Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 220 papers

Insights on ADAMTS proteases and ADAMTS-like proteins from mammalian genetics.

  • Johanne Dubail‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2015‎

The mammalian ADAMTS superfamily comprises 19 secreted metalloproteinases and 7 ADAMTS-like proteins, each the product of a distinct gene. Thus far, all appear to be relevant to extracellular matrix function or to cell-matrix interactions. Most ADAMTS functions first emerged from analysis of spontaneous human and animal mutations and genetically engineered animals. The clinical manifestations of Mendelian disorders resulting from mutations in ADAMTS2, ADAMTS10, ADAMTS13, ADAMTS17, ADAMTSL2 and ADAMTSL4 identified essential roles for each gene, but also suggested potential cooperative functions of ADAMTS proteins. These observations were extended by analysis of spontaneous animal mutations, such as in bovine ADAMTS2, canine ADAMTS10, ADAMTS17 and ADAMTSL2 and mouse ADAMTS20. These human and animal disorders are recessive and their manifestations appear to result from a loss-of-function mechanism. Genome-wide analyses have determined an association of some ADAMTS loci such as ADAMTS9 and ADAMTS7, with specific traits and acquired disorders. Analysis of genetically engineered rodent mutations, now achieved for over half the superfamily, has provided novel biological insights and animal models for the respective human genetic disorders and suggested potential candidate genes for related human phenotypes. Engineered mouse mutants have been interbred to generate combinatorial mutants, uncovering cooperative functions of ADAMTS proteins in morphogenesis. Specific genetic models have provided crucial insights on mechanisms of osteoarthritis (OA), a common adult-onset degenerative condition. Engineered mutants will facilitate interpretation of exome variants identified in isolated birth defects and rare genetic conditions, as well as in genome-wide screens for trait and disease associations. Mammalian forward and reverse genetics, together with genome-wide analysis, together constitute a powerful force for revealing the functions of ADAMTS proteins in physiological pathways and health disorders. Their continuing use, together with genome-editing technology and the ability to generate stem cells from mutants, presents numerous opportunities for advancing basic knowledge, human disease pathways and therapy.


ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview.

  • Soichi Takeda‎
  • Toxins‎
  • 2016‎

A disintegrin and metalloproteinase (ADAM) family proteins constitute a major class of membrane-anchored multidomain proteinases that are responsible for the shedding of cell-surface protein ectodomains, including the latent forms of growth factors, cytokines, receptors and other molecules. Snake venom metalloproteinases (SVMPs) are major components in most viper venoms. SVMPs are primarily responsible for hemorrhagic activity and may also interfere with the hemostatic system in envenomed animals. SVMPs are phylogenetically most closely related to ADAMs and, together with ADAMs and related ADAM with thrombospondin motifs (ADAMTS) family proteinases, constitute adamalysins/reprolysins or the M12B clan (MEROPS database) of metalloproteinases. Although the catalytic domain structure is topologically similar to that of other metalloproteinases such as matrix metalloproteinases, the M12B proteinases have a modular structure with multiple non-catalytic ancillary domains that are not found in other proteinases. Notably, crystallographic studies revealed that, in addition to the conserved metalloproteinase domain, M12B members share a hallmark cysteine-rich domain designated as the "ADAM_CR" domain. Despite their name, ADAMTSs lack disintegrin-like structures and instead comprise two ADAM_CR domains. This review highlights the current state of our knowledge on the three-dimensional structures of M12B proteinases, focusing on their unique domains that may collaboratively participate in directing these proteinases to specific substrates.


ADAM and ADAMTS Proteins, New Players in the Regulation of Hepatocellular Carcinoma Microenvironment.

  • Nathalie Théret‎ et al.
  • Cancers‎
  • 2021‎

The tumor microenvironment plays a major role in tumor growth, invasion and resistance to chemotherapy, however understanding how all actors from microenvironment interact together remains a complex issue. The tumor microenvironment is classically represented as three closely connected components including the stromal cells such as immune cells, fibroblasts, adipocytes and endothelial cells, the extracellular matrix (ECM) and the cytokine/growth factors. Within this space, proteins of the adamalysin family (ADAM for a disintegrin and metalloproteinase; ADAMTS for ADAM with thrombospondin motifs; ADAMTSL for ADAMTS-like) play critical roles by modulating cell-cell and cell-ECM communication. During last decade, the implication of adamalysins in the development of hepatocellular carcinoma (HCC) has been supported by numerous studies however the functional characterization of most of them remain unsettled. In the present review we propose both an overview of the literature and a meta-analysis of adamalysins expression in HCC using data generated by The Cancer Genome Atlas (TCGA) Research Network.


Matrilin-2 is proteolytically cleaved by ADAMTS-4 and ADAMTS-5.

  • Zhengke Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2014‎

Matrilin-2 is a widely distributed, oligomeric extracellular matrix protein that forms a filamentous network by binding to a variety of different extracellular matrix proteins. We found matrilin-2 proteolytic products in transfected cell lines in vitro and in mouse tissues in vivo. Two putative cleavage sites were identified in the unique domain of matrilin-2; the first site was located between D851 and L852 in the middle of the domain and the second, at the boundary with the coiled-coil domain at the C-terminus. Deletion of the entire unique domain eliminated the proteolysis of matrilin-2. While the first cleavage site was present in all matrilin-2 oligomers, the second cleavage site became apparent only in the matrilin-2 hetero-oligomers with matrilin-1 or matrilin-3. Analysis using a variety of extracellular protease inhibitors suggested that this proteolytic activity was derived from a member or several members  of the ADAMTS family. Recombinant human ADAMTS-4 (aggrecanase-1) and ADAMTS-5 (aggrecanase-2), but not ADAMTS-1, cleaved recombinant matrilin-2, thereby yielding matrilin-2 proteolytic peptides at the predicted sizes. These results suggest that ADAMTS-4 and ADAMTS-5 may destabilize the filamentous network in the extracellular matrix by cleaving matrilin-2 in both homo-oligomers and hetero-oligomers.


Exosite inhibition of ADAMTS-5 by a glycoconjugated arylsulfonamide.

  • Salvatore Santamaria‎ et al.
  • Scientific reports‎
  • 2021‎

ADAMTS-5 is a major protease involved in the turnover of proteoglycans such as aggrecan and versican. Dysregulated aggrecanase activity of ADAMTS-5 has been directly linked to the etiology of osteoarthritis (OA). For this reason, ADAMTS-5 is a pharmaceutical target for the treatment of OA. ADAMTS-5 shares high structural and functional similarities with ADAMTS-4, which makes the design of selective inhibitors particularly challenging. Here we exploited the ADAMTS-5 binding capacity of β-N-acetyl-D-glucosamine to design a new class of sugar-based arylsulfonamides. Our most promising compound, 4b, is a non-zinc binding ADAMTS-5 inhibitor which showed high selectivity over ADAMTS-4. Docking calculations combined with molecular dynamics simulations demonstrated that 4b is a cross-domain inhibitor that targets the interface of the metalloproteinase and disintegrin-like domains. Furthermore, the interaction between 4b and the ADAMTS-5 Dis domain is mediated by hydrogen bonds between the sugar moiety and two lysine residues (K532 and K533). Targeted mutagenesis of these two residues confirmed their importance both for versicanase activity and inhibitor binding. This positively-charged cluster of ADAMTS-5 represents a previously unknown substrate-binding site (exosite) which is critical for substrate recognition and can therefore be targeted for the development of selective ADAMTS-5 inhibitors.


Regulated proteolytic processing of Reelin through interplay of tissue plasminogen activator (tPA), ADAMTS-4, ADAMTS-5, and their modulators.

  • Dimitrije Krstic‎ et al.
  • PloS one‎
  • 2012‎

The extracellular signaling protein Reelin, indispensable for proper neuronal migration and cortical layering during development, is also expressed in the adult brain where it modulates synaptic functions. It has been shown that proteolytic processing of Reelin decreases its signaling activity and promotes Reelin aggregation in vitro, and that proteolytic processing is affected in various neurological disorders, including Alzheimer's disease (AD). However, neither the pathophysiological significance of dysregulated Reelin cleavage, nor the involved proteases and their modulators are known. Here we identified the serine protease tissue plasminogen activator (tPA) and two matrix metalloproteinases, ADAMTS-4 and ADAMTS-5, as Reelin cleaving enzymes. Moreover, we assessed the influence of several endogenous protease inhibitors, including tissue inhibitors of metalloproteinases (TIMPs), α-2-Macroglobulin, and multiple serpins, as well as matrix metalloproteinase 9 (MMP-9) on Reelin cleavage, and described their complex interplay in the regulation of this process. Finally, we could demonstrate that in the murine hippocampus, the expression levels and localization of Reelin proteases largely overlap with that of Reelin. While this pattern remained stable during normal aging, changes in their protein levels coincided with accelerated Reelin aggregation in a mouse model of AD.


The characterisation of six ADAMTS proteases in the basal chordate Ciona intestinalis provides new insights into the vertebrate ADAMTS family.

  • Julie Huxley-Jones‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2005‎

ADAMTS, constituting a recently discovered family of secreted zinc-dependent metalloproteases, have been shown to have critical physiological roles through identification of a number of natural animal and human gene mutations. The identification of six ADAMTS genes in the basal chordate Ciona intestinalis provides new insight into how, when and in what order the vertebrate orthologues have evolved. The phylogenetic assignments, based on sequences conserved across all genes, are supported by conserved domain structures within defined sub-families. The phylogeny and the frequent localisation of ADAMTS genes in paralogous regions of the genome are consistent with the vertebrate lineages having arisen by large scale or genome duplication. The high level of conservation in the protease active site of vertebrate orthologues within some sub-families suggests subfunctionalisation, whereas the greater divergence in others would favour the evolution of novel substrate specificities and these observations are borne-out where substrate-specificity is known. The expansion and sub-specialization of the ADAMTS family is a component of the increased complexity of extracellular matrix that is associated with the evolution of vertebrates.


ADAMTS proteases in cardiovascular physiology and disease.

  • Salvatore Santamaria‎ et al.
  • Open biology‎
  • 2020‎

The a disintegrin-like and metalloproteinase with thrombospondin motif (ADAMTS) family comprises 19 proteases that regulate the structure and function of extracellular proteins in the extracellular matrix and blood. The best characterized cardiovascular role is that of ADAMTS-13 in blood. Moderately low ADAMTS-13 levels increase the risk of ischeamic stroke and very low levels (less than 10%) can cause thrombotic thrombocytopenic purpura (TTP). Recombinant ADAMTS-13 is currently in clinical trials for treatment of TTP. Recently, new cardiovascular roles for ADAMTS proteases have been discovered. Several ADAMTS family members are important in the development of blood vessels and the heart, especially the valves. A number of studies have also investigated the potential role of ADAMTS-1, -4 and -5 in cardiovascular disease. They cleave proteoglycans such as versican, which represent major structural components of the arteries. ADAMTS-7 and -8 are attracting considerable interest owing to their implication in atherosclerosis and pulmonary arterial hypertension, respectively. Mutations in the ADAMTS19 gene cause progressive heart valve disease and missense variants in ADAMTS6 are associated with cardiac conduction. In this review, we discuss in detail the evidence for these and other cardiovascular roles of ADAMTS family members, their proteolytic substrates and the potential molecular mechanisms involved.


Evolutionary divergence and functions of the ADAM and ADAMTS gene families.

  • Chad N Brocker‎ et al.
  • Human genomics‎
  • 2009‎

The 'A-disintegrin and metalloproteinase' ( ADAM ) and 'A-disintegrin and metalloproteinase with thrombospondin motifs' ( ADAMTS ) genes make up two similar, yet distinct, gene families. The human and mouse genomes contain 21 and 24 putatively functional protein-coding ADAM genes, respectively, and 24 versus 32 putatively functional protein-coding ADAMTS genes, respectively. Analysis of evolutionary divergence shows that both families are unique. Each of the two families can be separated, if need be, into groups of more closely related members: six subfamilies for ADAM , four subfamilies for ADAMTS. The presence of both disintegrin and peptidase domains within the ADAM and ADAMTS proteins implies multiple biological roles within the cell. Membrane-anchored ADAM proteins are best known for their role in activating zymogens--including tumour necrosis factor-alpha, epidermal growth factor (EGF) and amyloid precursor protein (APP). ADAM proteins can also participate in cell adhesion via their interaction with integrins in neighbouring cells. ADAMTS are secreted proteins that participate in extracellular matrix maintenance by way of their cleavage of procollagen and proteoglycans. ADAMTS proteins also are involved in coagulation by cleaving von Willibrand factor precursor protein. ADAM and ADAMTS proteins participate in a wide range of cellular processes, including cell adhesion and migration, ectodomain shedding, proteolysis, development, ovulation and angiogenesis. Because these enzymes are believed to play an important role in a number of pathologies, including Alzheimer's disease, rheumatoid arthritis, atherosclerosis, asthma and cancer progression, the products of the ADAM and ADAMTS genes represent promising drug targets for the prevention and management of a number of human diseases.


The secreted AdamTS-A metalloprotease is required for collective cell migration.

  • Afshan Ismat‎ et al.
  • Development (Cambridge, England)‎
  • 2013‎

Members of the ADAMTS family of secreted metalloproteases play crucial roles in modulating the extracellular matrix (ECM) in development and disease. Here, we show that ADAMTS-A, the Drosophila ortholog of human ADAMTS 9 and ADAMTS 20, and of C. elegans GON-1, is required for cell migration during embryogenesis. AdamTS-A is expressed in multiple migratory cell types, including hemocytes, caudal visceral mesoderm (CVM), the visceral branch of the trachea (VBs) and the secretory portion of the salivary gland (SG). Loss of AdamTS-A causes defects in germ cell, CVM and VB migration and, depending on the tissue, AdamTS-A functions both autonomously and non-autonomously. In the highly polarized collective of the SG epithelium, loss of AdamTS-A causes apical surface irregularities and cell elongation defects. We provide evidence that ADAMTS-A is secreted into the SG lumen where it functions to release cells from the apical ECM, consistent with the defects observed in AdamTS-A mutant SGs. We show that loss of the apically localized protocadherin Cad99C rescues the SG defects, suggesting that Cad99C serves as a link between the SG apical membrane and the secreted apical ECM component(s) cleaved by ADAMTS-A. Our analysis of AdamTS-A function in the SG suggests a novel role for ADAMTS proteins in detaching cells from the apical ECM, facilitating tube elongation during collective cell migration.


ADAMTS-8 exhibits aggrecanase activity and is expressed in human articular cartilage.

  • Lisa A Collins-Racie‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2004‎

Members of the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family share common structural features including a disintegrin domain, a zinc metalloprotease domain, and at least one thrombospondin motif. Aberrant expression of several of these proteins has led to an understanding of their role in human disease; however, a link to function for many has not yet been made. One such uncharacterized family member, ADAMTS-8, shares significant protein sequence homology with a subgroup of ADAMTSs that includes ADAMTS-1, ADAMTS-4, ADAMTS-5, and ADAMTS-15. Each of these proteases has been shown to cleave 'aggrecanase-susceptible' site(s) within the extracellular matrix (ECM) proteoglycan aggrecan, and ADAMTS-4 and ADAMTS-5 have been postulated to play a role in the depletion of articular cartilage in osteoarthritic disease. Based on sequence relationships, in the present study we examined the ability of ADAMTS-8 to exhibit 'aggrecanase' activity. A neoepitope monoclonal antibody (MAb; AGG-C1; anti-NITEGE373) was developed and used to demonstrate the ability of ADAMTS-8 to cleave aggrecan at the aggrecanase-susceptible Glu373-Ala374 peptide bond. In addition, expression analyses demonstrated the presence of ADAMTS-8 mRNA transcripts in normal and osteoarthritic human cartilage.


Functional evolution of ADAMTS genes: evidence from analyses of phylogeny and gene organization.

  • Ainsley C Nicholson‎ et al.
  • BMC evolutionary biology‎
  • 2005‎

The ADAMTS (A Disintegrin-like and Metalloprotease with Thrombospondin motifs) proteins are a family of metalloproteases with sequence similarity to the ADAM proteases, that contain the thrombospondin type 1 sequence repeat motifs (TSRs) common to extracellular matrix proteins. ADAMTS proteins have recently gained attention with the discovery of their role in a variety of diseases, including tissue and blood disorders, cancer, osteoarthritis, Alzheimer's and the genetic syndromes Weill-Marchesani syndrome (ADAMTS10), thrombotic thrombocytopenic purpura (ADAMTS13), and Ehlers-Danlos syndrome type VIIC (ADAMTS2) in humans and belted white-spotting mutation in mice (ADAMTS20).


Classification of ADAMTS binding sites: The first step toward selective ADAMTS7 inhibitors.

  • Michaela Müller‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Genome-wide association studies identified ADAMTS7 as a risk locus for coronary artery disease. In carotid arteries of rats, neointima formation after balloon-mediated injury goes along with enhanced Adamts7 expression. Vice versa, Adamts7-deficient mice display reduced neointima formation following vascular injury. Although a causal link between ADAMTS7 and coronary artery disease remains to be proven, inhibition of ADAMTS7 represents a potential new target for intervention in this disease. ADAMTS7, a member of the 'a disintegrin and metalloproteinase with thrombospondin motifs' (ADAMTS) family of proteins, contains a catalytic zinc ion in the binding site of its metalloproteinase domain. The structure of ADAMTS7 and its inhibitors are unknown. In this study, we used in silico methods, including homology modeling and pharmacophore modeling, to analyze the ADAMTS7 metalloproteinase domain, particularly its binding site. The results revealed structural and sequence differences relative to the binding sites of the other ADAMTS proteins; these non-conserved regions represent potential binding regions for selective ADAMTS7 inhibitors. The main contribution of this study is the proposal of a pharmacophore for ADAMTS7. The characterization of the ADAMTS7 binding site and definition of a pharmacophore are the first step toward developing a new therapeutic target for coronary artery disease.


Sol narae (Sona) is a Drosophila ADAMTS involved in Wg signaling.

  • Go-Woon Kim‎ et al.
  • Scientific reports‎
  • 2016‎

ADAMTS (a disintegrin and metalloproteases with thrombospondin motif) family consists of secreted proteases, and is shown to cleave extracellular matrix proteins. Their malfunctions result in cancers and disorders in connective tissues. We report here that a Drosophila ADAMTS named Sol narae (Sona) promotes Wnt/Wingless (Wg) signaling. sona loss-of-function mutants are lethal and rare escapers had malformed appendages, indicating that sona is essential for fly development and survival. sona exhibited positive genetic interaction with wntless (wls) that encodes a cargo protein for Wg. Loss of sona decreased the level of extracellular Wg, and also reduced the expression level of Wg effector proteins such as Senseless (Sens), Distalless (Dll) and Vestigial (Vg). Sona and Wg colocalized in Golgi and endosomal vesicles, and were in the same protein complex. Furthermore, co-expression of Wg and Sona generated ectopic wing margin bristles. This study suggests that Sona is involved in Wg signaling by regulating the level of extracellular Wg.


ADAMTS-13 and HMGB1-induced oxidative stress in Taenia multiceps-infected animals.

  • Gungor Cagdas Dincel‎ et al.
  • Scientific reports‎
  • 2023‎

This study investigated the cytotoxic effects of oxidative stress (OS), high mobility group box 1 (HMGB1), ADAMTS (A disintegrin and metalloproteinase with thrombospondin motifs), and neuropathology associated with coenurus cerebralis (Taenia multiceps). ADAMTS-13, HMGB1, glutathione reductase (GR), copper/zinc superoxide dismutase (Cu/Zn SOD), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) expression levels were studied. The study found that ADAMTS-13 (P < 0.005), HMGB1 (P < 0.005), GR (P < 0.005), Cu/Zn SOD (P < 0.005), and 8-OHdG (P < 0.005) levels were significantly higher in T. multiceps (c. cerebralis)-infected animals compared to healthy control animals. This study's most important finding was that HMGB1 up-regulation in neurons, endothelial cells, and glial cells can directly cause brain parenchymal destruction and that HMGB1-mediated oxidative stress plays a crucial role in the neuropathogenesis of coenurosis. The results also showed that increased levels of ADAMTS-13 may play a pivotal role in regulating and protecting the blood-brain barrier integrity and neuroprotection. These findings also suggest that ADAMTS-13 and HMGB1 compete in the prevention or formation of microthrombi, which was regarded as a remarkable finding. ADAMTS-13 and HMGB1 are valuable biomarkers for disease risk assessment, estimating host neuropathy following T. multiceps (c. cerebralis) exposure, and providing a new therapeutic target. This is the first study to show that HMGB1 and ADAMTS-13 are expressed in reactive cells and are associated with neuroimmunopathology in coenurosis.


ADAMTS-5 Decreases in Coronary Arteries and Plasma from Patients with Coronary Artery Disease.

  • Zhen Wang‎ et al.
  • Disease markers‎
  • 2019‎

The current study demonstrates that a disintegrin and metalloproteinase with thrombospondin type 1 motif- (ADAMTS-) 5 is a key extracellular matrix protease and associated with cardiovascular diseases. However, the plasma ADAMTS-5 levels and relevance of coronary artery disease (CAD) remain largely unknown. This study is aimed at examining the relationship between the plasma ADAMTS-5 levels and the severity of coronary stenosis in patients with CAD. In the present study, the expression of ADAMTS-5 was analyzed in coronary artery samples and blood. The results showed that the plasma ADAMTS-5 levels were lower in the CAD group than in the control group. In addition, significantly higher matrix metalloproteinase- (MMP-) 2 and MMP-9 levels were also observed in the patients with CAD, and the ADAMTS-5 levels were negatively correlated with the MMP-2 and MMP-9 levels. Spearman's correlation analysis showed that the Gensini score was negatively correlated with the ADAMTS-5 levels but was positively correlated with the MMP-2 and MMP-9 levels. Receiver-operating characteristic (ROC) analysis revealed that ADAMTS-5, MMP-2, and MMP-9 may have a certain diagnostic value in CAD and that the combination of all three metalloproteinases had a higher diagnostic value. The findings provided a better understanding of the role of ADAMTS-5 in the diagnosis of CAD.


Immunohistochemical analysis of ADAMTS-1, versican and pEGFR expressions in periapical granuloma and radicular cyst.

  • Nádia Marielly Gomes Batista‎ et al.
  • BMC oral health‎
  • 2021‎

ADAMTS expression can be associated with several inflammatory processes, and has been correlated with tumorigenesis of some neoplasms, but its participation in the development of periapical lesions has not been investigated. Therefore, our objective was to verify the expression of ADAMTS-1, versican and pEGFR in Periapical Granuloma (PG) and in the Radicular Cyst (RC) since they are the most common lesions of the periapex.


ADAMTS-10 and -6 differentially regulate cell-cell junctions and focal adhesions.

  • Stuart A Cain‎ et al.
  • Scientific reports‎
  • 2016‎

ADAMTS10 and ADAMTS6 are homologous metalloproteinases with ill-defined roles. ADAMTS10 mutations cause Weill-Marchesani syndrome (WMS), implicating it in fibrillin microfibril biology since some fibrillin-1 mutations also cause WMS. However little is known about ADAMTS6 function. ADAMTS10 is resistant to furin cleavage, however we show that ADAMTS6 is effectively processed and active. Using siRNA, over-expression and mutagenesis, it was found ADAMTS6 inhibits and ADAMTS10 is required for focal adhesions, epithelial cell-cell junction formation, and microfibril deposition. Either knockdown of ADAMTS6, or disruption of its furin processing or catalytic sites restores focal adhesions, implicating its enzyme activity acts on targets in the focal adhesion complex. In ADAMTS10-depleted cultures, expression of syndecan-4 rescues focal adhesions and cell-cell junctions. Recombinant C-termini of ADAMTS10 and ADAMTS6, both of which induce focal adhesions, bind heparin and syndecan-4. However, cells overexpressing full-length ADAMTS6 lack heparan sulphate and focal adhesions, whilst depletion of ADAMTS6 induces a prominent glycocalyx. Thus ADAMTS10 and ADAMTS6 oppositely affect heparan sulphate-rich interfaces including focal adhesions. We previously showed that microfibril deposition requires fibronectin-induced focal adhesions, and cell-cell junctions in epithelial cultures. Here we reveal that ADAMTS6 causes a reduction in heparan sulphate-rich interfaces, and its expression is regulated by ADAMTS10.


Exosites in Hypervariable Loops of ADAMTS Spacer Domains control Substrate Recognition and Proteolysis.

  • Salvatore Santamaria‎ et al.
  • Scientific reports‎
  • 2019‎

ADAMTS (A Disintegrin-like and Metalloproteinase domain with Thrombospondin type 1 Motif)-1, -4 and -5 share the abilities to cleave large aggregating proteoglycans including versican and aggrecan. These activities are highly relevant to cardiovascular disease and osteoarthritis and during development. Here, using purified recombinant ADAMTS-1, -4 and -5, we quantify, compare, and define the molecular basis of their versicanase activity. A novel sandwich-ELISA detecting the major versican cleavage fragment was used to determine, for the first time, kinetic constants for versican proteolysis. ADAMTS-5 (kcat/Km 35 × 105 M-1 s-1) is a more potent (~18-fold) versicanase than ADAMTS-4 (kcat/Km 1.86 × 105 M-1 sec-1), whereas ADAMTS-1 versicanase activity is comparatively low. Deletion of the spacer domain reduced versicanase activity of ADAMTS-5 19-fold and that of ADAMTS-4 167-fold. Co-deletion of the ADAMTS-5 cysteine-rich domain further reduced versicanase activity to a total 153-fold reduction. Substitution of two hypervariable loops in the spacer domain of ADAMTS-5 (residues 739-744 and 837-844) and ADAMTS-4 (residues 717-724 and 788-795) with those of ADAMTS-13, which does not cleave proteoglycans, caused spacer-dependent reductions in versicanase activities. Our results demonstrate that these loops contain exosites critical for interaction with and processing of versican. The hypervariable loops of ADAMTS-5 are shown to be important also for its aggrecanase activity. Together with previous work on ADAMTS-13 our results suggest that the spacer domain hypervariable loops may exercise significant control of ADAMTS proteolytic activity as a general principle. Identification of specific exosites also provides targets for selective inhibitors.


ADAMTS-1 Is Found in the Nuclei of Normal and Tumoral Breast Cells.

  • Suély V Silva‎ et al.
  • PloS one‎
  • 2016‎

Proteins secreted in the extracellular matrix microenvironment (ECM) by tumor cells are involved in cell adhesion, motility, intercellular communication and invasion. The tumor microenvironment is expansively modified and remodeled by proteases, resulting in important changes in both cell-cell and cell-ECM interactions and in the generation of new signals from the cell surface. Metalloproteinases belonging to the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family have been implicated in tissue remodeling events observed in cancer development, growth and progression. Here we investigated the subcellular localization of ADAMTS-1 in normal-like (MCF10-A) and tumoral (MCF7 and MDA-MB-231) human breast cells. ADAMTS-1 is a secreted protease found in the extracellular matrix. However, in this study we show for the first time that ADAMTS-1 is also present in the nuclei and nucleoli of the three mammary cell lines studied here. Our findings indicate that ADAMTS-1 has proteolytic functions in the nucleus through its interaction with aggrecan substrate.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: