Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 25 papers

Seipin oligomers can interact directly with AGPAT2 and lipin 1, physically scaffolding critical regulators of adipogenesis.

  • Md Mesbah Uddin Talukder‎ et al.
  • Molecular metabolism‎
  • 2015‎

Disruption of the genes encoding either seipin or 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) causes severe congenital generalized lipodystrophy (CGL) in humans. However, the function of seipin in adipogenesis remains poorly defined. We demonstrated recently that seipin can bind the key adipogenic phosphatidic acid (PA) phosphatase lipin 1 and that seipin forms stable dodecamers. As AGPAT2 generates PA, the substrate for lipin 1, we investigated whether seipin might bind both enzymes of this lipid biosynthetic pathway, which is required for adipogenesis to occur.


cAMP Response Element Binding Protein 1 (CREB1) Promotes Monounsaturated Fatty Acid Synthesis and Triacylglycerol Accumulation in Goat Mammary Epithelial Cells.

  • Dawei Yao‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2020‎

cAMP response element binding protein 1 (CREB1) is a member of the leucine zipper transcription factor family of DNA binding proteins. Although studies in non-ruminants have demonstrated a crucial role of CREB1 in lipid synthesis in liver and adipose tissue, it is unknown if this transcription regulator exerts control of fatty acid synthesis in ruminant mammary cells. To address this question, we first defined the expression dynamics of CREB1 in mammary tissue during lactation. Analysis of CREB1 in mammary tissue revealed higher mRNA abundance in mammary tissue harvested at peak lactation. Overexpression of CREB1 markedly upregulated sterol regulatory element binding transcription factor 1 (SREBP1), fatty acid synthase (FASN), acetyl-coenzyme A carboxylase α (ACACA), elongase of very long chain fatty acids 6 (ELOVL6), lipoprotein lipase (LPL), fatty acid binding protein 3 (FABP3), lipin 1 (LPIN1) and diacylglycerol acyltransferase 1 (DGAT1), but had no effect on glycerol-3-phosphate acyltransferase, mitochondrial (GPAM) or 1-acylglycerol-3-phosphate O-acyltransferase 6 (AGPAT6). In addition, overexpressing CREB1 led to a significant increase in the concentration and desaturation index of C16:1 (palmitoleic acid) and C18:1 (oleic acid), along with increased concentration of triacylglycerol. Taken together, these results highlight an important role of CREB1 in regulating lipid synthesis in goat mammary epithelial cells. Thus, manipulation of CREB1 in vivo might be one approach to improve the quality of goat milk.


Absence of AGPAT2 impairs brown adipogenesis, increases IFN stimulated gene expression and alters mitochondrial morphology.

  • Pablo J Tapia‎ et al.
  • Metabolism: clinical and experimental‎
  • 2020‎

Biallelic loss of function variants in AGPAT2, encoding 1-acylglycerol-3-phosphate O-acyltransferase 2, cause congenital generalized lipodystrophy type 1, a disease characterized by near total loss of white adipose tissue and metabolic complications. Agpat2 deficient (Agpat2-/-) mice completely lacks both white and interscapular brown adipose tissue (iBAT). The objective of the present study was to characterize the effects of AGPAT2 deficiency in brown adipocyte differentiation.


A post-GWAS confirming the genetic effects and functional polymorphisms of AGPAT3 gene on milk fatty acids in dairy cattle.

  • Lijun Shi‎ et al.
  • Journal of animal science and biotechnology‎
  • 2021‎

People are paying more attention to the healthy and balanced diet with the improvement of their living standards. Milk fatty acids (FAs) have been reported that they were related to some atherosclerosis and coronary heart diseases in human. In our previous genome-wide association study (GWAS) on milk FAs in dairy cattle, 83 genome-wide significant single nucleotide polymorphisms (SNPs) were detected. Among them, two SNPs, ARS-BFGL-NGS-109493 and BTA-56389-no-rs associated with C18index (P = 0.0459), were located in the upstream of 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3) gene. AGPAT3 is involved in glycerol-lipid, glycerol-phospholipid metabolism and phospholipase D signaling pathways. Hence, it was inferred as a candidate gene for milk FAs. The aim of this study was to further confirm the genetic effects of the AGPAT3 gene on milk FA traits in dairy cattle.


Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy.

  • Víctor A Cortés‎ et al.
  • Cell metabolism‎
  • 2009‎

Mutations in 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2) cause congenital generalized lipodystrophy. To understand the molecular mechanisms underlying the metabolic complications associated with AGPAT2 deficiency, Agpat2 null mice were generated. Agpat2(-/-) mice develop severe lipodystrophy affecting both white and brown adipose tissue, extreme insulin resistance, diabetes, and hepatic steatosis. The expression of lipogenic genes and rates of de novo fatty acid biosynthesis were increased approximately 4-fold in Agpat2(-/-) mouse livers. The mRNA and protein levels of monoacylglycerol acyltransferase isoform 1 were markedly increased in the livers of Agpat2(-/-) mice, suggesting that the alternative monoacylglycerol pathway for triglyceride biosynthesis is activated in the absence of AGPAT2. Feeding a fat-free diet reduced liver triglycerides by approximately 50% in Agpat2(-/-) mice. These observations suggest that both dietary fat and hepatic triglyceride biosynthesis via a monoacylglycerol pathway may contribute to hepatic steatosis in Agpat2(-/-) mice.


AGPAT9 suppresses cell growth, invasion and metastasis by counteracting acidic tumor microenvironment through KLF4/LASS2/V-ATPase signaling pathway in breast cancer.

  • Shao-hua Fan‎ et al.
  • Oncotarget‎
  • 2015‎

Human 1-acylglycerol-3-phosphate O-acyltransferase 9 (AGPAT9) is the gene identified from adipose tissue in 2007. We found AGPAT9 expression was significantly higher in poorly invasive MCF7 human breast cancer cells than the highly invasive MDA-MB-231 cells. AGPAT9 significantly inhibited the proliferation of breast cancer cells in vitro and in vivo. Live-cell imaging and transwell assays showed that AGPAT9 could significantly inhibit the migration and invasive capacities of breast cancer cells. The inhibitory effect of AGPAT9 on metastasis was also observed in vivo in lung metastasis model. AGPAT9 inhibited breast cancer cell proliferation, migration and invasion through, at least in part, suppressing the V-ATPase activity. In addition, increased AGPAT9 expression in MCF-7/ADR cells could increase the chemosensitivity to doxorubicin (Dox). Our findings suggest that increasing AGPAT9 expression may be a new approach that can be used for breast cancer treatment.


The rs196952262 Polymorphism of the AGPAT5 Gene is Associated with Meat Quality in Berkshire Pigs.

  • Woo Bum Park‎ et al.
  • Korean journal for food science of animal resources‎
  • 2017‎

High-quality meat is of great economic importance to the pig industry. The 1-acylglycerol-3-phosphate-O-acyltransferase 5 (AGPAT5) enzyme converts lysophosphatidic acid to phosphatidic acid in the mitochondrial membrane. In this study, we found that the porcine AGPAT5 gene was highly expressed in muscle tissue, influencing meat characteristics, and we also identified a non-synonymous single-nucleotide polymorphism (nsSNP) (rs196952262, c.673 A>G) in the gene, associated with a change of isoleucine 225 to valine. The presence of this nsSNP was significantly associated with meat color (lightness), lower cooking loss, and lower carcass temperatures 1, 4, and 12 h after slaughter (items T1, T4, and T12 on the recognized quality scale, respectively), and tended to increase backfat thickness and the water-holding capacity. These results suggest that nsSNP (c.673A>G) of the AGPAT5 gene is a potential genetic marker of high meat quality in pigs.


Metabolic, Reproductive, and Neurologic Abnormalities in Agpat1-Null Mice.

  • Anil K Agarwal‎ et al.
  • Endocrinology‎
  • 2017‎

Defects in the biosynthesis of phospholipids and neutral lipids are associated with cell membrane dysfunction, disrupted energy metabolism, and diseases including lipodystrophy. In these pathways, the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) enzymes transfer a fatty acid to the sn-2 carbon of sn-1-acylglycerol-3-phosphate (lysophosphatidic acid) to form sn-1, 2-acylglycerol-3-phosphate [phosphatidic acid (PA)]. PA is a precursor for key phospholipids and diacylglycerol. AGPAT1 and AGPAT2 are highly homologous isoenzymes that are both expressed in adipocytes. Genetic defects in AGPAT2 cause congenital generalized lipodystrophy, indicating that AGPAT1 cannot compensate for loss of AGPAT2 in adipocytes. To further explore the physiology of AGPAT1, we characterized a loss-of-function mouse model (Agpat1-/-). The majority of Agpat1-/- mice died before weaning and had low body weight and low plasma glucose levels, independent of plasma insulin and glucagon levels, with reduced percentage of body fat but not generalized lipodystrophy. These mice also had decreased hepatic messenger RNA expression of Igf-1 and Foxo1, suggesting a decrease in gluconeogenesis. In male mice, sperm development was impaired, with a late meiotic arrest near the onset of round spermatid production, and gonadotropins were elevated. Female mice showed oligoanovulation yet retained responsiveness to gonadotropins. Agpat1-/- mice also demonstrated abnormal hippocampal neuron development and developed audiogenic seizures. In summary, Agpat1-/- mice developed widespread disturbances of metabolism, sperm development, and neurologic function resulting from disrupted phospholipid homeostasis. AGPAT1 appears to serve important functions in the physiology of multiple organ systems. The Agpat1-deficient mouse provides an important model in which to study the contribution of phospholipid and triacylglycerol synthesis to physiology and diseases.


Polymorphisms in lipogenic genes and milk fatty acid composition in Holstein dairy cattle.

  • Rafael A Nafikov‎ et al.
  • Genomics‎
  • 2014‎

Changing bovine milk fatty acid (FA) composition through selection can decrease saturated FA (SFA) consumption, improve human health and provide a means for manipulating processing properties of milk. Our study determined associations between milk FA composition and genes from triacylglycerol (TAG) biosynthesis pathway. The GC dinucleotide allele of diacylglycerol O-acyltransferase 1:g.10433-10434AA >GC was associated with lower palmitic acid (16:0) concentration but higher oleic (18:1 cis-9), linoleic (18:2 cis-9, cis-12) acid concentrations, and elongation index. Accordingly, the GC dinucleotide allele was associated with lower milk fat percentage and SFA concentrations but higher monounsaturated FA and polyunsaturated FA (PUFA) concentrations. The glycerol-3-phosphate acyltransferase, mitochondrial haplotypes were associated with higher myristoleic acid (14:1 cis-9) concentration and C14 desaturation index. The 1-acylglycerol-3-phosphate acyltransferase 1 haplotypes were associated with higher PUFA and linoleic acid concentrations. The results of this study provide information for developing genetic tools to modify milk FA composition in dairy cattle.


Helicobacter pylori CagA-mediated ether lipid biosynthesis promotes ferroptosis susceptibility in gastric cancer.

  • Yanmei Peng‎ et al.
  • Experimental & molecular medicine‎
  • 2024‎

Helicobacter pylori, particularly cytotoxin-associated gene A (CagA)-positive strains, plays a key role in the progression of gastric cancer (GC). Ferroptosis, associated with lethal lipid peroxidation, has emerged to play an important role in malignant and infectious diseases, but the role of CagA in ferroptosis in cancer cells has not been determined. Here, we report that CagA confers GC cells sensitivity to ferroptosis both in vitro and in vivo. Mechanistically, CagA promotes the synthesis of polyunsaturated ether phospholipids (PUFA-ePLs), which is mediated by increased expression of alkylglycerone phosphate synthase (AGPS) and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3), leading to susceptibility to ferroptosis. This susceptibility is mediated by activation of the MEK/ERK/SRF pathway. SRF is a crucial transcription factor that increases AGPS transcription by binding to the AGPS promoter region. Moreover, the results demonstrated that CagA-positive cells are more sensitive to apatinib than are CagA-negative cells, suggesting that detecting the H. pylori CagA status may aid patient stratification for treatment with apatinib.


Liver Proliferation Is an Essential Driver of Fibrosis in Mouse Models of Nonalcoholic Fatty Liver Disease.

  • Ashley Cast‎ et al.
  • Hepatology communications‎
  • 2019‎

Nonalcoholic fatty liver disease (NAFLD) involves development of hepatic steatosis, fibrosis, and steatohepatitis. Because hepatic steatosis appears first in NAFLD animal models, the current therapy development focuses on inhibition of hepatic steatosis, suggesting that further steps of NAFLD will be also inhibited. In this report, we show that the first event of NAFLD is liver proliferation, which drives fibrosis in NAFLD. We have deleted a strong driver of liver proliferation, gankyrin (Gank), and examined development of NAFLD in this animal model under conditions of a high-fat diet (HFD). We found that proliferating livers of wild-type mice develop fibrosis; however, livers of Gank liver-specific knockout (GLKO) mice with reduced proliferation show no fibrosis. Interestingly, an HFD causes the development of strong macrovesicular steatosis in GLKO mice and is surprisingly associated with improvements in animal health. We observed that key regulators of liver biology CCAAT/enhancer binding protein α (C/EBPα), hepatocyte nuclear factor 4α (HNF4α), p53, and CUG repeat binding protein 1 (CUGBP1) are elevated due to the deletion of Gank and that these proteins support liver functions leading to healthy conditions in GLKO mice under an HFD. To examine the role of one of these proteins in the protection of liver from fibrosis, we used CUGBP1-S302A knockin mice, which have a reduction of CUGBP1 due to increased degradation of this mutant by Gank. These studies show that reduction of CUGBP1 inhibits steatosis and facilitates liver proliferation, leading to fibrosis and the development of liver tumors. Conclusion: Liver proliferation drives fibrosis, while steatosis might play a protective role. Therapy for NAFLD should include inhibition of proliferation rather than inhibition of steatosis.


Fetal sex differences in placental LCPUFA ether and plasmalogen phosphatidylethanolamine and phosphatidylcholine contents in pregnancies complicated by obesity.

  • Theresa L Powell‎ et al.
  • Biology of sex differences‎
  • 2023‎

We have previously reported that maternal obesity reduces placental transport capacity for lysophosphatidylcholine-docosahexaenoic acid (LPC-DHA), a preferred form for transfer of DHA (omega 3) to the fetal brain, but only in male fetuses. Phosphatidylethanolamine (PE) and phosphatidylcholine (PC), have either sn-1 ester, ether or vinyl ether (plasmalogen) linkages to primarily unsaturated and monounsaturated fatty acids and DHA or arachidonic acid (ARA, omega 6) in the sn-2 position. Whether ether and plasmalogen PC and PE metabolism in placenta impacts transfer to the fetus is unexplored. We hypothesized that ether and plasmalogen PC and PE containing DHA and ARA are reduced in maternal-fetal unit in pregnancies complicated by obesity and these differences are dependent on fetal sex.


Small Intestine-specific Knockout of CIDEC Improves Obesity and Hepatic Steatosis by Inhibiting Synthesis of Phosphatidic Acid.

  • Liang Huang‎ et al.
  • International journal of biological sciences‎
  • 2022‎

The small intestine is main site of exogenous lipid digestion and absorption, and it is important for lipid metabolic homeostasis. Cell death-inducing DNA fragmentation-factor like effector C (CIDEC) is active in lipid metabolism in tissues other than those in the intestine. We developed small intestine-specific CIDEC (SI-CIDEC-/-) knockout C57BL/6J mice by Cre/LoxP recombination to investigate the in vivo effects of intestinal CIDEC on lipid metabolism. Eight-week-old SI-CIDEC-/- mice fed a high-fat diet for 14 weeks had 15% lower body weight, 30% less body fat mass, and 79% lower liver triglycerides (TG) than wild-type (WT) mice. In addition, hepatic steatosis and fatty liver inflammation were less severe in knockout mice fed a high-fat diet (HFD) compared with wild-type mice fed an HFD. SI-CIDEC-/- mice fed an HFD diet had lower serum TG and higher fecal TG and intestinal lipase activity than wild-type mice. Mechanistic studies showed that CIDEC accelerated phosphatidic acid synthesis by interacting with 1-acylglycerol-3-phosphate-O-acyltransferase to promote TG accumulation. This study identified a new interacting protein and previously unreported CIDEC mechanisms that revealed its activity in lipid metabolism of the small intestine.


Formation and characterization of lipid droplets of the bovine corpus luteum.

  • Heather A Talbott‎ et al.
  • Scientific reports‎
  • 2020‎

Establishment and maintenance of pregnancy depends on progesterone synthesized by luteal tissue in the ovary. Our objective was to identify the characteristics of lipid droplets (LDs) in ovarian steroidogenic cells. We hypothesized that LDs are a major feature of steroidogenic luteal cells and store cholesteryl esters. Whole bovine tissues, isolated ovarian steroidogenic cells (granulosa, theca, small luteal, and large luteal), and isolated luteal LDs were assessed for LD content, LD-associated proteins and lipid analyses. Bovine luteal tissue contained abundant lipid droplets, LD-associated perilipins 2/3/5, hormone-sensitive lipase, and 1-acylglycerol-3-phosphate O-acyltransferase ABHD5. Luteal tissue was enriched in triglycerides (TGs) compared to other tissues, except for adipose tissue. Luteal cells were distinguishable from follicular cells by the presence of LDs, LD-associated proteins, and increased TGs. Furthermore, LDs from large luteal cells were numerous and small; whereas, LDs from small luteal cells were large and less numerous. Isolated LDs contained nearly all of the TGs and cholesteryl esters present in luteal tissue. Isolated luteal LDs were composed primarily of TG, with lesser amounts of cholesteryl esters, diglyceride and other phospholipids. Bovine luteal LDs are distinct from LDs in other bovine tissues, including follicular steroidogenic cells.


Identification and Characterisation of a Novel Pathogenic Mutation in the Human Lipodystrophy Gene AGPAT2 : C48R: A Novel Mutation in AGPAT2.

  • N Ramanathan‎ et al.
  • JIMD reports‎
  • 2013‎

Loss-of-function mutations in AGPAT2, encoding 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), produce congenital generalised lipodystrophy (CGL). We screened the AGPAT2 gene in two siblings who presented with pseudoacromegaly, diabetes and severe dyslipidaemia and identified a novel mutation in AGPAT2 causing a single amino acid substitution, p.Cys48Arg. We subsequently investigated the molecular pathogenic mechanism linking both this mutation and the previously reported p.Leu228Pro mutation to clinical disease. Wild-type and mutant AGPAT2 were expressed in control and AGPAT2-deficient preadipocyte cell lines. mRNA and protein expression was determined, and the ability of each AGPAT2 species to rescue adipocyte differentiation in AGPAT2-deficient cells was assessed. Protein levels of both p.Cys48Arg and p.Leu228Pro AGPAT2 were significantly reduced compared with that of wild-type AGPAT2 despite equivalent mRNA levels. Stable expression of wild-type AGPAT2 partially rescued adipogenesis in AGPAT2 deficient preadipocytes, whereas stable expression of p.Cys48Arg or p.Leu228Pro AGPAT2 did not. In conclusion, unusually severe dyslipidaemia and pseudoacromegaloid overgrowth in patients with diabetes should alert physicians to the possibility of lipodystrophy. Both the previously unreported pathogenic p.Cys48Arg mutation in AGPAT2, and the known p.Leu228Pro mutation result in decreased AGPAT2 protein expression in developing adipocytes. It is most likely that the CGL seen in homozygous carriers of these mutations is largely accounted for by loss of protein expression.


Vanillic Acid Improves Comorbidity of Cancer and Obesity through STAT3 Regulation in High-Fat-Diet-Induced Obese and B16BL6 Melanoma-Injected Mice.

  • Jinbong Park‎ et al.
  • Biomolecules‎
  • 2020‎

Obesity is known to be associated with risk and aggressiveness of cancer. Melanoma, the most lethal type of skin cancer, is also closely related to the prevalence of obesity. In this study, we established a cancer-obesity comorbidity (COC) model to investigate the effects of vanillic acid (VA). After a five-week administration with a high-fat diet (HFD) to induce obesity, subcutaneous allograft of B16BL6 cells were followed, and VA was orally administrated for an additional two weeks. VA-fed mice showed significantly decreased body weight and white adipose tissue (WAT) weight, which were due to increased thermogenesis and AMPK activation in WATs. Growth of cancer was also suppressed. Mechanistic studies revealed increased apoptosis and autophagy markers by VA; however, caspase 3 was not involved. Since signal transducer and activator of transcription 3 (STAT3) is suggested as an important pathway linking obesity and cancer, we further investigated to find out if STAT3 phosphorylation was repressed by VA treatment, and this was again confirmed in a COC cell model of adipocyte conditioned medium-treated B16BL6 melanoma cells. Overall, our results show VA induces STAT3-mediated autophagy to inhibit cancer growth and thermogenesis to ameliorate obesity in COC. Based on these findings, we suggest VA as a candidate therapeutic agent for COC treatment.


Dietary Supplementation of Baicalein Affects Gene Expression in Broiler Adipose Tissue During the First Week Post-hatch.

  • Yang Xiao‎ et al.
  • Frontiers in physiology‎
  • 2021‎

Dietary supplementation of baicalein, a flavonoid, has anti-obesity effects in mammals and broiler chickens. The aim of this study was to determine the effect of dietary baicalein supplementation on broiler growth and adipose tissue and breast muscle deposition. Fifty Hubbard × Cobb-500 day-of-hatch broiler chicks were assigned to a control starter diet or control diet supplemented with 125, 250, or 500 mg/kg baicalein and diets were fed for the first 6 days post-hatch. Body weight, average daily body weight gain, and average daily food intake were all reduced by 500 mg/kg baicalein. Breast muscle and subcutaneous and abdominal fat weights were also reduced in chicks that consumed the baicalein-supplemented diets. mRNAs for genes encoding factors involved in adipogenesis and fat storage, 1-acylglycerol-3-phosphate-O-acyltransferase 2, CCAAT/enhancer-binding protein β, perilipin-1, and sterol regulatory element-binding transcription factor 1, were more highly expressed in the adipose tissue of broilers supplemented with baicalein than the controls, independent of depot. Diacylglycerol acyltransferase and peroxisome proliferator-activated receptor gamma mRNAs, involved in triacylglycerol synthesis and adipogenesis, respectively, were greater in subcutaneous than abdominal fat, which may contribute to differences in expansion rates of these depots. Results demonstrate effects of dietary supplementation of baicalein on growth performance in broilers during the early post-hatch stage and molecular effects in major adipose tissue depots. The mild reduction in food intake coupled to slowed rate of breast muscle and adipose tissue accumulation may serve as a strategy to modulate broiler growth and body composition to prevent metabolic and skeletal disorders later in life.


Transcriptome and lipidome integration unveils mechanisms of fatty liver formation in Shitou geese.

  • Longsheng Hong‎ et al.
  • Poultry science‎
  • 2023‎

Geese evolved from migratory birds, and when they consume excessive high-energy feed, glucose is converted into triglycerides. A large amount of triglyceride deposition can induce incomplete oxidation of fatty acids, leading to lipid accumulation in the liver and the subsequent formation of fatty liver. In the Chaoshan region of Guangdong, China, Shitou geese develop a unique form of fatty liver through 24 h overfeeding of brown rice. To investigate the mechanisms underlying the formation of fatty liver in Shitou geese, we collected liver samples from normally fed and overfed geese. The results showed that the liver size in the treatment group was significantly larger, weighing 3.5 times more than that in the control group. Extensive infiltration of lipid droplets was observed in the liver upon staining of tissue sections. Biochemical analysis revealed that compared to the control group, the treatment group showed significantly elevated levels of total cholesterol (T-CHO), triglycerides (TG), and glycogen in the liver. However, no significant differences were observed in the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), which are common indicators of liver damage. Furthermore, we performed a combined transcriptomic and lipidomic analysis of the liver samples and identified 1,510 differentially expressed genes (DEGs) and 1,559 significantly differentially abundant metabolites (SDMs). The enrichment analysis of the DEGs revealed their enrichment in metabolic pathways, cellular process-related signaling pathways, and specific lipid metabolism pathways. We also conducted KEGG enrichment analysis of the SDMs and compared them with the enriched signaling pathways obtained from the DEGs. In this study, we identified 3 key signaling pathways involved in the formation of fatty liver in Shitou geese, namely, the biosynthesis of unsaturated fatty acids, glycerol lipid metabolism, and glycerophospholipid metabolism. In these pathways, genes such as glycerol-3-phosphate acyltransferase, mitochondrial (GPAM), 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2), diacylglycerol O-acyltransferase 2 (DGAT2), lipase, endothelial (LIPG), lipoprotein lipase (LPL), phospholipase D family member 4 (PLD4), and phospholipase A2 group IVF (PLA2G4F) may regulate the synthesis of metabolites, including triacylglycerol (TG), phosphatidate (PA), 1,2-diglyceride (DG), phosphatidylethanolamine (PE), and phosphatidylcholine (PC). These genes and metabolites may play a predominant role in the development of fatty liver, ultimately promoting the accumulation of TG in the liver and leading to the progression of fatty liver.


Effect of elevated lipid concentrations on human skeletal muscle gene expression.

  • Rebecca J Tunstall‎ et al.
  • Metabolism: clinical and experimental‎
  • 2005‎

Dietary fatty acids regulate the abundance and activity of various proteins involved in the regulation of fat oxidation by functioning as regulators of gene transcription. To determine whether the transcription of key lipid metabolic proteins necessary for fat metabolism within human skeletal muscle are regulated by acute elevations in circulating free fatty acid (FFA) concentrations, 7 healthy men underwent 3 randomized resting infusions of Intralipid (20%) with heparin sodium, saline and heparin sodium, or saline only for 5 hours. These infusions significantly elevated plasma FFA concentrations by 15-fold (to 1.67 +/- 0.13 mmol/L) in the Intralipid infusion trial, with modest elevations observed in the saline and heparin sodium and saline alone infusion groups (0.67 +/- 0.09 and 0.49 +/- 0.087 mmol/L, P < .01 both vs Intralipid infusion). Analysis of messenger RNA (mRNA) concentration demonstrated that pyruvate dehydrogenase kinase isoform 4 (PDK4) mRNA, a key negative regulator of glucose oxidation, was increased in all trials with a 24-fold response after Intralipid infusion, 15-fold after saline and heparin infusion, and 9-fold after saline alone. The PDK4 increases were not significantly different between the 3 trials. The mRNA concentration of the major uncoupling protein within skeletal muscle, uncoupling protein 3, was not elevated in parallel to the increased plasma FFA as similar ( approximately 2-fold) increases were evident in all trials. Additional genes involved in lipid transport (fatty acid translocase/CD36), oxidation (carnitine palmitoyltransferase I), and metabolism (1-acylglycerol-3-phosphate O -acyltransferase 1, hormone-sensitive lipase, and peroxisomal proliferator-activated receptor-gamma coactivator-1alpha) were not altered by increased circulating FFA concentrations. The present data demonstrate that of the genes analyzed that encode proteins that are key regulators of lipid homeostasis within skeletal muscle, only the PDK4 gene is uniquely sensitive to increasing FFA concentrations after increased plasma FFA achieved by intravenous lipid infusion.


Different origin of adipogenic stem cells influences the response to antiretroviral drugs.

  • Lara Gibellini‎ et al.
  • Experimental cell research‎
  • 2015‎

Lipodystrophy (LD) is a main side effect of antiretroviral therapy for HIV infection, and can be provoked by nucleoside reverse transcriptase inhibitors (NRTIs) and protease inhibitors (PIs). LD exists in different forms, characterized by fat loss, accumulation, or both, but its pathogenesis is still unclear. In particular, few data exist concerning the effects of antiretroviral drugs on adipocyte differentiation. Adipose tissue can arise either from mesenchymal stem cells (MSCs), that include bone marrow-derived MSCs (hBM-MSCs), or from ectodermal stem cells, that include dental pulp stem cells (hDPSCs). To analyze whether the embryonal origin of adipocytes might impact the occurrence of different phenotypes in LD, we quantified the effects of several antiretroviral drugs on the adipogenic differentiation of hBM-MSCs and hDPSCs. hBM-MSCs and hDPSCs were isolated from healthy donors. Cells were treated with 10 and 50 μM stavudine (d4T), efavirenz (EFV), atazanavir (ATV), ritonavir (RTV), and ATV-boosted RTV. Viability and adipogenesis were evaluated by staining with propidium iodide, oil red, and adipoRed; mRNA levels of genes involved in adipocyte differentiation, i.e. CCAAT/enhancer-binding protein alpha (CEBPα) and peroxisome proliferator-activated receptor gamma (PPARγ), and in adipocyte functions, i.e. fatty acid synthase (FASN), fatty acid binding protein-4 (FABP4), perilipin-1 (PLIN1) and 1-acylglycerol-3-phosphate O-acyltransferase-2 (AGPAT2), were quantified by real time PCR. We found that ATV, RTV, EFV, and ATV-boosted RTV, but not d4T, caused massive cell death in both cell types. EFV and d4T affected the accumulation of lipid droplets and induced changes in mRNA levels of genes involved in adipocyte functions in hBM-MSCs, while RTV and ATV had little effects. All drugs stimulated the accumulation of lipid droplets in hDPSCs. Thus, the adipogenic differentiation of human stem cells can be influenced by antiretroviral drugs, and depends, at least in part, on their embryonal origin.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: