Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 245 papers

Acetazolamide: Old drug, new evidence?

  • Arif Ali Shukralla‎ et al.
  • Epilepsia open‎
  • 2022‎

Acetazolamide is an old drug used as an antiepileptic agent, amongst other indications. The drug is seldom used, primarily due to perceived poor efficacy and adverse events. Acetazolamide acts as a noncompetitive inhibitor of carbonic anhydrase, of which there are several subtypes in humans. Acetazolamide causes an acidification of the intracellular and extracellular environments activating acid-sensing ion channels, and these may account for the anti-seizure effects of acetazolamide. Other potential mechanisms are modulation of neuroinflammation and attenuation of high-frequency oscillations. The overall effect increases the seizure threshold in critical structures such as the hippocampus. The evidence for its clinical efficacy was from 12 observational studies of 941 patients. The 50% responder rate was 49%, 20% of patients were rendered seizure-free, and 30% were noted to have had at least one adverse event. We conclude that the evidence from several observational studies may overestimate efficacy because they lack a comparator; hence, this drug would need further randomized placebo-controlled trials to assess effectiveness and harm.


Electrosprayed 4-carboxybenzenesulfonamide-chitosan microspheres for acetazolamide delivery.

  • Phruetchika Suvannasara‎ et al.
  • International journal of biological macromolecules‎
  • 2014‎

4-Carboxybenzensulfonamide-chitosan (4-CBS-chitosan) microspheres were prepared by electrospraying with acetazolamide (ACZ) as a model drug. The obtained 4-CBS-chitosan microspheres with or without ACZ-loading were characterized by Fourier transform infrared spectroscopy, differential scanning colorimetry, scanning electron microscopy and particle size analyses. The crystalline form and the stability of ACZ in a basic solution was determined using X-ray single crystal analysis. 4-CBS-chitosan had 90% encapsulation efficiency for ACZ compared to 47% of encapsulation efficiency (EE) obtained from native chitosan, forming 3.1 μm diameter microspheres with a low polydispersity index (0.4). After an initial burst release (58% in 5 min), ACZ-loaded 4-CBS-chitosan gave a sustained release of ACZ (∼ 100% over 3h) in simulated gastric fluid (0.1N HCl; pH 1.2), which was better than that seen for the release from ACZ-loaded chitosan (44% over 1.5h). Thus, 4-CBS-chitosan microspheres are a possible drug carrier in acidic conditions, such as at the gastric mucosal wall.


Acetazolamide-eluting biodegradable tubular stent prevents pancreaticojejunal anastomotic leakage.

  • Jung-Hoon Park‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2021‎

Postoperative pancreatic fistula at the early stage can lead to auto-digestion, which may delay the recovery of the pancreaticojejunal (PJ) anastomosis. The efficacy and safety of an acetazolamide-eluting biodegradable tubular stent (AZ-BTS) for the prevention of self-digestion and intra-abdominal inflammatory diseases caused by pancreatic juice leakage after PJ anastomosis in a porcine model were investigated. The AZ-BTS was successfully fabricated using a multiple dip-coating process. Then, the drug amount and release profile were analyzed. The therapeutic effects of AZ were examined in vitro using two kinds of pancreatic cancer cell lines, AsPC-1 and PANC-1. The efficacy of AZ-BTS was assessed in a porcine PJ leakage model, with animals were each assigned to a leakage group, a BTS group and an AZ-BTS group. The overall mortality rates in these three groups were 44.4%, 16.6%, and 0%, respectively. Mean α-amylase concentrations were significantly higher in the leakage and BTS groups than in the AZ-BTS group on day 2-5 (p < 0.05 each all). The luminal diameters and areas of the pancreatic duct were significantly larger in the leakage group than in the BTS and AZ-BTS groups (p < 0.05 each all). These findings indicate that AZ-BTS can significantly suppress intra-abdominal inflammatory diseases caused by pancreatic juice leakage and also prevent late stricture formation at the PJ anastomotic site in a porcine model.


Evaluation of intracanal acetazolamide in late reimplanted rat teeth.

  • Camila Paiva Perin‎ et al.
  • European journal of dentistry‎
  • 2017‎

The aim of this study was to evaluate the use of acetazolamide combined with different agents as intracanal medication in late reimplanted rat teeth.


Ocular administration of acetazolamide microsponges in situ gel formulations.

  • Manar M Obiedallah‎ et al.
  • Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society‎
  • 2018‎

In the present work, the antiglaucoma drug, acetazolamide, was formulated as microsponges in situ gel for ocular drug delivery aiming an improved therapeutic efficacy and reduction in the systemic side effects of oral acetazolamide. The microsponges were prepared by the quasi emulsion solvent diffusion method and were incorporated into 25% pluronic F-127 in situ gel. Ethyl cellulose polymer in different proportions with drug was used to prepare the microsponges. Different parameters were evaluated to select the best formulation. The formula S2 with drug to polymer ratio (2:1) showed high entrapment efficiency of about 82% and mean particle size of about 10 µm with polydispersity index (PDI) of 0.22, which are suitable characters for ocular delivery. The in situ gels were evaluated for physicochemical properties (pH, gelling capacity, gelation time and rheological properties) and in vivo studies. S2 formulation showed higher therapeutic efficacy compared to free drug in gel. It was non irritant to the rabbit's eye. These results indicated that acetazolamide microsponges in situ gel have potential ability for ophthalmic delivery.


Acetazolamide Therapy in Patients with Heart Failure: A Meta-Analysis.

  • Janewit Wongboonsin‎ et al.
  • Journal of clinical medicine‎
  • 2019‎

Fluid overload and central sleep apnea are highly prevalent in patients with heart failure (HF). We performed this meta-analysis to assess the effects of acetazolamide therapy on acid/base balance and apnea indexes.


Pilomotor seizures marked by infraslow activity and acetazolamide responsiveness.

  • Richard Wennberg‎ et al.
  • Annals of clinical and translational neurology‎
  • 2019‎

A patient with pilomotor seizures post anti-LGI1 limbic encephalitis, refractory to immunotherapy and anti-epileptic drugs, was investigated with electroencephalography and magnetoencephalography. Seizures occurred daily (14.9 ± 4.9/day), with catamenial exacerbation, inducible by hyperventilation. Anterior temporal ictal onsets were heralded (by ~15 sec) by high amplitude ipsilateral electromagnetic infraslow activity. The catamenial/ventilatory sensitivity and the infraslow activity (reflecting glial depolarization) suggested an ionic, CO 2/pH-related glioneuronal mechanism. Furosemide decreased seizure frequency by ~33%. Acetazolamide led to immediate seizure freedom, but lost efficacy with daily treatment. A cycling acetazolamide regimen (2 days on, 4 days off) plus low-dose topiramate maintained >95% reduction (0.5 ± 0.9/day) in seizures.


Acetazolamide-Induced Bilateral Ciliochoroidal Effusion Syndrome in Plateau Iris Configuration.

  • Xiaofei Man‎ et al.
  • American journal of ophthalmology case reports‎
  • 2016‎

Our purpose is to describe a 60-year-old male, who has plateau iris configuration and developed bilateral ciliochoroidal effusion syndrome after ingestion of acetazolamide.


CT perfusion with acetazolamide challenge in C6 gliomas and angiogenesis.

  • Na Lu‎ et al.
  • PloS one‎
  • 2015‎

This study was performed to investigate the correlation between CT perfusion with acetazolamide challenge and angiogenesis in C6 gliomas.


Acetazolamide Mitigates Astrocyte Cellular Edema Following Mild Traumatic Brain Injury.

  • Nasya M Sturdivant‎ et al.
  • Scientific reports‎
  • 2016‎

Non-penetrating or mild traumatic brain injury (mTBI) is commonly experienced in accidents, the battlefield and in full-contact sports. Astrocyte cellular edema is one of the major factors that leads to high morbidity post-mTBI. Various studies have reported an upregulation of aquaporin-4 (AQP4), a water channel protein, following brain injury. AZA is an antiepileptic drug that has been shown to inhibit AQP4 expression and in this study we investigate the drug as a therapeutic to mitigate the extent of mTBI induced cellular edema. We hypothesized that mTBI-mediated astrocyte dysfunction, initiated by increased intracellular volume, could be reduced when treated with AZA. We tested our hypothesis in a three-dimensional in vitro astrocyte model of mTBI. Samples were subject to no stretch (control) or one high-speed stretch (mTBI) injury. AQP4 expression was significantly increased 24 hours after mTBI. mTBI resulted in a significant increase in the cell swelling within 30 min of mTBI, which was significantly reduced in the presence of AZA. Cell death and expression of S100B was significantly reduced when AZA was added shortly before mTBI stretch. Overall, our data point to occurrence of astrocyte swelling immediately following mTBI, and AZA as a promising treatment to mitigate downstream cellular mortality.


Topiramate is more effective than acetazolamide at lowering intracranial pressure.

  • William J Scotton‎ et al.
  • Cephalalgia : an international journal of headache‎
  • 2019‎

The management of idiopathic intracranial hypertension focuses on reducing intracranial pressure to preserve vision and reduce headaches. There is sparse evidence to support the use of some of the drugs commonly used to manage idiopathic intracranial hypertension, therefore we propose to evaluate the efficacy of these drugs at lowering intracranial pressure in healthy rats.


GC-NICI-MS analysis of acetazolamide and other sulfonamide (R-SO2-NH2) drugs as pentafluorobenzyl derivatives [R-SO2-N(PFB)2] and quantification of pharmacological acetazolamide in human urine.

  • Olga Begou‎ et al.
  • Journal of pharmaceutical analysis‎
  • 2020‎

Acetazolamide (molecular mass (MM), 222) belongs to the class of sulfonamides (R-SO2-NH2) and is one of the strongest pharmacological inhibitors of carbonic anhydrase activity. Acetazolamide is excreted unchanged in the urine. Here, we report on the development, validation and biomedical application of a stable-isotope dilution GC-MS method for the reliable quantitative determination of acetazolamide in human urine. The method is based on evaporation to dryness of 50 μL urine aliquots, base-catalyzed derivatization of acetazolamide (d0-AZM) and its internal standard [acetylo-2H3]acetazolamide (d3-AZM) in 30 vol% pentafluorobenzyl (PFB) bromide in acetonitrile (60 min, 30 °C), reconstitution in toluene (200 μL) and injection of 1-μL aliquots. The negative-ion chemical ionization (NICI) mass spectra (methane) of the PFB derivatives contained several intense ions including [M]‒ at m/z 581 for d0-AZM and m/z 584 for d3-AZM, suggesting derivatization of their sulfonamide groups to form N,N-dipentafluorobenzyl derivatives (R-SO2-N(PFB)2), i.e., d0-AZM-(PFB)2 and d3-AZM-(PFB)2, respectively. Quantification was performed by selected-ion monitoring of m/z 581 and 83 for d0-AZM-(PFB)2 and m/z 584 and 86 for d3-AZM-(PFB)2. The limits of detection and quantitation of the method were determined to be 300 fmol (67 pg) and 1 μM of acetazolamide, respectively. Intra- and inter-assay precision and accuracy for acetazolamide in human urine samples in pharmacologically relevant concentration ranges were determined to be 0.3%-4.2% and 95.3%-109%, respectively. The method was applied to measure urinary acetazolamide excretion after ingestion of a 250 mg acetazolamide-containing tablet (Acemit®) by a healthy volunteer. Among other tested sulfonamide drugs, methazolamide (MM, 236) was also found to form a N,N-dipentafluorobenzyl derivative, whereas dorzolamide (MM, 324) was hardly detectable. No GC-MS peaks were obtained from the PFB bromide derivatization of hydrochlorothiazide (MM, 298), xipamide (MM, 355), indapamide and metholazone (MM, 366 each) or brinzolamide (MM, 384). We demonstrate for the first time that sulfonamide drugs can be derivatized with PFB bromide and quantitated by GC-MS. Sulfonamides with MM larger than 236 are likely to be derivatized by PFB bromide but to lack thermal stability.


Effect of acetazolamide on cytokines in rats exposed to high altitude.

  • Chang Wang‎ et al.
  • Cytokine‎
  • 2016‎

Acute mountain sickness (AMS) is a dangerous hypoxic illness that can affect humans who rapidly reach a high altitude above 2500m. In the study, we investigated the changes of cytokines induced by plateau, and the acetazolamide (ACZ) influenced the cytokines in rats exposed to high altitude. Wistar rats were divided into low altitude (Control), high altitude (HA), and high altitude+ACZ (22.33mg/kg, Bid) (HA+ACZ) group. The rats were acute exposed to high altitude at 4300m for 3days. The HA+ACZ group were given ACZ by intragastric administration. The placebo was equal volume saline. The results showed that hypoxia caused the heart, liver and lung damage, compared with the control group. Supplementation with ACZ significantly alleviated hypoxia-caused damage to the main organs. Compared with the HA group, the biochemical and blood gas indicators of the HA+ACZ group showed no difference, while some cytokines have significantly changed, such as activin A, intercellular adhesion molecule-1 (ICAM-1, CD54), interleukin-1α,2 (IL-1α,2), l-selectin, monocyte chemotactic factor (MCP-1), CC chemokines (MIP-3α) and tissue inhibitor of matrix metalloproteinase 1 (TIMP-1). Then, the significant difference pro-inflammatory cytokines in protein array were chosen for further research. The protein and mRNA content of pro-inflammatory cytokines MCP-1, interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), interferon-γ (IFN-γ) in rat lung were detected. The results demonstrated that the high altitude affected the body's physiological and biochemical parameters, but, ACZ did not change those parameters of the hypoxia rats. This study found that ACZ could decrease the content of pro-inflammatory cytokines, such as MCP-1, IL-1β, TNF-α and IFN-γ in rat lungs, and, the lung injury in the HA+ACZ group reduced. The mechanism that ACZ protected hypoxia rats might be related to changes in cytokine content. The reducing of the pro-inflammatory cytokines in rat lung might be other reason to explain ACZ against the acute mountain sickness.


Acetazolamide prevents vacuolar myopathy in skeletal muscle of K(+) -depleted rats.

  • D Tricarico‎ et al.
  • British journal of pharmacology‎
  • 2008‎

Acetazolamide and dichlorphenamide are carbonic anhydrase (CA) inhibitors effective in the clinical condition of hypokalemic periodic paralysis (hypoPP). Whether these drugs prevent vacuolar myopathy, which is a pathogenic factor in hypoPP, is unknown. The effects of these drugs on the efflux of lactate from skeletal muscle were also investigated.


Aquaporin-1 translocation and degradation mediates the water transportation mechanism of acetazolamide.

  • Jianzhao Zhang‎ et al.
  • PloS one‎
  • 2012‎

Diuretic agents are widely used on the treatment of water retention related diseases, among which acetazolamide (AZA) acts originally as a carbonic anhydrase (CA) inhibitor. Aquaporin-1 (AQP1) being located in renal proximal tubules is required for urine concentration. Previously our lab has reported AZA putatively modulated AQP1. Aim of this study is to testify our hypothesis that regulating AQP1 may mediate diuretic effect of AZA.


Two-dimensional crystal structure of aquaporin-4 bound to the inhibitor acetazolamide.

  • Akiko Kamegawa‎ et al.
  • Microscopy (Oxford, England)‎
  • 2016‎

Acetazolamide (AZA) reduces the water permeability of aquaporin-4, the predominant water channel in the brain. We determined the structure of aquaporin-4 in the presence of AZA using electron crystallography. Most of the features of the 5-Å density map were consistent with those of the previously determined atomic model. The map showed a protruding density from near the extracellular pore entrance, which most likely represents the bound AZA. Molecular docking simulations supported the location of the protrusion as the likely AZA-binding site. These findings suggest that AZA reduces water conduction by obstructing the pathway at the extracellular entrance without inducing a large conformational change in the protein.


SLC1A3 variant associated with hemiplegic migraine and acetazolamide-responsive MRS changes.

  • Martin Paucar‎ et al.
  • Neurology. Genetics‎
  • 2020‎

No abstract available


Acetazolamide potentiates the anti-tumor potential of HDACi, MS-275, in neuroblastoma.

  • Reza Bayat Mokhtari‎ et al.
  • BMC cancer‎
  • 2017‎

Neuroblastoma (NB), a tumor of the primitive neural crest, despite aggressive treatment portends a poor long-term survival for patients with advanced high stage NB. New treatment strategies are required.


Acetazolamide Mitigates Intracranial Pressure Spikes Without Affecting Functional Outcome After Experimental Hemorrhagic Stroke.

  • Michael R Williamson‎ et al.
  • Translational stroke research‎
  • 2019‎

Increased intracranial pressure (ICP) after stroke can lead to poor outcome and death. Novel treatments to combat ICP rises are needed. The carbonic anhydrase inhibitor acetazolamide diminishes cerebrospinal fluid (CSF) production, reduces ICP in healthy animals, and is beneficial for idiopathic intracranial hypertension patients. We tested whether acetazolamide mitigates ICP elevations by presumably decreasing CSF volume after collagenase-induced striatal hemorrhage in rats. We confirmed that acetazolamide did not adversely affect hematoma formation in this model or physiological variables, such as temperature. Then, we assessed the effects of acetazolamide on ICP. Lastly, we tested the effects of acetazolamide on behavioral and histological outcome. Acetazolamide reduced the magnitude and occurrence of short-timescale ICP spikes, assessed as disproportionate increases in ICP (sudden ICP increases > 10 mmHg), 1-min peak ICP, and the magnitude of spikes > 20 mmHg. However, mean ICP was unaffected. In addition, acetazolamide reduced ICP variability, reflecting improved intracranial compliance. Compliance measures were strongly correlated with high peak and mean ICP, whereas ipsilateral hemisphere water content was not correlated with ICP. Despite effects on ICP, acetazolamide did not improve behavioral function or affect lesion size. In summary, we show that intracerebral hemorrhage creates an impaired compliance state within the cranial space that can result in large, transient ICP spikes. Acetazolamide ameliorates intracranial compliance and mitigates ICP spikes, but does not improve functional outcome, at least for moderate-severity ICH in rats.


Acetazolamide Treatment Prevents Redistribution of Astrocyte Aquaporin 4 after Murine Traumatic Brain Injury.

  • Nancy K Glober‎ et al.
  • Neuroscience journal‎
  • 2019‎

After traumatic brain injury (TBI), multiple ongoing processes contribute to worsening and spreading of the primary injury to create a secondary injury. One major process involves disrupted fluid regulation to create vascular and cytotoxic edema in the affected area. Although understanding of factors that influence edema is incomplete, the astrocyte water channel Aquaporin 4 (AQP4) has been identified as an important mediator and therefore attractive drug target for edema prevention. The FDA-approved drug acetazolamide has been administered safely to patients for years in the United States. To test whether acetazolamide altered AQP4 function after TBI, we utilized in vitro and in vivo models of TBI. Our results suggest that AQP4 localization is altered after TBI, similar to previously published reports. Treatment with acetazolamide prevented AQP4 reorganization, both in human astrocyte in vitro and in mice in vivo. Moreover, acetazolamide eliminated cytotoxic edema in our in vivo mouse TBI model. Our results suggest a possible clinical role for acetazolamide in the treatment of TBI.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: