Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

NR5A1 is a novel disease gene for 46,XX testicular and ovotesticular disorders of sex development.

  • Dorien Baetens‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2017‎

We aimed to identify the genetic cause in a cohort of 11 unrelated cases and two sisters with 46,XX SRY-negative (ovo)testicular disorders of sex development (DSD).


46,XX Testicular Disorder of Sex Development (DSD): A Case Report and Systematic Review.

  • Marco Terribile‎ et al.
  • Medicina (Kaunas, Lithuania)‎
  • 2019‎

Background and objectives: XX male syndrome is part of the disorders of sex development (DSD). The patients generally have normal external genitalia and discover their pathology in adulthood because of infertility. There are no guidelines regarding XX male syndrome, so the aim of our study was to evaluate the literature evidence in order to guide the physicians in the management of these type of patients. Materials and Methods: We performed a systematic review of the available literature in September 2018, using MEDLINE, Web of Science, Embase and Google Scholar database to search for all published studies regarding XX male syndrome according to PRISMA guidelines. The following search terms were used: "46 XX male", "DSD", "infertility", "hypogonadism". Results: After appropriate screening we selected 37 papers. Mean (SD) age was 33.14 (11.4) years. Hair distribution was normal in 29/39 patients (74.3%), gynecomastia was absent in 22/39 cases (56.4%), normal testes volume was reported in 0/14, penis size was normal in 26/32 cases (81.2%), pubic hair had a normal development in 6/7 patients (85.7%), normal erectile function was present in 27/30 cases (90%) and libido was preserved in 20/20 patients (100%). The data revealed the common presence of hypergonadotropic hypogonadism. All patients had a 46,XX karyotype. The sex-determining region Y (SRY) gene was detected in 51/57 cases. The position of the SRY was on the Xp in the 97% of the cases. Conclusions: An appropriate physical examination should include the evaluation of genitalia to detect cryptorchidism, hypospadias, penis size, and gynecomastia; it is important to use a validated questionnaire to evaluate erectile dysfunction, such as the International Index of Erectile Function (IIEF). Semen analysis is mandatory and so is the karyotype test. Abdominal ultrasound is useful in order to exclude residual Müllerian structures. Genetic and endocrine consultations are necessary to assess a possible hypergonadotropic hypogonadism. Testicular sperm extraction is not recommended, and adoption or in vitro fertilization with a sperm donor are fertility options.


46,XX Testicular Disorders of Sex Development With DMD Gene Mutation: First Case Report Identified Prenatally by Integrated Analyses in China.

  • Jianlian Deng‎ et al.
  • Frontiers in genetics‎
  • 2019‎

The present study describes the first prenatally diagnosed 46,XX testicular disorders of sex development (46,XX testicular DSD) case with DMD gene mutation by integrated analyses in a Chinese pedigree. Chromosome karyotype G-banding analysis of the proband showed a 46,XX karyotype, but B-ultrasound analysis demonstrated the existence of scrotum, testis and penis which inferred a male sexual differentiation. Aneuploidy and copy number variation (CNV) detection by low-coverage single-end whole genome sequencing (WGS) revealed a de novo SRY (sex-determining region Y) gene positive fragment of 224.34 kb length (chrY:2,649,472-2,873,810) which explained the gonadal/genital-chromosomal inconsistency in the proband. Additionally, targeted-region-capture-based DMD gene sequencing and Sanger verification confirmed a widely reported pathogenic heterozygous nonsense mutation (NM_004006, c.9100C>T, p.Arg3034Ter) in the dystrophin-coding gene named DMD. This study emphasizes that integrated analyses of the imaging results, cytogenetics, and molecular features can play an important role in prenatal diagnosis. It requires the combination of more detection techniques with higher resolution than karyotyping to determine the genetic and biological sex of fetuses in prenatal diagnosis. To conclusively determine both the biological and genetic sex of the fetus at the time of prenatal diagnosis particularly in cases that involve X-linked conditions is of vital importance, which would crucially influence the decision-making regarding abortions. This study will help in prenatal diagnosis of DMD in future, also providing a new perspective that enables the genetic diagnosis of sex reversal in pregnancy. Moreover, genetic counseling/analysis for early diagnosis and pre-symptom interventions are warranted.


NR5A1 gene variants repress the ovarian-specific WNT signaling pathway in 46,XX disorders of sex development patients.

  • Ingrid M Knarston‎ et al.
  • Human mutation‎
  • 2019‎

Several recent reports have described a missense variant in the gene NR5A1 (c.274C>T; p.Arg92Trp) in a significant number of 46,XX ovotesticular or testicular disorders of sex development (DSDs) cases. The affected residue falls within the DNA-binding domain of the NR5A1 protein, however the exact mechanism by which it causes testicular development in 46,XX individuals remains unclear. We have screened a cohort of 26 patients with 46,XX (ovo)testicular DSD and identified three unrelated individuals with this NR5A1 variant (p.Arg92Trp), as well as one patient with a novel NR5A1 variant (c.779C>T; p.Ala260Val). We examined the functional effect of these changes, finding that while protein levels and localization were unaffected, variant NR5A1 proteins repress the WNT signaling pathway and have less ability to upregulate the anti-testis gene NR0B1. These findings highlight how NR5A1 variants impact ovarian differentiation across multiple pathways, resulting in a switch from ovarian to testis development in genetic females.


The importance of genetic research in cases of severe male factor infertility: A case of 46,XX testicular disorder of sex development.

  • Dalana Faleiro‎ et al.
  • JBRA assisted reproduction‎
  • 2022‎

46,XX testicular disorder of sex development is a rare syndrome characterized by an inconsistency between genotype and phenotype. Affected individuals present variant genitalia between male and ambiguous, non-functional testicles, non-obstructive azoospermia, generally accompanied by hypergonadotropic hypogonadism, a condition known for high levels of gonadotrophic hormones. In some cases, disorders of sexual development are diagnosed during puberty. However, a significant number of individuals show physical characteristics common to males that are not clinically suspicious. As a result, patients with the condition may remain undiagnosed. Many individuals with the condition are diagnosed as adults, due to infertility. The present study discusses the case of an individual who underwent karyotyping for sterility and was found to be a 46,XX male. Despite having a female karyotype, the presence of the sex-determining region Y gene explains the manifestation of masculine secondary sex characteristics. This report highlights the importance of genetic evaluation, considering that carriers may present significant complications resulting from the disorder. Based on correct diagnosis, it is possible to improve a carrier's quality of life through multidisciplinary approaches and help them achieve pregnancy through assisted reproductive technology treatments.


Wide spectrum of NR5A1-related phenotypes in 46,XY and 46,XX individuals.

  • Sorahia Domenice‎ et al.
  • Birth defects research. Part C, Embryo today : reviews‎
  • 2016‎

Steroidogenic factor 1 (NR5A1, SF-1, Ad4BP) is a transcriptional regulator of genes involved in adrenal and gonadal development and function. Mutations in NR5A1 have been among the most frequently identified genetic causes of gonadal development disorders and are associated with a wide phenotypic spectrum. In 46,XY individuals, NR5A1-related phenotypes may range from disorders of sex development (DSD) to oligo/azoospermia, and in 46,XX individuals, from 46,XX ovotesticular and testicular DSD to primary ovarian insufficiency (POI). The most common 46,XY phenotype is atypical or female external genitalia with clitoromegaly, palpable gonads, and absence of Müllerian derivatives. Notably, an undervirilized external genitalia is frequently seen at birth, while spontaneous virilization may occur later, at puberty. In 46,XX individuals, NR5A1 mutations are a rare genetic cause of POI, manifesting as primary or secondary amenorrhea, infertility, hypoestrogenism, and elevated gonadotropin levels. Mothers and sisters of 46,XY DSD patients carrying heterozygous NR5A1 mutations may develop POI, and therefore require appropriate counseling. Moreover, the recurrent heterozygous p.Arg92Trp NR5A1 mutation is associated with variable degrees of testis development in 46,XX patients. A clear genotype-phenotype correlation is not seen in patients bearing NR5A1 mutations, suggesting that genetic modifiers, such as pathogenic variants in other testis/ovarian-determining genes, may contribute to the phenotypic expression. Here, we review the published literature on NR5A1-related disease, and discuss our findings at a single tertiary center in Brazil, including ten novel NR5A1 mutations identified in 46,XY DSD patients. The ever-expanding phenotypic range associated with NR5A1 variants in XY and XX individuals confirms its pivotal role in reproductive biology, and should alert clinicians to the possibility of NR5A1 defects in a variety of phenotypes presenting with gonadal dysfunction. Birth Defects Research (Part C) 108:309-320, 2016. © 2016 The Authors Birth Defects Research Part C: Embryo Today: Reviews Published by Wiley Periodicals, Inc.


Loss of Function of the Nuclear Receptor NR2F2, Encoding COUP-TF2, Causes Testis Development and Cardiac Defects in 46,XX Children.

  • Anu Bashamboo‎ et al.
  • American journal of human genetics‎
  • 2018‎

Emerging evidence from murine studies suggests that mammalian sex determination is the outcome of an imbalance between mutually antagonistic male and female regulatory networks that canalize development down one pathway while actively repressing the other. However, in contrast to testis formation, the gene regulatory pathways governing mammalian ovary development have remained elusive. We performed exome or Sanger sequencing on 79 46,XX SRY-negative individuals with either unexplained virilization or with testicular/ovotesticular disorders/differences of sex development (TDSD/OTDSD). We identified heterozygous frameshift mutations in NR2F2, encoding COUP-TF2, in three children. One carried a c.103_109delGGCGCCC (p.Gly35Argfs∗75) mutation, while two others carried a c.97_103delCCGCCCG (p.Pro33Alafs∗77) mutation. In two of three children the mutation was de novo. All three children presented with congenital heart disease (CHD), one child with congenital diaphragmatic hernia (CDH), and two children with blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). The three children had androgen production, virilization of external genitalia, and biochemical or histological evidence of testicular tissue. We demonstrate a highly significant association between the NR2F2 loss-of-function mutations and this syndromic form of DSD (p = 2.44 × 10-8). We show that COUP-TF2 is highly abundant in a FOXL2-negative stromal cell population of the fetal human ovary. In contrast to the mouse, these data establish COUP-TF2 as a human "pro-ovary" and "anti-testis" sex-determining factor in female gonads. Furthermore, the data presented here provide additional evidence of the emerging importance of nuclear receptors in establishing human ovarian identity and indicate that nuclear receptors may have divergent functions in mouse and human biology.


Disorders of sex development: a genetic study of patients in a multidisciplinary clinic.

  • Luigi Laino‎ et al.
  • Endocrine connections‎
  • 2014‎

Sex development is a process under genetic control directing both the bi-potential gonads to become either a testis or an ovary, and the consequent differentiation of internal ducts and external genitalia. This complex series of events can be altered by a large number of genetic and non-genetic factors. Disorders of sex development (DSD) are all the medical conditions characterized by an atypical chromosomal, gonadal, or phenotypical sex. Incomplete knowledge of the genetic mechanisms involved in sex development results in a low probability of determining the molecular definition of the genetic defect in many of the patients. In this study, we describe the clinical, cytogenetic, and molecular study of 88 cases with DSD, including 29 patients with 46,XY and disorders in androgen synthesis or action, 18 with 46,XX and disorders in androgen excess, 17 with 46,XY and disorders of gonadal (testicular) development, 11 classified as 46,XX other, eight with 46,XX and disorders of gonadal (ovarian) development, and five with sex chromosome anomalies. In total, we found a genetic variant in 56 out of 88 of them, leading to the clinical classification of every patient, and we outline the different steps required for a coherent genetic testing approach. In conclusion, our results highlight the fact that each category of DSD is related to a large number of different DNA alterations, thus requiring multiple genetic studies to achieve a precise etiological diagnosis for each patient.


Pathological variants in genes associated with disorders of sex development and central causes of hypogonadism in a whole-genome reference panel of 8380 Japanese individuals.

  • Naomi Shiga‎ et al.
  • Human genome variation‎
  • 2022‎

Disorders of sex development (DSD) comprises a congenital condition in which chromosomal, gonadal, or anatomical sex development is atypical. In this study, we screened for pathogenic variants in 32 genes associated with DSDs and central causes of hypogonadism (CHG) in a whole-genome reference panel including 8380 Japanese individuals constructed by Tohoku Medical Megabank Organization. Candidate pathogenic (P) or likely pathogenic (LP) variants were extracted from the ClinVar, InterVar, and Human Gene Mutation databases. Ninety-one candidate pathological variants were found in 25 genes; 28 novel candidate variants were identified. Nearly 1 in 40 (either ClinVar or InterVar P or LP) to 157 (both ClinVar and InterVar P or LP) individuals were found to be carriers of recessive DSD and CHG alleles. In these data, genes implicated in gonadal dysfunction did not show loss-of-function variants, with a relatively high tendency of intolerance for haploinsufficiency based on pLI and Episcore, both of which can be used for estimating haploinsufficiency. We report the types and frequencies of causative variants for DSD and CHG in the general Japanese population. This study furthers our understanding of the genetic causes and helps to refine genetic counseling of DSD and CHG.


Testis formation in XX individuals resulting from novel pathogenic variants in Wilms' tumor 1 (WT1) gene.

  • Caroline Eozenou‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

Sex determination in mammals is governed by antagonistic interactions of two genetic pathways, imbalance in which may lead to disorders/differences of sex development (DSD) in human. Among 46,XX individuals with testicular DSD (TDSD) or ovotesticular DSD (OTDSD), testicular tissue is present in the gonad. Although the testis-determining gene SRY is present in many cases, the etiology is unknown in most SRY-negative patients. We performed exome sequencing on 78 individuals with 46,XX TDSD/OTDSD of unknown genetic etiology and identified seven (8.97%) with heterozygous variants affecting the fourth zinc finger (ZF4) of Wilms' tumor 1 (WT1) (p.Ser478Thrfs*17, p.Pro481Leufs*15, p.Lys491Glu, p.Arg495Gln [x3], p.Arg495Gly). The variants were de novo in six families (P = 4.4 × 10-6), and the incidence of WT1 variants in 46,XX DSD is enriched compared to control populations (P < 1.8 × 10-4). The introduction of ZF4 mutants into a human granulosa cell line resulted in up-regulation of endogenous Sertoli cell transcripts and Wt1Arg495Gly/Arg495Gly XX mice display masculinization of the fetal gonads. The phenotype could be explained by the ability of the mutated proteins to physically interact with and sequester a key pro-ovary factor β-CATENIN, which may lead to up-regulation of testis-specific pathway. Our data show that unlike previous association of WT1 and 46,XY DSD, ZF4 variants of WT1 are a relatively common cause of 46,XX TDSD/OTDSD. This expands the spectrum of phenotypes associated with WT1 variants and shows that the WT1 protein affecting ZF4 can function as a protestis factor in an XX chromosomal context.


A recurrent p.Arg92Trp variant in steroidogenic factor-1 (NR5A1) can act as a molecular switch in human sex development.

  • Anu Bashamboo‎ et al.
  • Human molecular genetics‎
  • 2016‎

Cell lineages of the early human gonad commit to one of the two mutually antagonistic organogenetic fates, the testis or the ovary. Some individuals with a 46,XX karyotype develop testes or ovotestes (testicular or ovotesticular disorder of sex development; TDSD/OTDSD), due to the presence of the testis-determining gene, SRY Other rare complex syndromic forms of TDSD/OTDSD are associated with mutations in pro-ovarian genes that repress testis development (e.g. WNT4); however, the genetic cause of the more common non-syndromic forms is unknown. Steroidogenic factor-1 (known as NR5A1) is a key regulator of reproductive development and function. Loss-of-function changes in NR5A1 in 46,XY individuals are associated with a spectrum of phenotypes in humans ranging from a lack of testis formation to male infertility. Mutations in NR5A1 in 46,XX women are associated with primary ovarian insufficiency, which includes a lack of ovary formation, primary and secondary amenorrhoea as well as early menopause. Here, we show that a specific recurrent heterozygous missense mutation (p.Arg92Trp) in the accessory DNA-binding region of NR5A1 is associated with variable degree of testis development in 46,XX children and adults from four unrelated families. Remarkably, in one family a sibling raised as a girl and carrying this NR5A1 mutation was found to have a 46,XY karyotype with partial testicular dysgenesis. These unique findings highlight how a specific variant in a developmental transcription factor can switch organ fate from the ovary to testis in mammals and represents the first missense mutation causing isolated, non-syndromic 46,XX testicular/ovotesticular DSD in humans.


Altered SOX9 genital tubercle enhancer region in hypospadias.

  • Rajini Sreenivasan‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2017‎

Human mutations in the SOX9 gene or its regulatory region can disrupt testicular development, leading to disorders of sex development (DSDs). Our previous work involving the genomic analysis of isolated DSD patients revealed a 78kb minimal sex determining region (RevSex) far upstream of SOX9 that was duplicated in 46,XX and deleted in 46,XY DSDs. It was postulated that RevSex contains a gonadal enhancer. However, the most highly conserved sub-region within RevSex, called SR4, was neither responsive to sex determining factors in vitro nor active in the gonads of transgenic mice, suggesting that SR4 may not be functioning as a testicular enhancer. Interestingly, SR4 transgenic mice showed reporter activity in the genital tubercle, the primordium of the penis and clitoris, a previously unreported domain of Sox9 expression. SOX9 protein was detected in the genital tubercle, notably in the urethral plate epithelium, preputial glands, ventral surface ectoderm and corpus cavernosa. SR4 may therefore function as a Sox9 genital tubercle enhancer, mutations of which could possibly lead to hypospadias, a birth defect seen in the DSD patients in the RevSex study. SR4 activity and the observed SOX9 expression pattern suggest that SR4 may function as a Sox9 genital tubercle enhancer. However, conditional ablation of Sox9 in the genital tubercle using Shh-Cre/+;Sox9flox/flox mice revealed no genital tubercle abnormalities, possibly due to compensation by similar Sox factors. To conclude, we have identified a novel regulatory enhancer driving Sox9 expression during external genitalia development.


DMRT1 is a testis-determining gene in rabbits and is also essential for female fertility.

  • Emilie Dujardin‎ et al.
  • eLife‎
  • 2023‎

DMRT1 is the testis-determining factor in several species of vertebrates, but its involvement in mammalian testes differentiation, where SRY is the testis-determining gene, remains ambiguous. So far, DMRT1 loss-of-function has been described in two mammalian species and induces different phenotypes: Disorders of Sex Development (46, XY DSD) in men and male infertility in mice. We thus abolished DMRT1 expression by CRISPR/Cas9 in a third species of mammal, the rabbit. First, we observed that gonads from XY DMRT1-/- rabbit fetuses differentiated like ovaries, highlighting that DMRT1 is involved in testis determination. In addition to SRY, DMRT1 is required in the supporting cells to increase the expression of the SOX9 gene, which heads the testicular genetic cascade. Second, we highlighted another function of DMRT1 in the germline since XX and XY DMRT1-/- ovaries did not undergo meiosis and folliculogenesis. XX DMRT1-/- adult females were sterile, showing that DMRT1 is also crucial for female fertility. To conclude, these phenotypes indicate an evolutionary continuum between non-mammalian vertebrates such as birds and non-rodent mammals. Furthermore, our data support the potential involvement of DMRT1 mutations in different human pathologies, such as 46, XY DSD as well as male and female infertility.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: