Golgi apparatus, the detailed molecular mechanisms remain unclear. GM130 is a cis-side localized Golgi matrix protein,whereas the physiological functions of this protein remain elusive. Here we showed that inactivation of GM130-caused male infertility in mouse model. The primary defects were the absence of acrosomes, round sperm heads, and aberrant assembly of the mitochondrial sheath, which comprise the characteristic features of human globozoospermia. Further investigation indicated that loss of GM130 did not affect the secretion of pro-acrosomic vesicles, whereas the vesicles failed to fuse into a single large acrosome vesicle. Co-localization of the adaptor protein complex AP1 and trans-Golgi network (TGN) protein TGN46 was disrupted, suggesting that the malformation of acrosomes is most likely due to the defect in the sorting and coating of Golgi-derived pro-acrosomic vesicles. Thus, the GM130-deficient mouse provides a valuable model for investigating the etiology of human globozoospermia.


Exogenous gamma-aminobutyric acid addition enhances porcine sperm acrosome reaction.

  • Shouhei Kurata‎ et al.
  • Animal science journal = Nihon chikusan Gakkaiho‎
  • 2022‎

The widely used porcine artificial insemination procedure involves the use of liquid-stored semen because it is difficult to control the quality of frozen-thawed porcine sperm. Therefore, there is a high demand for porcine semen. The control and enhancement of sperm function are required for the efficient reproduction of pigs. We previously reported that gamma-aminobutyric acid (GABA) enhanced sperm capacitation and acrosome reaction in mice. In this study, we demonstrated the presence of GABAA receptors in porcine sperm acrosome. Furthermore, we investigated the GABA effects on porcine sperm function. We did not detect any marked effect of GABA on sperm motility and tyrosine phosphorylation of sperm proteins. However, GABA promoted acrosome reaction, which was suppressed by a selective GABAA receptor antagonist. GABA binds to GABAA receptors, resulting in chloride ion influx. We found that treatment with 1 μM GABA increased the intracellular concentration of chloride ion in the sperm. In addition, the GABA concentration effective in the acrosome reaction was correlated with the porcine sperm concentration. These results indicate that GABA and its receptors can act as modulators of acrosome reaction. This study is the first to report the effects of GABA on porcine sperm function.


Probing spermiogenesis: a digital strategy for mouse acrosome classification.

  • Alessandro Taloni‎ et al.
  • Scientific reports‎
  • 2017‎

Classification of morphological features in biological samples is usually performed by a trained eye but the increasing amount of available digital images calls for semi-automatic classification techniques. Here we explore this possibility in the context of acrosome morphological analysis during spermiogenesis. Our method combines feature extraction from three dimensional reconstruction of confocal images with principal component analysis and machine learning. The method could be particularly useful in cases where the amount of data does not allow for a direct inspection by trained eye.


Sperm surface components involved in the control of the acrosome reaction.

  • G Oliphant‎ et al.
  • The American journal of anatomy‎
  • 1985‎

Several lines of evidence suggest that decapacitation of sperm occurs normally in the male reproductive tract, and as a result the acrosome is stabilized and the acrosome reaction is controlled. Since the defining experiments in 1951, where decapacitation was reversed in the female reproductive tract by capacitation, investigations have pursued the molecular events of this process. This review attempts to examine critically the older literature and compare that perspective with the current theories. The theories for decapacitation of sperm include the possible role of a peptide decapacitation factor, a glycoprotein-mediated steroid transfer to the sperm, masking of a galactosyl transferase by some macromolecule-containing carbohydrate, preclusion of calcium influx by a binding protein, and sperm interaction with the acrosome stabilizing factor. Although these theories are diverse, there are some unifying aspects. However, there remain some major unanswered questions. For example, although we point to some circumstantial evidence that infers a single decapacitation factor, this needs to be further substantiated. It is concluded that with the purification of a macromolecule involved in capacitation, specific proposals on the mechanism of capacitation, and new tools to evaluate the capacitation process, it is likely that another decade will not pass without emergence of a unifying molecular theory of sperm capacitation.


Flotillin-2 is an acrosome-related protein involved in mouse spermiogenesis.

  • Yibo Wu‎ et al.
  • Journal of biomedical research‎
  • 2012‎

SPERMATOGENESIS IS A COMPLEX PROCESS OF TERMINAL DIFFERENTIATION BY WHICH MATURE SPERMS ARE GENERATED, AND IT CAN BE DIVIDED INTO THREE PHASES: mitosis, meiosis and spermiogenesis. In a previous study, we established a series of proteomic profiles for spermatogenesis to understand the regulation of male fertility and infertility. Here, we further investigated the localization and the role of flotillin-2 in spermiogenesis. Flotillin-2 expression was investigated in the testis of male CD1 mice at various developmental stages of spermatogenesis by using Western blotting, immunohistochemistry and immunofluorescence. Flotillin-2 was knocked down in vivo in three-week-old male mice using intratesticular injection of small inhibitory RNA (siRNA), and sperm abnormalities were assessed three weeks later. Flotillin-2 was expressed at high levels in male germ cells during spermatogenesis. Flotillin-2 immunoreactivity was observed in pachytene spermatocytes as a strong dot-shaped signal and in round spermatids as a sickle-shaped distribution ahead of the acrosome. Immunofluorescence confirmed flotillin-2 was localized in front of the acrosome in round spermatids, indicating that flotillin-2 was localized to the Golgi apparatus. Knockdown of flotillin-2 in vivo led to a significant increase in head sperm abnormalities isolated from the cauda epididymis, compared with control siRNA-injected testes. This study indicates that flotillin-2 is a novel Golgi-related protein involved in sperm acrosome biogenesis.


Sperm acrosome overgrowth and infertility in mice lacking chromosome 18 pachytene piRNA.

  • Heejin Choi‎ et al.
  • PLoS genetics‎
  • 2021‎

piRNAs are small non-coding RNAs required to maintain genome integrity and preserve RNA homeostasis during male gametogenesis. In murine adult testes, the highest levels of piRNAs are present in the pachytene stage of meiosis, but their mode of action and function remain incompletely understood. We previously reported that BTBD18 binds to 50 pachytene piRNA-producing loci. Here we show that spermatozoa in gene-edited mice lacking a BTBD18 targeted pachytene piRNA cluster on Chr18 have severe sperm head dysmorphology, poor motility, impaired acrosome exocytosis, zona pellucida penetration and are sterile. The mutant phenotype arises from aberrant formation of proacrosomal vesicles, distortion of the trans-Golgi network, and up-regulation of GOLGA2 transcripts and protein associated with acrosome dysgenesis. Collectively, our findings reveal central role of pachytene piRNAs in controlling spermiogenesis and male fertility.


Loss of CEP70 function affects acrosome biogenesis and flagella formation during spermiogenesis.

  • Qiang Liu‎ et al.
  • Cell death & disease‎
  • 2021‎

The spermatogenesis process is complex and delicate, and any error in a step may cause spermatogenesis arrest and even male infertility. According to our previous transcriptomic data, CEP70 is highly expressed throughout various stages of human spermatogenesis, especially during the meiosis and deformation stages. CEP70 is present in sperm tails and that it exists in centrosomes as revealed by human centrosome proteomics. However, the specific mechanism of this protein in spermatogenesis is still unknown. In this study, we found a heterozygous site of the same mutation on CEP70 through mutation screening of patients with clinical azoospermia. To further verify, we deleted CEP70 in mice and found that it caused abnormal spermatogenesis, leading to male sterility. We found that the knockout of CEP70 did not affect the prophase of meiosis I, but led to male germ-cell apoptosis and abnormal spermiogenesis. By transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis, we found that the deletion of CEP70 resulted in the abnormal formation of flagella and acrosomes during spermiogenesis. Tandem mass tag (TMT)-labeled quantitative proteomic analysis revealed that the absence of CEP70 led to a significant decrease in the proteins associated with the formation of the flagella, head, and acrosome of sperm, and the microtubule cytoskeleton. Taken together, our results show that CEP70 is essential for acrosome biogenesis and flagella formation during spermiogenesis.


The Autophagy Marker LC3 Is Processed during the Sperm Capacitation and the Acrosome Reaction and Translocates to the Acrosome Where It Colocalizes with the Acrosomal Membranes in Horse Spermatozoa.

  • Ines M Aparicio‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Despite its importance in somatic cells and during spermatogenesis, little is known about the role that autophagy may play in ejaculated spermatozoa. Our aim was to investigate whether the molecular components of autophagy, such as microtubule-associated protein 1 light chain 3 (LC3), are activated in stallion spermatozoa during the capacitation and acrosome reaction and if this activation could modulate these biological processes. To analyze the autophagy turnover, LC3I and LC3II proteins were assessed by western blotting, and the ratio between both proteins (LC3II/LC3I) was calculated. In somatic cells, this ratio indicates that autophagy has been activated and similar LC3 processing has been described in mammalian spermatozoa. The subcellular localization of autophagy-related proteins was assessed by immunofluorescence with specific antibodies that recognized Atg16, Beclin-1, and LC3. The colocalization of acrosomal membranes (PNA) and LC3 was studied by confocal microcopy, and the acrosome reacted cells were quantified by flow cytometry. The incubation of stallion sperm in capacitating conditions (BWW; 3 h) significantly increased LC3 processing. This increment was three to four times higher after the induction of the acrosome reaction in these cells. LC3 was mainly expressed in the head in mature ejaculated sperm showing a clear redistribution from the post-acrosomal region to the acrosome upon the incubation of sperm in capacitating conditions (BWW, 3 h). After the induction of the acrosome reaction, LC3 colocalized with the acrosome or the apical plasmalemma membranes in the head of the stallion spermatozoa. The inhibition or activation of autophagy-related pathways in the presence of autophagy activators (STF-62247) or inhibitors (E-64d, chloroquine) significantly increased LC3 processing and increased the percent of acrosome reacted cells, whereas 3-methyladenine almost completely inhibited LC3 processing and the acrosome reaction. In conclusion, we found that sperm capacitation and acrosome reaction could be regulated by autophagy components in sperm cells ex vivo by processes that might be independent of the intraluminal pH of the acrosome and dependent of LC3 lipidation. It can be speculated that, in stallion sperm, a form of noncanonical autophagy utilizes some components of autophagy machinery to facilitate the acrosome reaction.


Assembly of spermatid acrosome depends on microtubule organization during mammalian spermiogenesis.

  • Ricardo D Moreno‎ et al.
  • Developmental biology‎
  • 2006‎

The acrosome is a secretory vesicle attached to the nucleus of the sperm. Our hypothesis is that microtubules participate in the membrane traffic between the Golgi apparatus and acrosome during the first steps of spermatid differentiation. In this work, we show that nocodazole-induced microtubule depolarization triggers the formation of vesicles of the acrosomal membrane, without detaching the acrosome from the nuclear envelope. Nocodazole also induced fragmentation of the Golgi apparatus as determined by antibodies against giantin, golgin-97 and GM130, and electron microscopy. Conversely, neither the acrosome nor the Golgi apparatus underwent fragmentation in elongating spermatids (acrosome- and maturation-phase). The microtubule network of round spermatids of azh/azh mice also became disorganized. Disorganization correlated with fragmentation of the acrosome and the Golgi apparatus, as evaluated by domain-specific markers. Elongating spermatids (acrosome and maturation-phase) of azh/azh mice also had alterations in microtubule organization, acrosome, and Golgi apparatus. Finally, the spermatozoa of azh/azh mice displayed aberrant localization of the acrosomal protein sp56 in both the post-acrosomal and flagellum domains. Our results suggest that microtubules participate in the formation and/or maintenance of the structure of the acrosome and the Golgi apparatus and that the organization of the microtubules in round spermatids is key to sorting acrosomal proteins to the proper organelle.


Loss of ACTL7A causes small head sperm by defective acrosome-acroplaxome-manchette complex.

  • Yini Zhang‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2023‎

Actin-like 7 A (ACTL7A) is essential for acrosome formation, fertilization and early embryo development. ACTL7A variants cause acrosome detachment responsible for male infertility and early embryonic arrest. In this study, we aim to explore the additional functions of ACTL7A beyond the process of acrosome biogenesis and investigate the possible underlying mechanisms.


Head birefringence properties are associated with acrosome reaction, sperm motility and morphology.

  • M Cristina Magli‎ et al.
  • Reproductive biomedicine online‎
  • 2012‎

Birefringence in sperm heads reflects an organized and very compacted texture, indicating nuclear and acrosomal structural normality. This study performed a direct analysis of the acrosome integrity in single spermatozoa to verify whether a pattern of total or partial head birefringence reflected the acrosome status. The morphology in fresh samples was assessed according to World Health Organization criteria while the characteristics of birefringence were evaluated by polarized light. Acrosome integrity was evaluated by fluorescein isothiocyanate Pisum sativum agglutinin that binds selectively to the acrosome content. According to the results, a reacted acrosome was present in 96% of spermatozoa with partial birefringence and only in 35% of those with totally birefringent heads. A great proportion of sperm cells with normal morphology showed total birefringence both in the presence (59%) or in the absence of motility (45%; P < 0.01), while in morphologically abnormal spermatozoa the frequency of total birefringence was comparable to that of partial birefringence irrespective of motility (26% and 27%, respectively, in motile spermatozoa; 22% and 19%, respectively, in immotile spermatozoa). These data support a strong association between partial birefringence and reacted acrosome and show that the patterns of birefringence vary depending on sperm motility and morphology.


Characterization of CD46 and β1 integrin dynamics during sperm acrosome reaction.

  • Michaela Frolikova‎ et al.
  • Scientific reports‎
  • 2016‎

The acrosome reaction (AR) is a process of membrane fusion and lytic enzyme release, which enables sperm to penetrate the egg surroundings. It is widely recognized that specific sperm proteins form an active network prior to fertilization, and their dynamic relocation is crucial for the sperm-egg fusion. The unique presence of the membrane cofactor protein CD46 in the sperm acrosomal membrane was shown, however, its behaviour and connection with other sperm proteins has not been explored further. Using super resolution microscopy, we demonstrated a dynamic CD46 reorganisation over the sperm head during the AR, and its interaction with transmembrane protein integrins, which was confirmed by proximity ligation assay. Furthermore, we propose their joint involvement in actin network rearrangement. Moreover, CD46 and β1 integrins with subunit α3, but not α6, are localized into the apical acrosome and are expected to be involved in signal transduction pathways directing the acrosome stability and essential protein network rearrangements prior to gamete fusion.


Evaluation of acrosome intactness status in male infertility in Mysore, South India.

  • G Sreenivasa‎ et al.
  • International journal of applied & basic medical research‎
  • 2012‎

The objective of this study is to determine the status of acrosome intactness in different infertile conditions among men who have attended the Mediwave Fertility Research Center, Mysore, South India.


pH-dependent Ca+2 oscillations prevent untimely acrosome reaction in human sperm.

  • Esperanza Mata-Martínez‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

During transit through the female reproductive tract, sperm encounter metabolites and environmental conditions that modulate various processes leading to fertilization. Intracellular Ca2+ dynamics regulate the acrosome reaction (AR), which involves exocytosis of the acrosomal granule, a prerequisite for successful fertilization. We explored the ability of progesterone, prostanglandin-E1, and GABA to induce Ca2+ mobilization and AR in single human spermatozoa capacitated under external pH (pHe) conditions found in different regions of the female reproductive tract (pHe 6.5, 7.4 and 8.0). The highest percentage of AR induction, regardless of the inducer, occurred when sperm were capacitated at pHe 7.4. Interestingly, at pHe 6.5 a high percentage of cells exhibit Ca2+ oscillations, which prevent AR. These oscillations involve extracellular and intracellular Ca2+ channels. Pharmacological inhibition of Ca2+ oscillations restores the ability of spermatozoa to undergo the AR when exposed to progesterone, even if capacitated at pHe 6.5.


ABCG2 is expressed in late spermatogenesis and is associated with the acrosome.

  • Christian Scharenberg‎ et al.
  • Biochemical and biophysical research communications‎
  • 2009‎

An increasingly exploited strategy for the isolation of stem cells is based on the increased efflux of Hoechst 33342 lipophilic dye mediated by ABCG2, an ATP-binding cassette transporter which is highly expressed in various stem cells. We found ABCG2 expression to be present at later stages of spermatogenesis. Western blot analysis using an anti-ABCG2 antibody revealed expression of a 72kDa band in mature sperm obtained from mice, rats, bulls or humans. Immunocytochemistry studies revealed acrosomal staining pattern of ABCG2 in spermatozoa. Experiments using the Hoechst 33342 ABCG2 substrate and the ABCG2-specific inhibitor FTC demonstrated efflux activity of ABCG2 in mature sperm. Incubation of sperm in capacitating medium in the presence of the ABCG2-inhibitor FTC resulted in decreased cholesterol depletion compared to sperm incubated in the absence of FTC. Our results demonstrate that ABCG2 is expressed at the acrosome in mature sperm. ABCG2 may thus serve to mediate cholesterol removal.


ABHD2 Inhibitor Identified by Activity-Based Protein Profiling Reduces Acrosome Reaction.

  • Marc P Baggelaar‎ et al.
  • ACS chemical biology‎
  • 2019‎

ABHD2 is a serine hydrolase that belongs to the subgroup of the α,β-hydrolase fold-containing proteins, which is involved in virus propagation, immune response, and fertilization. Chemical tools to selectively modulate the activity of ABHD2 in an acute setting are highly desired to investigate its biological role, but are currently lacking. Here, we report a library-versus-library screening using activity-based protein profiling (ABPP) to evaluate in parallel the selectivity and activity of a focused lipase inhibitor library against ABHD2 and a panel of closely related ABHD proteins. This screen resulted in the rapid identification of novel inhibitors for ABHD2. The selectivity of the inhibitor was further investigated in native mouse testis proteome by competitive ABPP, revealing a highly restricted off-target profile. The progesterone-induced acrosome reaction was reduced in a dose-dependent manner by the newly identified inhibitor, which provides further support for the key-role of ABHD2 in the P4-stimulated acrosome reaction. On this basis, the ABHD2 inhibitor is an excellent starting point for further optimization of ABHD2 inhibitors that can modulate sperm fertility and may lead to novel contraceptives.


Involvement of progesterone and estrogen receptors in the ram sperm acrosome reaction.

  • S Gimeno-Martos‎ et al.
  • Domestic animal endocrinology‎
  • 2021‎

The steroid hormones 17-β estradiol (E2) and progesterone (P4) can regulate capacitation, hyperactive motility, and the acrosome reaction (AR) during the sperm transit through the female tract. Moreover, exogenous P4 and E2 can induce the AR in ovine spermatozoa, and progesterone receptor (PR) and estrogen receptors (ERα and ERβ) are present in these cells. Thus, to investigate whether the effects both steroid hormones in ram sperm capacitation and AR are receptor-mediated, we incubated them with receptor agonists (tanaproget 1 μM and 5 μM for PR or resveratrol 5 μM and 10 μM for ER) or antagonists (mifepristone 4 μM and 40 μM for PR or tamoxifen 5 μM and 10 μM for ER) in capacitating conditions. The addition of receptor modulators did not affect sperm viability or total motility, although changes in progressive motility were detected. The incubation with both receptor agonists increased the percentage of acrosome-reacted spermatozoa, evaluated by chlortetracycline staining, when compared with the capacitated nontreated sample (Cap-C, P < 0.001). Moreover, the ER agonist resveratrol 10 μM provoked a greater AR than E2 (P < 0.01). Furthermore, the incubation with the receptor antagonists prevented the induction of the AR by P4 or E2, as the antagonists-treated spermatozoa presented a similar CTC pattern to that of Cap-C. In conclusion, these results confirm that P4 and E2 can induce the AR in ram spermatozoa and that this effect is receptor-mediated.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: