Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 325 papers

The sorting protein PACS-2 promotes ErbB signalling by regulating recycling of the metalloproteinase ADAM17.

  • Sarah Louise Dombernowsky‎ et al.
  • Nature communications‎
  • 2015‎

The metalloproteinase ADAM17 activates ErbB signalling by releasing ligands from the cell surface, a key step underlying epithelial development, growth and tumour progression. However, mechanisms acutely controlling ADAM17 cell-surface availability to modulate the extent of ErbB ligand release are poorly understood. Here, through a functional genome-wide siRNA screen, we identify the sorting protein PACS-2 as a regulator of ADAM17 trafficking and ErbB signalling. PACS-2 loss reduces ADAM17 cell-surface levels and ADAM17-dependent ErbB ligand shedding, without apparent effects on related proteases. PACS-2 co-localizes with ADAM17 on early endosomes and PACS-2 knockdown decreases the recycling and stability of internalized ADAM17. Hence, PACS-2 sustains ADAM17 cell-surface activity by diverting ADAM17 away from degradative pathways. Interestingly, Pacs2-deficient mice display significantly reduced levels of phosphorylated EGFR and intestinal proliferation. We suggest that this mechanism controlling ADAM17 cell-surface availability and EGFR signalling may play a role in intestinal homeostasis, with potential implications for cancer biology.


ADAM10 and ADAM17 promote SARS-CoV-2 cell entry and spike protein-mediated lung cell fusion.

  • Georg Jocher‎ et al.
  • EMBO reports‎
  • 2022‎

The severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) is the causative agent of COVID-19, but host cell factors contributing to COVID-19 pathogenesis remain only partly understood. We identify the host metalloprotease ADAM17 as a facilitator of SARS-CoV-2 cell entry and the metalloprotease ADAM10 as a host factor required for lung cell syncytia formation, a hallmark of COVID-19 pathology. ADAM10 and ADAM17, which are broadly expressed in the human lung, cleave the SARS-CoV-2 spike protein (S) in vitro, indicating that ADAM10 and ADAM17 contribute to the priming of S, an essential step for viral entry and cell fusion. ADAM protease-targeted inhibitors severely impair lung cell infection by the SARS-CoV-2 variants of concern alpha, beta, delta, and omicron and also reduce SARS-CoV-2 infection of primary human lung cells in a TMPRSS2 protease-independent manner. Our study establishes ADAM10 and ADAM17 as host cell factors for viral entry and syncytia formation and defines both proteases as potential targets for antiviral drug development.


Expression and protein chemistry yielding crystallization of the catalytic domain of ADAM17 complexed with a hydroxamate inhibitor.

  • Lise R Hoth‎ et al.
  • Protein expression and purification‎
  • 2007‎

The membrane-anchored metalloproteinase ADAM17 (TNF-alpha converting enzyme; TACE; EC 3.4.24.86) continues to be an attractive drug target in inflammatory diseases and cancer. Cocrystallization of its catalytic domain with a lead compound was complicated by the tenacious retention of the prodomain that has been shown to be enhanced if ADAM17 is expressed without the disintegrin/cysteine-rich domain that normally follows the N-terminal metalloproteinase. When a truncated form of ADAM17 composed of the signal peptide with the pro- and catalytic domains was expressed in baculovirus-infected insect cells, the major secreted product was a ternary complex of two prodomain fragments with the catalytic domain. The component polypeptides of the ternary complex were characterized by N-terminal analysis and mass spectrometry. Internal cleavage of the propeptide occurred following Arg-58, and a carboxypeptidase variably removed up to three basic residues from the newly created C-terminus. Cleavage at the C-terminus of the propeptide occurred after Arg-214. To prepare ADAM17 for crystal growth, a drug-like inhibitor was used to displace the propeptide and the complex of the catalytic domain with the inhibitor was isolated by size-exclusion chromatography and crystallized.


Targeted truncation of the ADAM17 cytoplasmic domain in mice results in protein destabilization and a hypomorphic phenotype.

  • Jose Lora‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

A disintegrin and metalloprotease 17 (ADAM17) is a cell-surface metalloprotease that serves as the principle sheddase for tumor necrosis factor α (TNFα), interleukin-6 receptor (IL-6R), and several ligands of the epidermal growth factor receptor (EGFR), regulating these crucial signaling pathways. ADAM17 activation requires its transmembrane domain, but not its cytoplasmic domain, and little is known about the role of this domain in vivo. To investigate, we used CRISPR-Cas9 to mutate the endogenous Adam17 locus in mice to produce a mutant ADAM17 lacking its cytoplasmic domain (Adam17Δcyto). Homozygous Adam17Δcyto animals were born at a Mendelian ratio and survived into adulthood with slightly wavy hair and curled whiskers, consistent with defects in ADAM17/EGFR signaling. At birth, Adam17Δcyto mice resembled Adam17-/- mice in that they had open eyes and enlarged semilunar heart valves, but they did not have bone growth plate defects. The deletion of the cytoplasmic domain resulted in strongly decreased ADAM17 protein levels in all tissues and cells examined, providing a likely cause for the hypomorphic phenotype. In functional assays, Adam17Δcyto mouse embryonic fibroblasts and bone-marrow-derived macrophages had strongly reduced ADAM17 activity, consistent with the reduced protein levels. Nevertheless, ADAM17Δcyto could be stimulated by PMA, a well-characterized posttranslational activator of ADAM17, corroborating that the cytoplasmic domain of endogenous ADAM17 is not required for its rapid response to PMA. Taken together, these results provide the first evidence that the cytoplasmic domain of ADAM17 plays a pivotal role in vivo in regulating ADAM17 levels and function.


Antiviral Potential of Small Molecules Cordycepin, Thymoquinone, and N6, N6-Dimethyladenosine Targeting SARS-CoV-2 Entry Protein ADAM17.

  • Jiayue He‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

COVID-19 is an acute respiratory disease caused by SARS-CoV-2 that has spawned a worldwide pandemic. ADAM17 is a sheddase associated with the modulation of the receptor ACE2 of SARS-CoV-2. Studies have revealed that malignant phenotypes of several cancer types are closely relevant to highly expressed ADAM17. However, ADAM17 regulation in SARS-CoV-2 invasion and its role on small molecules are unclear. Here, we evaluated the ADAM17 inhibitory effects of cordycepin (CD), thymoquinone (TQ), and N6, N6-dimethyladenosine (m62A), on cancer cells and predicted the anti-COVID-19 potential of the three compounds and their underlying signaling pathways by network pharmacology. It was found that CD, TQ, and m62A repressed the ADAM17 expression upon different cancer cells remarkably. Moreover, CD inhibited GFP-positive syncytia formation significantly, suggesting its potential against SARS-CoV-2. Pharmacological analysis by constructing CD-, TQ-, and m62A-based drug-target COVID-19 networks further indicated that ADAM17 is a potential target for anti-COVID-19 therapy with these compounds, and the mechanism might be relevant to viral infection and transmembrane receptors-mediated signal transduction. These findings imply that ADAM17 is of potentially medical significance for cancer patients infected with SARS-CoV-2, which provides potential new targets and insights for developing innovative drugs against COVID-19.


ADAM17 knockdown mitigates while ADAM17 overexpression aggravates cardiac fibrosis and dysfunction via regulating ACE2 shedding and myofibroblast transformation.

  • Jing Cheng‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

A disintegrin and metalloprotease domain family protein 17 (ADAM17) is a new member of renin-angiotensin system (RAS) but its role in the pathogenesis of diabetic cardiomyopathy (DCM) is obscure. To test the hypothesis that ADAM17 knockdown mitigates while ADAM17 overexpression aggravates cardiac fibrosis via regulating ACE2 shedding and myofibroblast transformation in diabetic mice, ADAM17 gene was knocked down and overexpressed by means of adenovirus-mediated short-hairpin RNA (shRNA) and adenovirus vector carrying ADAM17 cDNA, respectively, in a mouse model of DCM. Two-dimensional and Doppler echocardiography, histopathology and immunohistochemistry were performed in all mice and in vitro experiments conducted in primary cardiofibroblasts. The results showed that ADAM17 knockdown ameliorated while ADAM17 overexpression worsened cardiac dysfunction and cardiac fibrosis in diabetic mice. In addition, ADAM17 knockdown increased ACE2 while reduced AT1R expression in diabetic hearts. Mechanistically, ADAM17 knockdown decreased while ADAM17 overexpression increased cardiac fibroblast-to-myofibroblast transformation through regulation of TGF-β1/Smad3 signaling pathway. In conclusion, ADAM17 knockdown attenuates while ADAM17 overexpression aggravates cardiac fibrosis via regulating ACE2 shedding and myofibroblast transformation through TGF-β1/Smad3 signaling pathway in diabetic mice. Targeting ADAM17 may provide a promising approach to the prevention and treatment of cardiac fibrosis in DCM.


The metalloprotease ADM-4/ADAM17 promotes axonal repair.

  • Xue Yan Ho‎ et al.
  • Science advances‎
  • 2022‎

Axonal fusion is an efficient means of repair following axonal transection, whereby the regenerating axon fuses with its own separated axonal fragment to restore neuronal function. Despite being described over 50 years ago, its molecular mechanisms remain poorly understood. Here, we demonstrate that the Caenorhabditis elegans metalloprotease ADM-4, an ortholog of human ADAM17, is essential for axonal fusion. We reveal that animals lacking ADM-4 cannot repair their axons by fusion, and that ADM-4 has a cell-autonomous function within injured neurons, localizing at the tip of regrowing axon and fusion sites. We demonstrate that ADM-4 overexpression enhances fusion to levels higher than wild type, and that the metalloprotease and phosphatidylserine-binding domains are essential for its function. Last, we show that ADM-4 interacts with and stabilizes the fusogen EFF-1 to allow membranes to merge. Our results uncover a key role for ADM-4 in axonal fusion, exposing a molecular target for axonal repair.


ADAM17 inhibition enhances platinum efficiency in ovarian cancer.

  • Nina Hedemann‎ et al.
  • Oncotarget‎
  • 2018‎

Chemotherapeutic resistance evolves in about 70 % of ovarian cancer patients and is a major cause of death in this tumor entity. Novel approaches to overcome these therapeutic limitations are therefore highly warranted. A disintegrin and metalloprotease 17 (ADAM17) is highly expressed in ovarian cancer and required for releasing epidermal growth factor receptor (EGFR) ligands like amphiregulin (AREG). This factor has recently been detected in ascites of advanced stage ovarian cancer patients. However, it is not well understood, whether and how ADAM17 might contribute to chemo resistance of ovarian cancer. In this study, we identified ADAM17 as an essential upstream regulator of AREG release under chemotherapeutic treatment in ovarian cancer cell lines and patient derived cells. In the majority of ovarian cancer cells cisplatin treatment resulted in enhanced ADAM17 activity, as shown by an increased shedding of AREG. Moreover, both mRNA and the protein content of AREG were dose-dependently increased by cisplatin exposure. Consequently, cisplatin strongly induced phosphorylation of ADAM17-downstream mediators, the EGFR and extracellular signal-regulated kinases (ERK). Phorbol 12-myristate 13-acetate (PMA), similarly to cisplatin, mediated AREG shedding and membrane fading of surface ADAM17. Inhibition of ADAM17 with either GW280264X or the anti-ADAM17 antibody D1 (A12) as well as silencing of ADAM17 by siRNA selectively reduced AREG release. Thus, ADAM17 inhibition sensitized cancer cells to cisplatin-induced apoptosis, and significantly reduced cell viability. Based on these findings, we propose that targeting of ADAM17 in parallel to chemotherapeutic treatment suppresses survival pathways and potentially diminish evolving secondary chemo resistance mechanisms.


ADAM17 mediates OSCC development in an orthotopic murine model.

  • Fernando Moreira Simabuco‎ et al.
  • Molecular cancer‎
  • 2014‎

ADAM17 is one of the main sheddases of the cells and it is responsible for the cleavage and the release of ectodomains of important signaling molecules, such as EGFR ligands. Despite the known crosstalk between ADAM17 and EGFR, which has been considered a promising targeted therapy in oral squamous cell carcinoma (OSCC), the role of ADAM17 in OSCC development is not clear.


ADAM17/EGFR axis promotes transglutaminase-dependent skin barrier formation through phospholipase C γ1 and protein kinase C pathways.

  • Cristina Wolf‎ et al.
  • Scientific reports‎
  • 2016‎

The vitally important skin barrier is formed by extensive cross-linking activity of transglutaminases (TGs) during terminal epidermal differentiation. We have previously shown that epidermal deficiency of a disintegrin and metalloproteinase 17 (ADAM17), the principal EGFR ligand sheddase, results in postnatal skin barrier defects in mice due to impeded TG activity. However, the mechanism by which ADAM17/EGFR signalling maintains TG activity during epidermal differentiation remains elusive. Here we demonstrate that ADAM17-dependent EGFR signalling promotes TG activity in keratinocytes committed to terminal differentiation by direct induction of TG1 expression. Restored TG1 expression of EGF-stimulated differentiated Adam17-/- keratinocytes was strongly repressed by inhibitors for PLCγ1 or protein kinase C (PKC) pathways, while treatment with the PKC stimulator 12-O-tetradecanoylphorbol-13-acetate restored TG activity in the epidermis of keratinocyte-specific Adam17-/- (AD17ΔKC) mice. Further investigations emphasized the expression of PKCη, a mediator of TGM1 transcription, to be sensitive to EGFR activation. In agreement, topical skin application of cholesterol sulfate, an activator of PKCη, significantly improved TG activity in epidermis of AD17ΔKC mice. Our results suggest ADAM17/EGFR-driven PLCγ1 and PKC pathways as important promoters of TG1 expression during terminal keratinocyte differentiation. These findings may help to identify new therapeutic targets for inflammatory skin diseases related to epidermal barrier defects.


Exosome-Derived ADAM17 Promotes Liver Metastasis in Colorectal Cancer.

  • Jinbing Sun‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Exosomes derived from cancer cells are deemed important drivers of pre-metastatic niche formation at distant organs, but the underlying mechanisms of their effects remain largely unknow. Although the role of ADAM17 in cancer cells has been well studied, the secreted ADAM17 effects transported via exosomes are less understood. Herein, we show that the level of exosome-derived ADAM17 is elevated in the serum of patients with metastatic colorectal cancer as well as in metastatic colorectal cancer cells. Furthermore, exosomal ADAM17 was shown to promote the migratory ability of colorectal cancer cells by cleaving the E-cadherin junction. Moreover, exosomal ADAM17 overexpression as well as RNA interference results highlighted its function as a tumor metastasis-promoting factor in colorectal cancer in vitro and in vivo. Taken together, our current work suggests that exosomal ADAM17 is involved in pre-metastatic niche formation and may be utilized as a blood-based biomarker of colorectal cancer metastasis.


The LIM-Only Protein Four and a Half LIM Domain Protein 2 Attenuates Development of Psoriatic Arthritis by Blocking Adam17-Mediated Tumor Necrosis Factor Release.

  • Rafael Leite Dantas‎ et al.
  • The American journal of pathology‎
  • 2017‎

Four and a half LIM domain protein 2 (Fhl2) is an intracellular adaptor molecule with a high protein-protein interaction capacity. It acts as a modulator of several signaling molecules in the cytosol and as a cofactor of transcription in the nucleus. Recent studies suggest the role of Fhl2 in tissue repair and the anti-inflammatory response. Herein, we show that Fhl2-deficient mice develop a more severe psoriatic arthritis disease under induction of the inducible human tumor necrosis factor (hTNF) transgene than wild-type mice. The disease was accompanied by increased infiltration of activated macrophages and T regulatory cells in skin and digit joints as well as by increased expression of matrix metalloproteases and bone-specific proteases. The more severe pathogenesis of psoriatic arthritis in Fhl2 knockout mice coincided with enhanced levels of soluble hTNF cytokine, but surprisingly not with transcription of the hTNF transgene. Studying the shedding of cell membrane-bound hTNF by Adam17, a known Fhl2 interacting protein, revealed an enhanced release of TNF in the absence of Fhl2. In summary, our results show that Fhl2 anticipates the emerging inflammation and specifically the development of psoriatic arthritis by impeding the Adam17-mediated release of TNF.


Ablation of neuronal ADAM17 impairs oligodendrocyte differentiation and myelination.

  • Evelien Fredrickx‎ et al.
  • Glia‎
  • 2020‎

Myelin, one of the most important adaptations of vertebrates, is essential to ensure efficient propagation of the electric impulse in the nervous system and to maintain neuronal integrity. In the central nervous system (CNS), the development of oligodendrocytes and the process of myelination are regulated by the coordinated action of several positive and negative cell-extrinsic factors. We and others previously showed that secretases regulate the activity of proteins essential for myelination. We now report that the neuronal α-secretase ADAM17 controls oligodendrocyte differentiation and myelin formation in the CNS. Ablation of Adam17 in neurons impairs in vivo and in vitro oligodendrocyte differentiation, delays myelin formation throughout development and results in hypomyelination. Furthermore, we show that this developmental defect is, in part, the result of altered Notch/Jagged 1 signaling. Surprisingly, in vivo conditional loss of Adam17 in immature oligodendrocytes has no effect on myelin formation. Collectively, our data indicate that the neuronal α-secretase ADAM17 is required for proper CNS myelination. Further, our studies confirm that secretases are important post-translational regulators of myelination although the mechanisms controlling CNS and peripheral nervous system (PNS) myelination are distinct.


ADAM17 mediates MMP9 expression in lung epithelial cells.

  • Ya-qing Li‎ et al.
  • PloS one‎
  • 2013‎

The purposes were to study the role of lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α/nuclear factor-κB (NF-κB) signaling in matrix metalloproteinase 9 (MMP9) expression in A549 cells and to investigate the effects of lentivirus-mediated RNAi targeting of the disintegrin and metalloproteinase 17 (ADAM17) gene on LPS-induced MMP9 expression. MMP9 expression induced by LPS in A549 cells was significantly increased in a dose- and time-dependent manner (p<0.05). Pyrrolidine dithiocarbamate (PDTC) and a TNFR1 blocking peptide (TNFR1BP) significantly inhibited LPS-induced MMP9 expression in A549 cells (p<0.05). TNFR1BP significantly inhibited LPS-induced TNF-α production (p<0.05). Both PDTC and TNFR1BP significantly inhibited the phosphorylation of IκBα and expression of phosphorylation p65 protein in response to LPS (p<0.05), and the level of IκBα in the cytoplasm was significantly increased (p<0.05). Lentivirus mediated RNA interference (RNAi) significantly inhibited ADAM17 expression in A549 cells. Lentivirus-mediated RNAi targeting of ADAM17 significantly inhibited TNF-α production in the supernatants (p<0.05), whereas the level of TNF-α in the cells was increased (p<0.05). Lentiviral ADAM17 RNAi inhibited MMP9 expression, IκBα phosphorylation and the expression of phosphorylation p65 protein in response to LPS (p<0.05). PDTC significantly inhibited the expression of MMP9 and the phosphorylation of IκBα, as well as the expression of phosphorylation p65 protein in response to TNF-α (p<0.05). Lentiviral RNAi targeting of ADAM17 down-regulates LPS-induced MMP9 expression in lung epithelial cells via inhibition of TNF-α/NF-κB signaling.


ADAM17 cytoplasmic domain modulates Thioredoxin-1 conformation and activity.

  • Rute A P E Costa‎ et al.
  • Redox biology‎
  • 2020‎

The activity of Thioredoxin-1 (Trx-1) is adjusted by the balance of its monomeric, active and its dimeric, inactive state. The regulation of this balance is not completely understood. We have previously shown that the cytoplasmic domain of the transmembrane protein A Disintegrin And Metalloprotease 17 (ADAM17cyto) binds to Thioredoxin-1 (Trx-1) and the destabilization of this interaction favors the dimeric state of Trx-1. Here, we investigate whether ADAM17 plays a role in the conformation and activation of Trx-1. We found that disrupting the interacting interface with Trx-1 by a site-directed mutagenesis in ADAM17 (ADAM17cytoF730A) caused a decrease of Trx-1 reductive capacity and activity. Moreover, we observed that ADAM17 overexpressing cells favor the monomeric state of Trx-1 while knockdown cells do not. As a result, there is a decrease of cell oxidant levels and ADAM17 sheddase activity and an increase in the reduced cysteine-containing peptides in intracellular proteins in ADAM17cyto overexpressing cells. A mechanistic explanation that ADAM17cyto favors the monomeric, active state of Trx-1 is the formation of a disulfide bond between Cys824 at the C-terminal of ADAM17cyto with the Cys73 of Trx-1, which is involved in the dimerization site of Trx-1. In summary, we propose that ADAM17 is able to modulate Trx-1 conformation affecting its activity and intracellular redox state, bringing up a novel possibility for positive regulation of thiol isomerase activity in the cell by mammalian metalloproteinases.


ADAM17 is an essential attachment factor for classical swine fever virus.

  • Fei Yuan‎ et al.
  • PLoS pathogens‎
  • 2021‎

Classical swine fever virus (CSFV) is an important pathogen in the swine industry. Virion attachment is mediated by envelope proteins Erns and E2, and E2 is indispensable. Using a pull-down assay with soluble E2 as the bait, we demonstrated that ADAM17, a disintegrin and metalloproteinase 17, is essential for CSFV entry. Loss of ADAM17 in a permissive cell line eliminated E2 binding and viral entry, but compensation with pig ADAM17 cDNA completely rescued these phenotypes. Similarly, ADAM17 silencing in primary porcine fibroblasts significantly impaired virus infection. In addition, human and mouse ADAM17, which is highly homologous to pig ADAM17, also mediated CSFV entry. The metalloproteinase domain of ADAM17 bound directly to E2 protein in a zinc-dependent manner. A surface exposed region within this domain was mapped and shown to be critical for CSFV entry. These findings clearly demonstrate that ADAM17 serves as an essential attachment factor for CSFV.


ADAM17-mediated EGFR ligand shedding directs macrophage-promoted cancer cell invasion.

  • Sebastian P Gnosa‎ et al.
  • JCI insight‎
  • 2022‎

Macrophages in the tumor microenvironment have a substantial impact on tumor progression. Depending on the signaling environment in the tumor, macrophages can either support or constrain tumor progression. It is therefore of therapeutic interest to identify the tumor-derived factors that control macrophage education. With this aim, we correlated the expression of A Disintegrin and Metalloproteinase (ADAM) proteases, which are key mediators of cell-cell signaling, to the expression of protumorigenic macrophage markers in human cancer cohorts. We identified ADAM17, a sheddase upregulated in many cancer types, as a protein of interest. Depletion of ADAM17 in cancer cell lines reduced the expression of several protumorigenic markers in neighboring macrophages in vitro as well as in mouse models. Moreover, ADAM17-/- educated macrophages demonstrated a reduced ability to induce cancer cell invasion. Using mass spectrometry-based proteomics and ELISA, we identified heparin-binding EGF (HB-EGF) and amphiregulin, shed by ADAM17 in the cancer cells, as the implicated molecular mediators of macrophage education. Additionally, RNA-Seq and ELISA experiments revealed that ADAM17-dependent HB-EGF ligand release induced the expression and secretion of CXCL chemokines in macrophages, which in turn stimulated cancer cell invasion. In conclusion, we provide evidence that ADAM17 mediates a paracrine EGFR-ligand-chemokine feedback loop, whereby cancer cells hijack macrophages to promote tumor progression.


Upregulation of APP, ADAM10 and ADAM17 in the denervated mouse dentate gyrus.

  • Domenico Del Turco‎ et al.
  • PloS one‎
  • 2014‎

The disintegrin and metalloproteinases ADAM10 and ADAM17 are regarded as the most important α-secretases involved in the physiological processing of amyloid precursor protein (APP) in brain. Since it has been suggested that processing of APP by α-secretases could be involved in the reorganization of the brain following injury, we studied mRNA expression of the two α-secretases Adam10 and Adam17, the ß-secretase Bace1, and the App-gene family (App, Aplp1, Aplp2) in the dentate gyrus of the mouse following entorhinal denervation. Using laser microdissection, tissue was harvested from the outer molecular layer and the granule cell layer of the denervated dentate gyrus. Expression levels of candidate genes were assessed using Affymetrix GeneChip Mouse Gene 1.0 ST arrays and reverse transcription-quantitative PCR, revealing an upregulation of Adam10 mRNA and Adam17 mRNA in the denervated outer molecular layer and an upregulation of Adam10 mRNA and App mRNA in the dentate granule cell layer. Immunolabeling for ADAM10 or ADAM17 in combination with markers for astro- and microglia revealed an increased labeling of ADAM10 and ADAM17 in the denervated outer molecular layer that was associated with reactive astrocytes but not with microglia. Collectively, these data show that denervation affects the expression level of APP and its two most important α-secretases. This suggests that APP-processing could be shifted towards the non-amyloidogenic pathway in denervated areas of the brain and, thus, towards the formation of neuroprotective APP cleavage products, such as APPsα.


Tetraspanin CD9 modulates ADAM17-mediated shedding of LR11 in leukocytes.

  • Shokichi Tsukamoto‎ et al.
  • Experimental & molecular medicine‎
  • 2014‎

LR11, also known as SorLA or SORL1, is a type-I membrane protein from which a large extracellular part, soluble LR11 (sLR11), is released by proteolytic shedding on cleavage with a disintegrin and metalloproteinase 17 (ADAM17). A shedding mechanism is presumed to have a key role in the functions of LR11, but the evidence for this has not yet been demonstrated. Tetraspanin CD9 has been recently shown to regulate the ADAM17-mediated shedding of tumor necrosis factor-α and intercellular adhesion molecule-1 on the cell surface. Here, we investigated the role of CD9 on the shedding of LR11 in leukocytes. LR11 was not expressed in THP-1 monocytes, but it was expressed and released in phorbol 12-myristate 13-acetate (PMA)-induced THP-1 macrophages (PMA/THP-1). Confocal microscopy showed colocalization of LR11 and CD9 proteins on the cell surface of PMA/THP-1. Ectopic neo-expression of CD9 in CCRF-SB cells, which are LR11-positive and CD9-negative, reduced the amount of sLR11 released from the cells. In contrast, incubation of LR11-transfected THP-1 cells with neutralizing anti-CD9 monoclonal antibodies increased the amount of sLR11 released from the cells. Likewise, the PMA-stimulated release of sLR11 increased in THP-1 cells transfected with CD9-targeted shRNAs, which was negated by treatment with the metalloproteinase inhibitor GM6001. These results suggest that the tetraspanin CD9 modulates the ADAM17-mediated shedding of LR11 in various leukemia cell lines and that the association between LR11 and CD9 on the cell surface has an important role in the ADAM17-mediated shedding mechanism.


ADAM10 and ADAM17 are degraded by lysosomal pathway via asparagine endopeptidase.

  • Xingyu Zhang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

A disintegrin and metalloproteinases 10 (ADAM10) and ADAM17 are transmembrane metalloproteinases that cleave the membrane-anchored proteins. They act as α-secretase that cleaves amyloid precursor protein (APP), precluding the production of amyloid-β, thus protecting against the onset of Alzheimer's disease (AD). However, the degradation pathway of ADAM10 and ADAM17 remains unknown. In this study, we show that ADAM10 and ADAM17 are degraded through the lysosomal pathway. The lysosomal cysteine protease, AEP, plays an important role in the degradation of ADAM10/17. AEP directly cleaves ADAM10/17. Knockout of AEP increases the content of ADAM10/17 in the brain. Given the protective role of ADAM10 and ADAM17 against AD, AEP-mediated degradation of ADAM10/17 may be involved in the pathogenesis of AD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: