Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,241 papers

Protonation Equilibria of N-Acetylcysteine.

  • Ahmed E Fazary‎ et al.
  • ACS omega‎
  • 2020‎

The acid base protonation equilibria of N-acetylcysteine (Nac) and its equilibrium constants in water solutions were determined by the Hyperquad 2008 software assessment from the pH potentiometry data, which provides a diversity of statistics presentations. The effect of a number of organic solvents on the acid base protonation processes was also examined. The solution equilibria of N-acetylcysteine (Nac) were studied at T = 298.15 K in water (w 1) + organic liquid mixtures [100 w 2 = 0, 20, 40, 60, and 80%] with an ionic strength of I = 0.16 mol·dm-3 NaNO3. Also, the organic solvent's influence was studied based on the Kamlet-Taft linear solvation energy relationship. The experimental results were compared with theoretical ones obtained via the Gaussian 09 calculation computer program. The protonation equilibria of Nac were found to be important in the progress of separation systems in aqueous and non-aqueous ionic solutions. Nac showed a likely good metal dibasic chelating bioligand as the DFT calculations proved two binding sites. Spectrophotometry evaluation was also done for N-acetylcysteine bioligands at various pH values in water solutions then its absorbance ratio was measured.


Comparison between theophylline, N-acetylcysteine, and theophylline plus N-acetylcysteine for the prevention of contrast-induced nephropathy.

  • Morteza Arabmomeni‎ et al.
  • ARYA atherosclerosis‎
  • 2015‎

Few studies compared the efficacy of theophylline with N-acetylcysteine or evaluated the efficacy of combination therapy in the prevention of contrast-induced nephropathy (CIN). We compared the efficacy of theophylline, N-acetylcysteine, and the combination of these agents in the prevention of CIN.


N-Acetylcysteine reverses cocaine-induced metaplasticity.

  • Khaled Moussawi‎ et al.
  • Nature neuroscience‎
  • 2009‎

Cocaine addiction is characterized by an impaired ability to develop adaptive behaviors that can compete with cocaine seeking, implying a deficit in the ability to induce plasticity in cortico-accumbens circuitry crucial for regulating motivated behavior. We found that rats withdrawn from cocaine self-administration had a marked in vivo deficit in the ability to develop long-term potentiation (LTP) and long-term depression (LTD) in the nucleus accumbens core subregion after stimulation of the prefrontal cortex. N-acetylcysteine (NAC) treatment prevents relapse in animal models and craving in humans by activating cystine-glutamate exchange and thereby stimulating extrasynaptic metabotropic glutamate receptors (mGluR). NAC treatment of rats restored the ability to induce LTP and LTD by indirectly stimulating mGluR2/3 and mGluR5, respectively. Our findings show that cocaine self-administration induces metaplasticity that inhibits further induction of synaptic plasticity, and this impairment can be reversed by NAC, a drug that also prevents relapse.


N-Acetylcysteine Inhibits Kynurenine Aminotransferase II.

  • T Blanco-Ayala‎ et al.
  • Neuroscience‎
  • 2020‎

The tryptophan metabolite kynurenic acid (KYNA) may play an important role in normal and abnormal cognitive processes, most likely by interfering with α7 nicotinic and NMDA receptor function. KYNA is formed from its immediate precursor kynurenine either by non-enzymatic oxidation or through irreversible transamination by kynurenine aminotransferases. In the mammalian brain, kynurenine aminotransferase II (KAT II) is the principal enzyme responsible for the neosynthesis of rapidly mobilizable KYNA, and therefore constitutes an attractive target for pro-cognitive interventions. N-acetylcysteine (NAC), a brain-penetrant drug with pro-cognitive efficacy in humans, has been proposed to exert its actions by increasing the levels of the anti-oxidant glutathione (GSH) in the brain. We report here that NAC, but not GSH, inhibits KAT II activity in brain tissue homogenates from rats and humans with IC50 values in the high micromolar to low millimolar range. With similar potency, the drug interfered with the de novo formation of KYNA in rat brain slices, and NAC was a competitive inhibitor of recombinant human KAT II (Ki: 450 μM). Furthermore, GSH failed to S-glutathionylate recombinant human KAT II treated with the dithiocarbamate drug disulfiram. Shown by microdialysis in the prefrontal cortex of rats treated with kynurenine (50 mg/kg, i.p.), peripheral administration of NAC (500 mg/kg, i.p., 120 and 60 min before the application of kynurenine) reduced KYNA neosynthesis by ∼50%. Together, these results suggest that NAC exerts its neurobiological effects at least in part by reducing cerebral KYNA formation via KAT II inhibition.


N-acetylcysteine modulates lipopolysaccharide-induced intestinal dysfunction.

  • Sang In Lee‎ et al.
  • Scientific reports‎
  • 2019‎

The gastrointestinal epithelium functions in nutrient absorption and pathogens barrier and its dysfunction directly affects livestock performance. N-Acetylcysteine (NAC) improves mucosal function, but its effects on intestinal functions at the molecular level remain unclear. Here, we performed gene expression profiling of the pig small intestine after dietary NAC treatment under LPS challenge and investigated the effects of NAC on intestinal epithelial cells in vitro. Dietary NAC supplementation under LPS challenge altered the small intestine expression of 959 genes related to immune response, inflammatory response, oxidation-reduction process, cytokine-cytokine receptor interaction, and the cytokine-mediated signalling, Toll-like receptor signalling pathway, Jak-STAT signalling pathway, and TNF signalling pathway. We then analysed the expression patterns of the top 10 altered genes, and found that NAC markedly stimulated HMGCS3 and LDHC expression in IPEC-J2 cells. In vitro, NAC pre-treatment significantly reduced TNF-α and NF-κB, TNF-α, IFN-γ, and IL-6 expression in LPS-induced IPEC-J2 cells. NAC treatment also significantly reduced oxidative stress in LPS-induced IPEC-J2 cells and alleviated intestinal barrier function and wound healing. Thus, NAC as a feed additive can enhance livestock intestinal health by modulating intestinal inflammation, permeability, and wound healing under LPS-induced dysfunction, improving our molecular understanding of the effects of NAC on the intestine.


Activity of N-Acetylcysteine Alone and in Combination with Colistin against Pseudomonas aeruginosa Biofilms and Transcriptomic Response to N-Acetylcysteine Exposure.

  • Felice Valzano‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Chronic colonization by Pseudomonas aeruginosa is critical in cystic fibrosis (CF) and other chronic lung diseases, contributing to disease progression. Biofilm growth and a propensity to evolve multidrug resistance phenotypes drastically limit the available therapeutic options. In this perspective, there has been growing interest in evaluating combination therapies, especially for drugs that can be administered by nebulization, which allows high drug concentrations to be reached at the site of infections while limiting systemic toxicity. Here, we investigated the potential antibiofilm activity of N-acetylcysteine (NAC) alone and in combination with colistin against a panel of P. aeruginosa strains (most of which are from CF patients) and the transcriptomic response of a P. aeruginosa CF strain to NAC exposure. NAC alone (8,000 mg/L) showed a limited and strain-dependent antibiofilm activity. Nonetheless, a relevant antibiofilm synergism of NAC-colistin combinations (NAC at 8,000 mg/L plus colistin at 2 to 32 mg/L) was observed with all strains. Synergism was also confirmed with the artificial sputum medium model. RNA sequencing of NAC-exposed planktonic cultures revealed that NAC (8,000 mg/L) mainly induced (i) a Zn2+ starvation response (known to induce attenuation of P. aeruginosa virulence), (ii) downregulation of genes of the denitrification apparatus, and (iii) downregulation of flagellar biosynthesis pathway. NAC-mediated inhibition of P. aeruginosa denitrification pathway and flagellum-mediated motility were confirmed experimentally. These findings suggested that NAC-colistin combinations might contribute to the management of biofilm-associated P. aeruginosa lung infections. NAC might also have a role in reducing P. aeruginosa virulence, which could be relevant in the very early stages of lung colonization. IMPORTANCE Pseudomonas aeruginosa biofilm-related chronic lung colonization contributes to cystic fibrosis (CF) disease progression. Colistin is often a last-resort antibiotic for the treatment of such P. aeruginosa infections, and it has been increasingly used in CF, especially by nebulization. N-acetylcysteine (NAC) is a mucolytic agent with antioxidant activity, commonly administered with antibiotics for the treatment of lower respiratory tract infections. Here, we show that NAC potentiated colistin activity against in vitro biofilms models of P. aeruginosa strains, with both drugs tested at the high concentrations achievable after nebulization. In addition, we report the first transcriptomic data on the P. aeruginosa response to NAC exposure.


N-acetylcysteine inhibit biofilms produced by Pseudomonas aeruginosa.

  • Tiemei Zhao‎ et al.
  • BMC microbiology‎
  • 2010‎

Pseudomonas aeruginosa is a common pathogen in chronic respiratory tract infections. It typically makes a biofilm, which makes treatment of these infections difficult. In this study, we investigated the inhibitory effects of N-acetylcysteine (NAC) on biofilms produced by P. aeruginosa.


N-Acetylcysteine prevents ifosfamide-induced nephrotoxicity in rats.

  • N Chen‎ et al.
  • British journal of pharmacology‎
  • 2008‎

Ifosfamide nephrotoxicity is a serious adverse effect for children undergoing cancer chemotherapy. Our recent in vitro studies have shown that the antioxidant N-acetylcysteine (NAC), which is used extensively as an antidote for paracetamol (acetaminophen) poisoning in children, protects renal tubular cells from ifosfamide-induced toxicity at a clinically relevant concentration. To further validate this observation, an animal model of ifosfamide-induced nephrotoxicity was used to determine the protective effect of NAC.


N-acetylcysteine inhibits lipid accumulation in mouse embryonic adipocytes.

  • A Pieralisi‎ et al.
  • Redox biology‎
  • 2016‎

Oxidative stress plays critical roles in the pathogenesis of diabetes, hypertension, and atherosclerosis; some authors reported that fat accumulation correlates to systemic oxidative stress in human and mice, but cellular redox environment effect on lipid accumulation is still unclear. In our laboratory we used mouse embryonic fibroblasts (undifferentiated cells: CC), which are capable of differentiating into mature adipocytes (differentiated cells: DC) and accumulate lipids, as obesity model. Here we analyzed the role of the well-known antioxidant and glutathione precursor N-acetylcysteine (NAC) in cellular MAPK modulation and lipid accumulation. We evaluated the effect of NAC on the adipogenic differentiation pathway using different doses: 0.01, 0.1, 1 and 5mM; no toxic doses in these cells. A dose of 5mM NAC [DCN-5] provoked a significant decrease in triglyceride accumulation (72±10 [DCN-5] vs 169±15 [DC], p<0.01), as well in Oil Red O stained neutral lipid content (120±2 [DCN-5] vs 139±12 [DC], p<0.01). Molecular mechanisms responsible for adipogenic differentiation involve increase of the expression of phosphoERK½ and phosphoJNK, 5mM NAC treatment inhibited both pERK½ and pJNK protein levels. We also evaluated the mitotic clonal expansion (MCE) which takes place during adipogenesis and observed an increase in DC at a rate of 1.5 cells number compared to CC at day 2, whereas the highest doses of NAC significantly inhibited MCE. Our results suggest that NAC inhibits lipid accumulation and the MAPK phosphorylation in mouse embryonic fibroblasts during adipogenic differentiation and further contribute to probe the importance of cellular redox environment in adipogenesis.


N-acetylcysteine protects hepatocytes from hypoxia-related cell injury.

  • Jan Heil‎ et al.
  • Clinical and experimental hepatology‎
  • 2018‎

Hepatocyte transplantation has been discussed as an alternative to liver transplantation in selected cases of acute and chronic liver failure and metabolic diseases. Immediately after infusion of hepatocytes, hypoxia-related cell injury is inevitable. N-acetylcysteine (NAC) has been suggested to attenuate hypoxic damage. This study's objective was to evaluate NAC's protective effect in a model of hypoxia-related hepatocyte injury.


MRI Detection of Hepatic N-Acetylcysteine Uptake in Mice.

  • Johnny Chen‎ et al.
  • Biomedicines‎
  • 2022‎

This proof-of-concept study looked at the feasibility of using a thiol-water proton exchange (i.e., CEST) MRI contrast to detect in vivo hepatic N-acetylcysteine (NAC) uptake. The feasibility of detecting NAC-induced glutathione (GSH) biosynthesis using CEST MRI was also investigated. The detectability of the GSH amide and NAC thiol CEST effect at B0 = 7 T was determined in phantom experiments and simulations. C57BL/6 mice were injected intravenously (IV) with 50 g L-1 NAC in PBS (pH 7) during MRI acquisition. The dynamic magnetisation transfer ratio (MTR) and partial Z-spectral data were generated from the acquisition of measurements of the upfield NAC thiol and downfield GSH amide CEST effects in the liver. The 1H-NMR spectroscopy on aqueous mouse liver extracts, post-NAC-injection, was performed to verify hepatic NAC uptake. The dynamic MTR and partial Z-spectral data revealed a significant attenuation of the mouse liver MR signal when a saturation pulse was applied at -2.7 ppm (i.e., NAC thiol proton resonance) after the IV injection of the NAC solution. The 1H-NMR data revealed the presence of hepatic NAC, which coincided strongly with the increased upfield MTR in the dynamic CEST data, providing strong evidence that hepatic NAC uptake was detected. However, this MTR enhancement was attributed to a combination of NAC thiol CEST and some other upfield MT-generating mechanism(s) to be identified in future studies. The detection of hepatic GSH via its amide CEST MRI contrast was inconclusive based on the current results.


Effects of N-Acetylcysteine and N-Acetylcysteine Amide on Erythrocyte Deformability and Oxidative Stress in a Rat Model of Lower Extremity Ischemia-Reperfusion Injury.

  • Gokhan Erol‎ et al.
  • Cardiology research and practice‎
  • 2020‎

N-acetylcysteine (NAC) is an antioxidant which works as a free radical scavenger and antiapoptotic agent. N-acetylcysteine-amide (NACA) is a modified form of NAC containing an amide group instead of a carboxyl group of NAC. Our study aims to investigate the effectiveness of these two substances on erythrocyte deformability and oxidative stress in muscle tissue. Materials and Methods. A total of 24 Wistar albino rats were used in our study. The animals were randomly divided into five groups as control (n: 6), ischemia (n: 6), NAC (n: 6), and NACA (n: 6). In the ischemia, NAC, and NACA groups, 120 min of ischemia and 120 min of reperfusion were achieved by placing nontraumatic vascular clamps across the abdominal aorta. The NAC and NACA groups were administered an injection 30 min before ischemia (100 mg/kg NAC; 100 mg/kg NACA; intravenous). Blood samples were taken from the animals at the end of the ischemic period. The lower extremity gastrocnemius muscle was isolated and stored at -80 degrees to assess the total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) values and was analyzed. Results. The erythrocyte deformability index was found to be statistically significantly lower in rats treated with NAC and NACA before ischemia-reperfusion compared to the groups that received only ischemia-reperfusion. In addition, no statistically significant difference was found between the control group and the NAC and NACA groups. The groups receiving NAC and NACA before ischemia exhibited higher total antioxidative status and lower total oxidative status while the oxidative stress index was also lower. Conclusion. The results of our study demonstrated the protective effects of NAC and NACA on erythrocyte deformability and oxidative damage in skeletal muscle in lower extremity ischemia-reperfusion. NAC and NACA exhibited similar protective effects on oxidative damage and erythrocyte deformability.


N-acetylcysteine negatively regulates Notch3 and its malignant signaling.

  • Xiong Zhang‎ et al.
  • Oncotarget‎
  • 2016‎

Notch3 receptor is expressed in a variety of cancers and the excised active intracellular domain (N3ICD) initiates its signaling cascade. N-acetylcysteine (NAC) as an antioxidant has been implicated in cancer prevention and therapy. In this study, we demonstrated a negative regulation of Notch3 by NAC in cancer cells. HeLa cells treated with NAC exhibited a time- and concentration-dependent decrease in Notch3 levels and its downstream effectors Hes1 and HRT1 in a manner independent of f-secretase or glutathione. In contrast, NAC did not affect protein levels of Notch1, the full length Notch3 precursor, or ectopically expressed N3ICD. Although SOD, catalase and NAC suppressed reactive oxygen species in HeLa cells, the first two antioxidants did not impact on Notch3 levels. While the mRNA expression of Notch3 was not altered by NAC, functional inhibition of lysosome, but not proteasome, blocked the NAC-dependent reduction of Notch3 levels. Furthermore, results from Notch3 silencing and N3ICD overexpression demonstrated that NAC prevented malignant phenotypes through down-regulation of Notch3 protein in multiple cancer cells. In summary, NAC reduces Notch3 levels through lysosome-dependent protein degradation, thereby negatively regulates Notch3 malignant signaling in cancer cells. These results implicate a novel NAC treatment in sensitizing Notch3-expressing tumors.


N-acetylcysteine decreases binge eating in a rodent model.

  • M M Hurley‎ et al.
  • International journal of obesity (2005)‎
  • 2016‎

Binge-eating behavior involves rapid consumption of highly palatable foods leading to increased weight gain. Feeding in binge disorders resembles other compulsive behaviors, many of which are responsive to N-acetylcysteine (NAC), which is a cysteine prodrug often used to promote non-vesicular glutamate release by a cystine-glutamate antiporter. To examine the potential for NAC to alter a form of compulsive eating, we examined the impact of NAC on binge eating in a rodent model. Specifically, we monitored consumption of standard chow and a high-fat, high carbohydrate western diet (WD) in a rodent limited-access binge paradigm. Before each session, rats received either a systemic or intraventricular injection of NAC. Both systemic and central administration of NAC resulted in significant reductions of binge eating the WD without decreasing standard chow consumption. The reduction in WD was not attributable to general malaise as NAC did not produce condition taste aversion. These results are consistent with the clinical evidence of NAC to reduce or reverse compulsive behaviors, such as, drug addiction, skin picking and hair pulling.


N-Acetylcysteine Promotes Metastatic Spread of Melanoma in Mice.

  • Elena Obrador‎ et al.
  • Cancers‎
  • 2022‎

N-acetylcysteine (NAC) is a direct Cys donor and a promoter of glutathione (GSH) synthesis. GSH regulates melanoma growth and NAC has been suggested to increase melanoma metastases in mice. We found that high therapeutic doses of NAC do not increase the growth of melanoma xenografts, but can cause metastatic spread and distant metastases. Nevertheless, this is not due to an antioxidant effect since NAC, in fact, increases the generation of reactive oxygen species in the growing metastatic melanoma. Trolox, an antioxidant vitamin E derivative, administered in vivo, decreased metastatic growth. Metastatic cells isolated from NAC-treated mice showed an increase in the nuclear translocation of Nrf2, as compared to controls. Nrf2, a master regulator of the antioxidant response, controls the expression of different antioxidant enzymes and of the γ-glutamylcysteine ligase (the rate-limiting step in GSH synthesis). Cystine uptake through the xCT cystine-glutamate antiporter (generating intracellular Cys) and the γ-glutamylcysteine ligase activity are key to control metastatic growth. This is associated to an increase in the utilization of L-Gln by the metastatic cells, another metastases promoter. Our results demonstrate the potential of NAC as an inducer of melanoma metastases spread, and suggest that caution should be taken when administering GSH promoters to cancer patients.


N-acetylcysteine improves established monocrotaline-induced pulmonary hypertension in rats.

  • Marie-Camille Chaumais‎ et al.
  • Respiratory research‎
  • 2014‎

The outcome of patients suffering from pulmonary arterial hypertension (PAH) are predominantly determined by the response of the right ventricle to the increase afterload secondary to high vascular pulmonary resistance. However, little is known about the effects of the current available or experimental PAH treatments on the heart. Recently, inflammation has been implicated in the pathophysiology of PAH. N-acetylcysteine (NAC), a well-known safe anti-oxidant drug, has immuno-modulatory and cardioprotective properties. We therefore hypothesized that NAC could reduce the severity of pulmonary hypertension (PH) in rats exposed to monocrotaline (MCT), lowering inflammation and preserving pulmonary vascular system and right heart function.


N-acetylcysteine-functionalized coating avoids bacterial adhesion and biofilm formation.

  • Fabíola Costa‎ et al.
  • Scientific reports‎
  • 2017‎

N-acetyl cysteine (NAC) is an FDA-approved drug clinically applied on a broad range of pathologies. Further research has been conducted with this drug to benefit from its antimicrobial activity potential. However, NAC has a very short half-life and therefore strategies that accomplish high local concentrations would be beneficial. In this study, covalent immobilization of NAC was performed, in order to obtain long-lasting high local concentration of the drug onto a chitosan(Ch)-derived implant-related coating. For the development of NAC-functionalized Ch films, water-based carbodiimide chemistry was applied to avoid the use of toxic organic solvents. Here we report the optimization steps performed to immobilize NAC onto the surface of pre-prepared Ch coatings, to ensure full exposure of NAC. Surface characterization using ellipsometry, water contact angle measurements and X-ray photoelectron spectroscopy (XPS), demonstrated the success of NAC immobilization at 4 mg/mL. Quartz crystal microbalance with dissipation (QCM-D) demonstrated that surface immobilized NAC decreases protein adsorption to Ch coatings. Biological studies confirmed that immobilized NAC4 avoids methicillin-resistant Staphylococcus aureus adhesion to Ch coating, impairing biofilm formation, without inducing cytotoxic effects. This is particularly interesting towards further developments as a prevention coating.


N-Acetylcysteine prevents congenital heart defects induced by pregestational diabetes.

  • Hoda Moazzen‎ et al.
  • Cardiovascular diabetology‎
  • 2014‎

Pregestational diabetes is a major risk factor of congenital heart defects (CHDs). Glutathione is depleted and reactive oxygen species (ROS) production is elevated in diabetes. In the present study, we aimed to examine whether treatment with N-acetylcysteine (NAC), which increases glutathione synthesis and inhibits ROS production, prevents CHDs induced by pregestational diabetes.


N-acetylcysteine protects against star fruit-induced acute kidney injury.

  • Maria Heloisa Massola Shimizu‎ et al.
  • Renal failure‎
  • 2017‎

Star fruit (SF) is a popular fruit, commonly cultivated in many tropical countries, that contains large amount of oxalate. Acute oxalate nephropathy and direct renal tubular damage through release of free radicals are the main mechanisms involved in SF-induced acute kidney injury (AKI). The aim of this study was to evaluate the protective effect of N-acetylcysteine (NAC) on SF-induced nephrotoxicity due to its potent antioxidant effect.


N-acetylcysteine protects against renal injury following bilateral ureteral obstruction.

  • Maria Heloisa Massola Shimizu‎ et al.
  • Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association‎
  • 2008‎

Obstructive nephropathy decreases renal blood flow (RBF) and glomerular filtration rate (GFR), causing tubular abnormalities, such as urinary concentrating defect, as well as increasing oxidative stress. This study aimed to evaluate the effects of N-acetylcysteine (NAC) on renal function, as well as on the protein expression of aquaporin 2 (AQP2) and endothelial nitric oxide synthase (eNOS), after the relief of bilateral ureteral obstruction (BUO).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: