Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,022 papers

ATP-Binding Cassette Transporters in the Clinical Implementation of Pharmacogenetics.

  • Luis A López-Fernández‎
  • Journal of personalized medicine‎
  • 2018‎

ATP-binding cassette (ABC) transporters are involved in a large number of processes and contribute to various human genetic diseases. Among other functions, ABC proteins are involved in the transport of multiple drugs through cells. Most of the genes coding for these transporters are highly polymorphic and DNA variants in these genes can affect the normal functioning of these proteins, affecting the way drugs are transported, increasing or decreasing drug levels. These changes in the intracellular and extracellular drug levels may be associated with altered drug effectiveness or severe drug-induced adverse events. This review presents a state-of-art of the most pharmacogenetics clinically relevant ABC transporters closed to the clinical implementation.


ATP-binding cassette transporters mediate differential biosynthesis of glycosphingolipid species.

  • Monique Budani‎ et al.
  • Journal of lipid research‎
  • 2021‎

The cytosolic-oriented glucosylceramide (GlcCer) synthase is enigmatic, requiring nascent GlcCer translocation to the luminal Golgi membrane to access glycosphingolipid (GSL) anabolic glycosyltransferases. The mechanism by which GlcCer is flipped remains unclear. To investigate the role of GlcCer-binding partners in this process, we previously made cleavable, biotinylated, photoreactive GlcCer analogs in which the reactive nitrene was closely apposed to the GlcCer head group, while maintaining a C16-acyl chain. GlcCer-binding protein specificity was validated for both photoprobes. Using one probe, XLB, here we identified ATP-binding cassette (ABC) transporters ABCA3, ABCB4, and ABCB10 as unfractionated microsomal GlcCer-binding proteins in DU-145 prostate tumor cells. siRNA knockdown (KD) of these transporters differentially blocked GSL synthesis assessed in toto and via metabolic labeling. KD of ABCA3 reduced acid/neutral GSL levels, but increased those of LacCer, while KD of ABCB4 preferentially reduced neutral GSL levels, and KD of ABCB10 reduced levels of both neutral and acidic GSLs. Depletion of ABCA12, implicated in GlcCer transport, preferentially decreased neutral GSL levels, while ABCB1 KD preferentially reduced gangliosides, but increased neutral GSL Gb3. These results imply that multiple ABC transporters may provide distinct but overlapping GlcCer and LacCer pools within the Golgi lumen for anabolism of different GSL series by metabolic channeling. Differential ABC family member usage may fine-tune GSL biosynthesis depending on cell/tissue type. We conclude that ABC transporters provide a new tool for the regulation of GSL biosynthesis and serve as potential targets to reduce selected GSL species/subsets in diseases in which GSLs are dysregulated.


Nitric oxide differentially regulates renal ATP-binding cassette transporters during endotoxemia.

  • Suzanne Heemskerk‎ et al.
  • Pflugers Archiv : European journal of physiology‎
  • 2007‎

Nitric oxide (NO) is an important regulator of renal transport processes. In the present study, we investigated the role of NO, produced by inducible NO synthase (iNOS), in the regulation of renal ATP-binding cassette (ABC) transporters in vivo during endotoxemia. Wistar-Hannover rats were injected with lipopolysaccharide (LPS(+)) alone or in combination with the iNOS inhibitor, aminoguanidine. Controls received detoxified LPS (LPS(-)). After LPS(+), proximal tubular damage and a reduction in renal function were observed. Furthermore, iNOS mRNA and protein, and the amount of NO metabolites in plasma and urine, increased compared to the LPS(-) group. Coadministration with aminoguanidine resulted in an attenuation of iNOS induction and reduction of renal damage. Gene expression of 20 ABC transporters was determined. After LPS(+), a clear up-regulation in Abca1, Abcb1/P-glycoprotein (P-gp), Abcb11/bile salt export pump (Bsep), and Abcc2/multidrug resistance protein (Mrp2) was found, whereas Abcc8 was down-regulated. Up-regulation of Abcc2/Mrp2 was accompanied by enhanced calcein excretion. Aminoguanidine attenuated the effects on transporter expression. Our data indicate that NO, produced locally by renal iNOS, regulates the expression of ABC transporters in vivo. Furthermore, we showed, for the first time, expression and subcellular localization of Abcb11/Bsep in rat kidney.


Expression of some ATP-binding cassette transporters in acute myeloid leukemia.

  • Antonella Maria Salvia‎ et al.
  • Hematology reports‎
  • 2017‎

No abstract available


Genome-wide analysis of ATP binding cassette (ABC) transporters in tomato.

  • Peter Amoako Ofori‎ et al.
  • PloS one‎
  • 2018‎

ATP binding cassette (ABC) transporters are proteins that actively mediate the transport of a wide range of molecules, such as organic acids, metal ions, phytohormones and secondary metabolites. Therefore, ABC transporters must play indispensable roles in growth and development of tomato, including fruit development. Most ABC transporters have transmembrane domains (TMDs) and belong to the ABC protein family, which includes not only ABC transporters but also soluble ABC proteins lacking TMDs. In this study, we performed a genome-wide identification and expression analysis of genes encoding ABC proteins in tomato (Solanum lycopersicum), which is a valuable horticultural crop and a model plant for studying fleshy fruits. In the tomato genome, a total of 154 genes putatively encoding ABC transporters, including 9 ABCAs, 29 ABCBs, 26 ABCCs, 2 ABCDs, 2 ABCEs, 6 ABCFs, 70 ABCGs and 10 ABCIs, were identified. Gene expression data from the eFP Browser and reverse transcription-semi-quantitative PCR analysis revealed their tissue-specific and development-specific expression profiles. This work suggests physiological roles of ABC transporters in tomato and provides fundamental information for future studies of ABC transporters not only in tomato but also in other Solanaceae species.


Predictive Structure and Topology of Peroxisomal ATP-Binding Cassette (ABC) Transporters.

  • Pierre Andreoletti‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

The peroxisomal ATP-binding Cassette (ABC) transporters, which are called ABCD1, ABCD2 and ABCD3, are transmembrane proteins involved in the transport of various lipids that allow their degradation inside the organelle. Defective ABCD1 leads to the accumulation of very long-chain fatty acids and is associated with a complex and severe neurodegenerative disorder called X-linked adrenoleukodystrophy (X-ALD). Although the nucleotide-binding domain is highly conserved and characterized within the ABC transporters family, solid data are missing for the transmembrane domain (TMD) of ABCD proteins. The lack of a clear consensus on the secondary and tertiary structure of the TMDs weakens any structure-function hypothesis based on the very diverse ABCD1 mutations found in X-ALD patients. Therefore, we first reinvestigated thoroughly the structure-function data available and performed refined alignments of ABCD protein sequences. Based on the 2.85  Å resolution crystal structure of the mitochondrial ABC transporter ABCB10, here we propose a structural model of peroxisomal ABCD proteins that specifies the position of the transmembrane and coupling helices, and highlight functional motifs and putative important amino acid residues.


DeepRTCP: Predicting ATP-Binding Cassette Transporters Based on 1-Dimensional Convolutional Network.

  • Zhaoxi Zhang‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

ATP-binding cassette (ABC) transporters can promote cells to absorb nutrients and excrete harmful substances. It plays a vital role in the transmembrane transport of macromolecules. Therefore, the identification of ABC transporters is of great significance for the biological research. This paper will introduce a novel method called DeepRTCP. DeepRTCP uses the deep convolutional neural network and a feature combined of reduced amino acid alphabet based tripeptide composition and PSSM to recognize ABC transporters. We constructed a dataset named ABC_2020. It contains the latest ABC transporters downloaded from Uniprot. We performed 10-fold cross-validation on DeepRTCP, and the average accuracy of DeepRTCP was 95.96%. Compared with the start-of-the-art method for predicting ABC transporters, DeepRTCP improved the accuracy by 9.29%. It is anticipated that DeepRTCP can be used as an effective ABC transporter classifier which provides a reliable guidance for the research of ABC transporters.


Chalcone Derivatives Enhance ATP-Binding Cassette Transporters A1 in Human THP-1 Macrophages.

  • I-Jou Teng‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Atherosclerosis is a process of imbalanced lipid metabolism in the vascular walls. The underlying pathology mainly involves the deposition of oxidized lipids in the endothelium and the accumulation of cholesterol in macrophages. Macrophages export excessive cholesterol (cholesterol efflux) through ATP-binding cassette transporter A1 (ABCA1) to counter the progression of atherosclerosis. We synthesized novel chalcone derivatives and assessed their effects and the underlying mechanisms on ABCA1 expression in macrophages. Human THP-1 macrophages were treated with synthetic chalcone derivatives for 24 h. In Western blot and flow cytometry analyses, a chalcone derivative, (E)-1-(3,4-diisopropoxyphenyl)-3-(4-isopropoxy-3-methoxyphenyl)prop- 2-en-1-one (1m), was observed to significantly enhance ABCA1 protein expression in THP-1 cells (10 µM, 24 h). Levels of mRNA of ABCA1 and liver X receptor alpha (LXRα) were quantified using a real-time quantitative polymerase chain reaction technique and were found to be significantly increased after treatment with the novel chalcone derivative 1m. Several microRNAs, including miR155, miR758, miR10b, miR145, miR33, and miR106b, which functionally inhibit ABCA1 expression were suppressed after treatment with 1m. Collectively, 1m increases ABCA1 expression in human THP-1 macrophages. The mechanisms involve the activation of the LXRα-ABCA1 pathway and suppression of certain microRNAs that regulate ABCA1 expression.


Twist1 confers multidrug resistance in colon cancer through upregulation of ATP-binding cassette transporters.

  • Yan-Rong Liu‎ et al.
  • Oncotarget‎
  • 2017‎

Multidrug resistance is a major problem in colon cancer treatment. However, its molecular mechanisms remain unclear. Recently, the epithelial-mesenchymal transition (EMT) in anticancer drug resistance has attracted increasing attention. This study investigated whether vincristine treatment induces EMT and promotes multidrug resistance in colon cancer. The result showed that vincristine treatment increases the expression of several ATP-binding cassette transporters in invasive human colon adenocarcinoma cell line (HCT-8). Vincristine-resistant HCT-8 cells (HCT-8/V) acquire a mesenchymal phenotype, and thus its migratory and invasive ability are increased both in vitro and in vivo. The master transcriptional factors of EMT, especially Twist1, were significantly increased in the HCT-8/V cell line. Moreover, the ectopic expression of Twist1 increased the chemoresistance of HCT-8 cells to vincristine and increased the expression levels and promoter activities of ABCB1 and ABCC1. Furthermore, Twist1 silencing reverses the EMT phenotype, enhances the chemosensitivity of HCT-8/ V cells to anticancer agents in vitro and in vivo, and downregulates the expression of ABCB1 and ABCC1. Twist1-mediated promotion of ABCB1 and ABCC1 expression levels plays an important role in the drug resistance of colon cancer cells.


Selecting for Altered Substrate Specificity Reveals the Evolutionary Flexibility of ATP-Binding Cassette Transporters.

  • Sriram Srikant‎ et al.
  • Current biology : CB‎
  • 2020‎

ATP-binding cassette (ABC) transporters are the largest family of ATP-hydrolyzing transporters, which import or export substrates across membranes, and have members in every sequenced genome. Structural studies and biochemistry highlight the contrast between the global structural similarity of homologous transporters and the enormous diversity of their substrates. How do ABC transporters evolve to carry such diverse molecules and what variations in their amino acid sequence alter their substrate selectivity? We mutagenized the transmembrane domains of a conserved fungal ABC transporter that exports a mating pheromone and selected for mutants that export a non-cognate pheromone. Mutations that alter export selectivity cover a region that is larger than expected for a localized substrate-binding site. Individual selected clones have multiple mutations, which have broadly additive contributions to specific transport activity. Our results suggest that multiple positions influence substrate selectivity, leading to alternative evolutionary paths toward selectivity for particular substrates and explaining the number and diversity of ABC transporters.


Function and Role of ATP-Binding Cassette Transporters as Receptors for 3D-Cry Toxins.

  • Ryoichi Sato‎ et al.
  • Toxins‎
  • 2019‎

When ABC transporter family C2 (ABCC2) and ABC transporter family B1 (ABCB1) were heterologously expressed in non-susceptible cultured cells, the cells swelled in response to Cry1A and Cry3 toxins, respectively. Consistent with the notion that 3D-Cry toxins form cation-permeable pores, Bombyx mori ABCC2 (BmABCC2) facilitated cation-permeable pore formation by Cry1A when expressed in Xenopus oocytes. Furthermore, BmABCC2 had a high binding affinity (KD) to Cry1Aa of 3.1 × 10-10 M. These findings suggest that ABC transporters, including ABCC2 and ABCB1, are functional receptors for 3D-Cry toxins. In addition, the Cry2 toxins most distant from Cry1A toxins on the phylogenetic tree used ABC transporter A2 as a receptor. These data suggest that 3D-Cry toxins use ABC transporters as receptors. In terms of inducing cell swelling, ABCC2 has greater activity than cadherin-like receptor. The pore opening of ABC transporters was hypothesized to be linked to their receptor function, but this was repudiated by experiments using mutants deficient in export activity. The synergistic relationship between ABCC2 and cadherin-like receptor explains their ability to cause resistance in one species of insect.


Regulation of Human γδ T Cells by BTN3A1 Protein Stability and ATP-Binding Cassette Transporters.

  • David A Rhodes‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Activation of human Vγ9/Vδ2 T cells by "phosphoantigens" (pAg), the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) and the endogenous isoprenoid intermediate isopentenyl pyrophosphate, requires expression of butyrophilin BTN3A molecules by presenting cells. However, the precise mechanism of activation of Vγ9/Vδ2 T cells by BTN3A molecules remains elusive. It is not clear what conformation of the three BTN3A isoforms transmits activation signals nor how externally delivered pAg accesses the cytosolic B30.2 domain of BTN3A1. To approach these problems, we studied two HLA haplo-identical HeLa cell lines, termed HeLa-L and HeLa-M, which showed marked differences in pAg-dependent stimulation of Vγ9/Vδ2 T cells. Levels of IFN-γ secretion by Vγ9/Vδ2 T cells were profoundly increased by pAg loading, or by binding of the pan-BTN3A specific agonist antibody CD277 20.1, in HeLa-M compared to HeLa-L cells. IL-2 production from a murine hybridoma T cell line expressing human Vγ9/Vδ2 T cell receptor (TCR) transgenes confirmed that the differential responsiveness to HeLa-L and HeLa-M was TCR dependent. By tissue typing, both HeLa lines were shown to be genetically identical and full-length transcripts of the three BTN3A isoforms were detected in equal abundance with no sequence variation. Expression of BTN3A and interacting molecules, such as periplakin or RhoB, did not account for the functional variation between HeLa-L and HeLa-M cells. Instead, the data implicate a checkpoint controlling BTN3A1 stability and protein trafficking, acting at an early time point in its maturation. In addition, plasma membrane profiling was used to identify proteins upregulated in HMB-PP-treated HeLa-M. ABCG2, a member of the ATP-binding cassette (ABC) transporter family was the most significant candidate, which crucially showed reduced expression in HeLa-L. Expression of a subset of ABC transporters, including ABCA1 and ABCG1, correlated with efficiency of T cell activation by cytokine secretion, although direct evidence of a functional role was not obtained by knockdown experiments. Our findings indicate a link between members of the ABC protein superfamily and the BTN3A-dependent activation of γδ T cells by endogenous and exogenous pAg.


Genome-wide analysis of ATP-binding cassette (ABC) transporters in the sweetpotato whitefly, Bemisia tabaci.

  • Lixia Tian‎ et al.
  • BMC genomics‎
  • 2017‎

ABC transporter superfamily is one of the largest and ubiquitous groups of proteins. Because of their role in detoxification, insect ABC transporters have gained more attention in recent years. In this study, we annotated ABC transporters from a newly sequenced sweetpotato whitefly genome. Bemisia tabaci Q biotype is an emerging global invasive species that has caused extensive damages to field crops as well as ornamental plants.


Discovery of regulatory elements in human ATP-binding cassette transporters through expression quantitative trait mapping.

  • P Matsson‎ et al.
  • The pharmacogenomics journal‎
  • 2012‎

ATP-binding cassette (ABC) membrane transporters determine the disposition of many drugs, metabolites and endogenous compounds. Coding region variation in ABC transporters is the cause of many genetic disorders, but much less is known about the genetic basis and functional outcome of ABC transporter expression level variation. We used genotype and mRNA transcript level data from human lymphoblastoid cell lines to assess population and gender differences in ABC transporter expression, and to guide the discovery of genomic regions involved in transcriptional regulation. Nineteen of 49 ABC genes were differentially expressed between individuals of African, Asian and European descent, suggesting an important influence of race on expression level of ABC transporters. Twenty-four significant associations were found between transporter transcript levels and proximally located genetic variants. Several of the associations were experimentally validated in reporter assays. Through influencing ABC expression levels, these single-nucleotide polymorphisms may affect disease susceptibility and response to drugs.


Beauvericin potentiates the activity of pesticides by neutralizing the ATP-binding cassette transporters in arthropods.

  • Charbel Al Khoury‎ et al.
  • Scientific reports‎
  • 2021‎

Multi-drug resistance is posing major challenges in suppressing the population of pests. Many herbivores develop resistance, causing a prolonged survival after exposure to a previously effective pesticide. Consequently, resistant pests reduce the yield of agricultural production, causing significant economic losses and reducing food security. Therefore, overpowering resistance acquisition of crop pests is a must. The ATP binding cassette transporters (ABC transporters) are considered as the main participants to the pesticide efflux and their neutralization will greatly contribute to potentiate failed treatments. Real-Time PCR analysis of 19 ABC transporter genes belonging to the ABCB, ABCC, ABCG, and ABCH revealed that a broad range of efflux pumps is activated in response to the exposure to pesticides. In this study, we used beauvericin (BEA), a known ABC transporters modulator, to resensitize different strains of Tetranychus urticae after artificial selection for resistance to cyflumetofen, bifenazate, and abamectin. Our results showed that the combinatorial treatment of pesticide (manufacturer's recommended doses) + BEA (sublethal doses: 0.15 mg/L) significantly suppressed the resistant populations of T. urticae when compared to single-drug treatments. Moreover, after selective pressure for 40 generations, the LC50 values were significantly reduced from 36.5, 44.7, and 94.5 (pesticide) to 8.3, 12.5, and 23.4 (pesticide + BEA) for cyflumetofen, bifenazate, and abamectin, respectively. While the downstream targets for BEA are still elusive, we demonstrated hereby that it synergizes with sub-lethal doses of different pesticides and increases their effect by inhibiting ABC transporters. This is the first report to document such combinatorial activity of BEA against higher invertebrates paving the way for its usage in treating refractory cases of resistance to pesticides. Moreover, we demonstrated, for the first time, using in silico techniques, the higher affinity of BEA to ABC transformers subfamilies when compared to xenobiotics; thus, elucidating the pathway of the mycotoxin.


ATP-Binding Cassette (ABC) Transporters of the Human Respiratory Tract Pathogen, Moraxella catarrhalis: Role in Virulence.

  • Timothy F Murphy‎ et al.
  • PloS one‎
  • 2016‎

Moraxella catarrhalis is a human respiratory tract pathogen that causes otitis media (middle ear infections) in children and respiratory tract infections in adults with chronic obstructive pulmonary disease. In view of the huge global burden of disease caused by M. catarrhalis, the development of vaccines to prevent these infections and better approaches to treatment have become priorities. In previous work, we used a genome mining approach that identified three substrate binding proteins (SBPs) of ATP-binding cassette (ABC) transporters as promising candidate vaccine antigens. In the present study, we performed a comprehensive assessment of 19 SBPs of 15 ABC transporter systems in the M. catarrhalis genome by engineering knockout mutants and studying their role in assays that assess mechanisms of infection. The capacity of M. catarrhalis to survive and grow in the nutrient-limited and hostile environment of the human respiratory tract, including intracellular growth, account in part for its virulence. The results show that ABC transporters that mediate uptake of peptides, amino acids, cations and anions play important roles in pathogenesis by enabling M. catarrhalis to 1) grow in nutrient-limited conditions, 2) invade and survive in human respiratory epithelial cells and 3) persist in the lungs in a murine pulmonary clearance model. The knockout mutants of SBPs and ABC transporters showed different patterns of activity in the assay systems, supporting the conclusion that different SBPs and ABC transporters function at different stages in the pathogenesis of infection. These results indicate that ABC transporters are nutritional virulence factors, functioning to enable the survival of M catarrhalis in the diverse microenvironments of the respiratory tract. Based on the role of ABC transporters as virulence factors of M. catarrhalis, these molecules represent potential drug targets to eradicate the organism from the human respiratory tract.


Gestational age-dependent gene expression profiling of ATP-binding cassette transporters in the healthy human placenta.

  • Guinever E Imperio‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

The ATP-binding cassette (ABC) transporters control placental transfer of several nutrients, steroids, immunological factors, chemicals, and drugs at the maternal-fetal interface. We and others have demonstrated a gestational age-dependent expression pattern of two ABC transporters, P-glycoprotein and breast cancer resistance protein throughout pregnancy. However, no reports have comprehensively elucidated the expression pattern of all 50 ABC proteins, comparing first trimester and term human placentae. We hypothesized that placental ABC transporters are expressed in a gestational-age dependent manner in normal human pregnancy. Using the TaqMan® Human ABC Transporter Array, we assessed the mRNA expression of all 50 ABC transporters in first (first trimester, n = 8) and third trimester (term, n = 12) human placentae and validated the resulting expression of selected ABC transporters using qPCR, Western blot and immunohistochemistry. A distinct gene expression profile of 30 ABC transporters was observed comparing first trimester vs. term placentae. Using individual qPCR in selected genes, we validated the increased expression of ABCA1 (P < 0.01), ABCA6 (P < 0.001), ABCA9 (P < 0.001) and ABCC3 (P < 0.001), as well as the decreased expression of ABCB11 (P < 0.001) and ABCG4 (P < 0.01) with advancing gestation. One important lipid transporter, ABCA6, was selected to correlate protein abundance and characterize tissue localization. ABCA6 exhibited increased protein expression towards term and was predominantly localized to syncytiotrophoblast cells. In conclusion, expression patterns of placental ABC transporters change as a function of gestational age. These changes are likely fundamental to a healthy pregnancy given the critical role that these transporters play in the regulation of steroidogenesis, immunological responses, and placental barrier function and integrity.


Citrulline increases cholesterol efflux from macrophages in vitro and ex vivo via ATP-binding cassette transporters.

  • Harumi Uto-Kondo‎ et al.
  • Journal of clinical biochemistry and nutrition‎
  • 2014‎

Reverse cholesterol transport (RCT) is a mechanism critical to the anti-atherogenic property of HDL. Although citrulline contributes to the amelioration of atherosclerosis via endothelial nitric oxide production, it remains unclear whether it affects RCT. This study was undertaken to clarify the effects of citrulline on expressions of specific transporters such as ATP binding cassette transporters (ABC)A1 and ABCG1, and the cholesterol efflux from macrophages to apolipoprotein (apo) A-I or HDL in vitro and ex vivo. Citrulline increased ABCA1 and ABCG1 mRNA and protein levels in THP-1 macrophages, translating into enhanced apoA-I- and HDL-mediated cholesterol efflux. In the human crossover study, 8 healthy male volunteers (age 30-49 years) consumed either 3.2 g/day citrulline or placebo for 1 week. Citrulline consumption brought about significant increases in plasma levels of citrulline and arginine. Supporting the in vitro data, monocyte-derived macrophages (MDM) differentiated under autologous post-citrulline sera demonstrated enhancement of both apoA-I- and HDL-mediated cholesterol efflux through increased ABCA1 and ABCG1 expressions, compared to MDM differentiated under pre-citrulline sera. However, the placebo did not modulate these parameters. Therefore, in addition to improving endothelium function, citrulline might have an anti-atherogenic property by increasing RCT of HDL.


Transcriptional Response of ATP-Binding Cassette (ABC) Transporters to Insecticide in the Brown Planthopper, Nilaparvata lugens (Stål).

  • Zhao Li‎ et al.
  • Insects‎
  • 2020‎

The ATP-binding cassette (ABC) transporter superfamily is one of the largest groups of proteins and plays a non-negligible role in phase III of the detoxification process, which is highly involved in the response of insects to environmental stress (plant secondary metabolites and insecticides). In the present study, in Nilaparvata lugens, we identified 32 ABC transporters, which are grouped into eight subfamilies (ABCA-H) based on phylogenetic analysis. The temporal and spatial expression profiles suggested that the nymphal stages (1st-5th) and adult males showed similarity, which was different from eggs and adult females, and NlABCA1, NlABCA2, NlABCB6, NlABCD2, NlABCG4, NlABCG12, NlABCG15, and NlABCH1 were highly expressed in the midgut and Malpighian tubules. In addition, ABCG12, which belongs to the ABC transporter G subfamily, was significantly upregulated after exposure to sulfoxaflor, nitenpyram, clothianidin, etofenprox, chlorpyrifos, and isoprocarb. Moreover, verapamil significantly increased the sensitivity of N. lugens to nitenpyram, clothianidin, etofenprox, chlorpyrifos, and isoprocarb. These results provide a basis for further research on ABC transporters involved in detoxification in N. lugens, and for a more comprehensive understanding of the response of N. lugens to environmental stress.


Human ATP-binding cassette (ABC) transporter family.

  • Vasilis Vasiliou‎ et al.
  • Human genomics‎
  • 2009‎

There exist four fundamentally different classes of membrane-bound transport proteins: ion channels; transporters; aquaporins; and ATP-powered pumps. ATP-binding cassette (ABC) transporters are an example of ATP-dependent pumps. ABC transporters are ubiquitous membrane-bound proteins, present in all prokaryotes, as well as plants, fungi, yeast and animals. These pumps can move substrates in (influx) or out (efflux) of cells. In mammals, ABC transporters are expressed predominantly in the liver, intestine, blood-brain barrier, blood-testis barrier, placenta and kidney. ABC proteins transport a number of endogenous substrates, including inorganic anions, metal ions, peptides, amino acids, sugars and a large number of hydrophobic compounds and metabolites across the plasma membrane, and also across intracellular membranes. The human genome contains 49 ABC genes, arranged in eight subfamilies and named via divergent evolution. That ABC genes are important is underscored by the fact that mutations in at least 11 of these genes are already known to cause severe inherited diseases (eg cystic fibrosis and X-linked adrenoleukodystrophy [X-ALD]). ABC transporters also participate in the movement of most drugs and their metabolites across cell surface and cellular organelle membranes; thus, defects in these genes can be important in terms of cancer therapy, pharmacokinetics and innumerable pharmacogenetic disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: