Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 70 papers

Iodized oil in the portal vein after arterial embolization.

  • H Nakamura‎ et al.
  • Radiology‎
  • 1988‎

Transcatheter embolization with a relatively large amount (average, 17 mL) of iodized oil and doxorubicin hydrochloride with or without gelatin sponge particles was performed in 50 patients with hepatocellular carcinoma and in eight patients with liver metastases. After an intraarterial hepatic injection of an emulsion of iodized oil and doxorubicin hydrochloride, iodized oil was seen in the portal vein; the amount correlated with the amount that was injected, despite the lack of arterioportal shunting. Prominent portal vein appearances were seen in six of 21 cases (29%) given 10 mL or less of iodized oil, in 14 of 21 cases (67%) with 10-20 mL, and in 18 of 21 cases (86%) with more than 20 mL. Iodized oil may enter the portal vein through an arterioportal communication after pooling in the sinusoids.


Quantification of Macrophages in High-Grade Gliomas by Using Ferumoxytol-enhanced MRI: A Pilot Study.

  • Michael Iv‎ et al.
  • Radiology‎
  • 2019‎

Purpose To investigate ferumoxytol-enhanced MRI as a noninvasive imaging biomarker of macrophages in adults with high-grade gliomas. Materials and Methods In this prospective study, adults with high-grade gliomas were enrolled between July 2015 and July 2017. Each participant was administered intravenous ferumoxytol (5 mg/kg) and underwent 3.0-T MRI 24 hours later. Two sites in each tumor were selected for intraoperative sampling on the basis of the degree of ferumoxytol-induced signal change. Susceptibility and the relaxation rates R2* (1/T2*) and R2 (1/T2) were obtained by region-of-interest analysis by using the respective postprocessed maps. Each sample was stained with Prussian blue, CD68, CD163, and glial fibrillary acidic protein. Pearson correlation and linear mixed models were performed to assess the relationship between imaging measurements and number of 400× magnification high-power fields with iron-containing macrophages. Results Ten adults (four male participants [mean age, 65 years ± 9 {standard deviation}; age range, 57-74 years] and six female participants [mean age, 53 years ± 12 years; age range, 32-65 years]; mean age of all participants, 58 years ± 12 [age range, 32-74 years]) with high-grade gliomas were included. Significant positive correlations were found between susceptibility, R2*, and R2' and the number of high-power fields with CD163-positive (r range, 0.64-0.71; P < .01) and CD68-positive (r range, 0.55-0.57; P value range, .01-.02) iron-containing macrophages. No significant correlation was found between R2 and CD163-positive (r = 0.33; P = .16) and CD68-positive (r = 0.24; P = .32) iron-containing macrophages. Similar significance results were obtained with linear mixed models. At histopathologic analysis, iron particles were found only in macrophages; none was found in glial fibrillary acidic protein-positive tumor cells. Conclusion MRI measurements of susceptibility, R2*, and R2' (R2* - R2) obtained after ferumoxytol administration correlate with iron-containing macrophage concentration, and this shows their potential as quantitative imaging markers of macrophages in malignant gliomas. © RSNA, 2018 Online supplemental material is available for this article.


Paraspinal Fat Pad Changes as a Valuable Indicator of Posterior Ligamentous Complex Injury in Upper Cervical Spine Trauma.

  • Miso Kim‎ et al.
  • Radiology‎
  • 2017‎

No abstract available


Pulmonary Embolism and Deep Vein Thrombosis in COVID-19: A Systematic Review and Meta-Analysis.

  • Young Joo Suh‎ et al.
  • Radiology‎
  • 2021‎

Background The association of pulmonary embolism (PE) with deep vein thrombosis (DVT) in patients with coronavirus disease 2019 (COVID-19) remains unclear, and the diagnostic accuracy of D-dimer tests for PE is unknown. Purpose To conduct meta-analysis of the study-level incidence of PE and DVT and to evaluate the diagnostic accuracy of D-dimer tests for PE from multicenter individual patient data. Materials and Methods A systematic literature search identified studies evaluating the incidence of PE or DVT in patients with COVID-19 from January 1, 2020, to June 15, 2020. These outcomes were pooled using a random-effects model and were further evaluated using metaregression analysis. The diagnostic accuracy of D-dimer tests for PE was estimated on the basis of individual patient data using the summary receiver operating characteristic curve. Results Twenty-seven studies with 3342 patients with COVID-19 were included in the analysis. The pooled incidence rates of PE and DVT were 16.5% (95% CI: 11.6, 22.9; I2 = 0.93) and 14.8% (95% CI: 8.5, 24.5; I2 = 0.94), respectively. PE was more frequently found in patients who were admitted to the intensive care unit (ICU) (24.7% [95% CI: 18.6, 32.1] vs 10.5% [95% CI: 5.1, 20.2] in those not admitted to the ICU) and in studies with universal screening using CT pulmonary angiography. DVT was present in 42.4% of patients with PE. D-dimer tests had an area under the receiver operating characteristic curve of 0.737 for PE, and D-dimer levels of 500 and 1000 μg/L showed high sensitivity (96% and 91%, respectively) but low specificity (10% and 24%, respectively). Conclusion Pulmonary embolism (PE) and deep vein thrombosis (DVT) occurred in 16.5% and 14.8% of patients with coronavirus disease 2019 (COVID-19), respectively, and more than half of patients with PE lacked DVT. The cutoffs of D-dimer levels used to exclude PE in preexisting guidelines seem applicable to patients with COVID-19. © RSNA, 2020 Supplemental material is available for this article. See also the editorial by Woodard in this issue.


NRF2 Dysregulation in Hepatocellular Carcinoma and Ischemia: A Cohort Study and Laboratory Investigation.

  • Etay Ziv‎ et al.
  • Radiology‎
  • 2020‎

Background Intermediate stage hepatocellular carcinomas (HCCs) are treated by inducing ischemic cell death with transarterial embolization (TAE) or transarterial chemoembolization (TACE). A subset of HCCs harbor nuclear factor E2-related factor 2 (NRF2), a major regulator of the oxidative stress response implicated in cell survival after ischemia. NRF2-mutated HCC response to TAE and/or TACE is unknown. Purpose To test whether ischemia resistance is present in individuals with NRF2-mutated HCC and if this resistance can be overcome by means of NRF2 inhibition in HCC cell lines. Materials and Methods This was a combined retrospective review of an institutional database (from January 2011 to December 2018) and prospective study (from January 2014 to December 2018) of participants with HCC who underwent TAE and a laboratory investigation of HCC cell lines. Imaging follow-up included liver CT or MRI at 1 month after the procedure followed by 3-month interval scans. Tumor radiologic response was assessed on the basis of follow-up imaging. The time to local progression after TAE for individuals with and individuals without NRF2 pathway alterations was estimated by using competing risk analysis (Gray test). The in vitro response to ischemia in four HCC cell lines with and without NRF2 overexpression was evaluated, and the combination of ischemia with NRF2 knockdown by means of short hairpin RNA or an NRF2 inhibitor was tested. Doubling time estimates, dose response curve regression, and comparison analyses were performed. Results Sixty-five individuals (median age, 69 years [range, 19-84 years]; 53 men) were evaluated. HCCs with NRF2 pathway mutation had a shorter time to local progression after TAE compared to those without mutation (6-month cumulative incidence of local progression, 56% [range, 19%-91%] vs 22% [range, 12%-34%], respectively; P < .001) and confirmed ischemia resistance in NRF2-overexpressing HCC cell lines. However, ischemia and NRF2 knock-down worked synergistically to decrease proliferation of NRF2-overexpressing HCC cell lines. Dose response curves of ML385, an NRF2 inhibitor, showed that ischemia induces addiction to NRF2 in cells with NRF2 alterations. Conclusion Hepatocellular carcinoma with nuclear factor E2-related factor 2 (NRF2) alterations showed resistance to ischemia, but ischemia simultaneously induced sensitivity to NRF2 inhibition. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Weiss and Nezami in this issue.


Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia.

  • Davide Colombi‎ et al.
  • Radiology‎
  • 2020‎

Background CT of patients with severe acute respiratory syndrome coronavirus 2 disease depicts the extent of lung involvement in coronavirus disease 2019 (COVID-19) pneumonia. Purpose To determine the value of quantification of the well-aerated lung (WAL) obtained at admission chest CT to determine prognosis in patients with COVID-19 pneumonia. Materials and Methods Imaging of patients admitted at the emergency department between February 17 and March 10, 2020 who underwent chest CT were retrospectively analyzed. Patients with negative results of reverse-transcription polymerase chain reaction for severe acute respiratory syndrome coronavirus 2 at nasal-pharyngeal swabbing, negative chest CT findings, and incomplete clinical data were excluded. CT images were analyzed for quantification of WAL visually (%V-WAL), with open-source software (%S-WAL), and with absolute volume (VOL-WAL). Clinical parameters included patient characteristics, comorbidities, symptom type and duration, oxygen saturation, and laboratory values. Logistic regression was used to evaluate the relationship between clinical parameters and CT metrics versus patient outcome (intensive care unit [ICU] admission or death vs no ICU admission or death). The area under the receiver operating characteristic curve (AUC) was calculated to determine model performance. Results The study included 236 patients (59 of 123 [25%] were female; median age, 68 years). A %V-WAL less than 73% (odds ratio [OR], 5.4; 95% confidence interval [CI]: 2.7, 10.8; P < .001), %S-WAL less than 71% (OR, 3.8; 95% CI: 1.9, 7.5; P < .001), and VOL-WAL less than 2.9 L (OR, 2.6; 95% CI: 1.2, 5.8; P < .01) were predictors of ICU admission or death. In comparison with clinical models containing only clinical parameters (AUC = 0.83), all three quantitative models showed better diagnostic performance (AUC = 0.86 for all models). The models containing %V-WAL less than 73% and VOL-WAL less than 2.9 L were superior in terms of performance as compared with the models containing only clinical parameters (P = .04 for both models). Conclusion In patients with confirmed coronavirus disease 2019 pneumonia, visual or software quantification of the extent of CT lung abnormality were predictors of intensive care unit admission or death. ©  RSNA, 2020 Online supplemental material is available for this article.


Artificial Intelligence Augmentation of Radiologist Performance in Distinguishing COVID-19 from Pneumonia of Other Origin at Chest CT.

  • Harrison X Bai‎ et al.
  • Radiology‎
  • 2020‎

Background Coronavirus disease 2019 (COVID-19) and pneumonia of other diseases share similar CT characteristics, which contributes to the challenges in differentiating them with high accuracy. Purpose To establish and evaluate an artificial intelligence (AI) system for differentiating COVID-19 and other pneumonia at chest CT and assessing radiologist performance without and with AI assistance. Materials and Methods A total of 521 patients with positive reverse transcription polymerase chain reaction results for COVID-19 and abnormal chest CT findings were retrospectively identified from 10 hospitals from January 2020 to April 2020. A total of 665 patients with non-COVID-19 pneumonia and definite evidence of pneumonia at chest CT were retrospectively selected from three hospitals between 2017 and 2019. To classify COVID-19 versus other pneumonia for each patient, abnormal CT slices were input into the EfficientNet B4 deep neural network architecture after lung segmentation, followed by a two-layer fully connected neural network to pool slices together. The final cohort of 1186 patients (132 583 CT slices) was divided into training, validation, and test sets in a 7:2:1 and equal ratio. Independent testing was performed by evaluating model performance in separate hospitals. Studies were blindly reviewed by six radiologists without and then with AI assistance. Results The final model achieved a test accuracy of 96% (95% confidence interval [CI]: 90%, 98%), a sensitivity of 95% (95% CI: 83%, 100%), and a specificity of 96% (95% CI: 88%, 99%) with area under the receiver operating characteristic curve of 0.95 and area under the precision-recall curve of 0.90. On independent testing, this model achieved an accuracy of 87% (95% CI: 82%, 90%), a sensitivity of 89% (95% CI: 81%, 94%), and a specificity of 86% (95% CI: 80%, 90%) with area under the receiver operating characteristic curve of 0.90 and area under the precision-recall curve of 0.87. Assisted by the probabilities of the model, the radiologists achieved a higher average test accuracy (90% vs 85%, Δ = 5, P < .001), sensitivity (88% vs 79%, Δ = 9, P < .001), and specificity (91% vs 88%, Δ = 3, P = .001). Conclusion Artificial intelligence assistance improved radiologists' performance in distinguishing coronavirus disease 2019 pneumonia from non-coronavirus disease 2019 pneumonia at chest CT. © RSNA, 2020 Online supplemental material is available for this article.


Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19.

  • Ho Yuen Frank Wong‎ et al.
  • Radiology‎
  • 2020‎

Background Current coronavirus disease 2019 (COVID-19) radiologic literature is dominated by CT, and a detailed description of chest radiography appearances in relation to the disease time course is lacking. Purpose To describe the time course and severity of findings of COVID-19 at chest radiography and correlate these with real-time reverse transcription polymerase chain reaction (RT-PCR) testing for severe acute respiratory syndrome coronavirus 2, or SARS-CoV-2, nucleic acid. Materials and Methods This is a retrospective study of patients with COVID-19 confirmed by using RT-PCR and chest radiographic examinations who were admitted across four hospitals and evaluated between January and March 2020. Baseline and serial chest radiographs (n = 255) were reviewed with RT-PCR. Correlation with concurrent CT examinations (n = 28) was performed when available. Two radiologists scored each chest radiograph in consensus for consolidation, ground-glass opacity, location, and pleural fluid. A severity index was determined for each lung. The lung scores were summed to produce the final severity score. Results The study was composed of 64 patients (26 men; mean age, 56 years ± 19 [standard deviation]). Of these, 58 patients had initial positive findings with RT-PCR (91%; 95% confidence interval: 81%, 96%), 44 patients had abnormal findings at baseline chest radiography (69%; 95% confidence interval: 56%, 80%), and 38 patients had initial positive findings with RT-PCR testing and abnormal findings at baseline chest radiography (59%; 95% confidence interval: 46%, 71%). Six patients (9%) showed abnormalities at chest radiography before eventually testing positive for COVID-19 with RT-PCR. Sensitivity of initial RT-PCR (91%; 95% confidence interval: 83%, 97%) was higher than that of baseline chest radiography (69%; 95% confidence interval: 56%, 80%) (P = .009). Radiographic recovery (mean, 6 days ± 5) and virologic recovery (mean, 8 days ± 6) were not significantly different (P = .33). Consolidation was the most common finding (30 of 64; 47%) followed by ground-glass opacities (21 of 64; 33%). Abnormalities at chest radiography had a peripheral distribution (26 of 64; 41%) and lower zone distribution (32 of 64; 50%) with bilateral involvement (32 of 64; 50%). Pleural effusion was uncommon (two of 64; 3%). The severity of findings at chest radiography peaked at 10-12 days from the date of symptom onset. Conclusion Findings at chest radiography in patients with coronavirus disease 2019 frequently showed bilateral lower zone consolidation, which peaked at 10-12 days from symptom onset. © RSNA, 2020.


Postmortem CT Angiography Compared with Autopsy: A Forensic Multicenter Study.

  • Silke Grabherr‎ et al.
  • Radiology‎
  • 2018‎

Purpose To determine if postmortem computed tomography (CT) and postmortem CT angiography help to detect more lesions than autopsy in postmortem examinations, to evaluate the strengths and weaknesses of each method, and to define their indications. Materials and Methods Postmortem CT angiography was performed on 500 human corpses and followed by conventional autopsy. Nine centers were involved. All CT images were read by an experienced team including one forensic pathologist and one radiologist, blinded to the autopsy results. All findings were recorded for each method and categorized by anatomic structure (bone, organ parenchyma, soft tissue, and vascular) and relative importance in the forensic case (essential, useful, and unimportant). Results Among 18 654 findings, autopsies helped to identify 61.3% (11 433 of 18 654), postmortem CT helped to identify 76.0% (14 179 of 18 654), and postmortem CT angiography helped to identify 89.9% (16 780 of 18 654; P < .001). Postmortem CT angiography was superior to autopsy, especially at helping to identify essential skeletal lesions (96.1% [625 of 650] vs 65.4% [425 of 650], respectively; P < .001) and vascular lesions (93.5% [938 of 1003] vs 65.3% [655 of 1003], respectively; P < .001). Among the forensically essential findings, 23.4% (1029 of 4393) were not detected at autopsy, while only 9.7% (428 of 4393) were missed at postmortem CT angiography (P < .001). The best results were obtained when postmortem CT angiography was combined with autopsy. Conclusion Postmortem CT and postmortem CT angiography and autopsy each detect important lesions not detected by the other method. More lesions were identified by combining postmortem CT angiography and autopsy, which may increase the quality of postmortem diagnosis. Online supplemental material is available for this article.


Non-Small Cell Lung Cancer Radiogenomics Map Identifies Relationships between Molecular and Imaging Phenotypes with Prognostic Implications.

  • Mu Zhou‎ et al.
  • Radiology‎
  • 2018‎

Purpose To create a radiogenomic map linking computed tomographic (CT) image features and gene expression profiles generated by RNA sequencing for patients with non-small cell lung cancer (NSCLC). Materials and Methods A cohort of 113 patients with NSCLC diagnosed between April 2008 and September 2014 who had preoperative CT data and tumor tissue available was studied. For each tumor, a thoracic radiologist recorded 87 semantic image features, selected to reflect radiologic characteristics of nodule shape, margin, texture, tumor environment, and overall lung characteristics. Next, total RNA was extracted from the tissue and analyzed with RNA sequencing technology. Ten highly coexpressed gene clusters, termed metagenes, were identified, validated in publicly available gene-expression cohorts, and correlated with prognosis. Next, a radiogenomics map was built that linked semantic image features to metagenes by using the t statistic and the Spearman correlation metric with multiple testing correction. Results RNA sequencing analysis resulted in 10 metagenes that capture a variety of molecular pathways, including the epidermal growth factor (EGF) pathway. A radiogenomic map was created with 32 statistically significant correlations between semantic image features and metagenes. For example, nodule attenuation and margins are associated with the late cell-cycle genes, and a metagene that represents the EGF pathway was significantly correlated with the presence of ground-glass opacity and irregular nodules or nodules with poorly defined margins. Conclusion Radiogenomic analysis of NSCLC showed multiple associations between semantic image features and metagenes that represented canonical molecular pathways, and it can result in noninvasive identification of molecular properties of NSCLC. Online supplemental material is available for this article.


Author Gender Inequality in Medical Imaging Journals and the COVID-19 Pandemic.

  • Elske Quak‎ et al.
  • Radiology‎
  • 2021‎

Background Early reports show the unequal effect the COVID-19 pandemic might have on men versus women engaged in medical research. Purpose To investigate whether the COVID-19 pandemic has had an impact on scientific publishing by female physicians in medical imaging. Materials and Methods The authors conducted a descriptive bibliometric analysis of the gender of the first and last authors of manuscripts submitted to the top 50 medical imaging journals from March to May 2020 (n = 2480) compared with the same period of the year in 2018 (n = 2238) and 2019 (n = 2355). Manuscript title, date of submission, first and last names of the first and last authors, journal impact factor, and author country of provenance were recorded. The Gender-API software was used to determine author gender. Statistical analysis comprised χ2 tests and multivariable logistic regression. Results Percentages of women listed as first and last authors were 31.6% (1172 of 3711 articles) and 19.3% (717 of 3711 articles), respectively, in 2018-2019 versus 32.3% (725 of 2248 articles) and 20.7% (465 of 2248 articles) in 2020 (P = .61 and P = .21, respectively). For COVID-19-related articles, 35.2% (89 of 253 articles) of first authors and 20.6% (52 of 253 articles) of last authors were women. No associations were found between first- and last-author gender, year of publication, and region of provenance. First and last authorship of high-ranking articles was not in favor of North American women whatever the year (odds ratio [OR], 0.79 [P = .05] and 0.72 [P = .02], respectively). Higher rates of female last authorship of high-ranking articles were observed in Europe (P = .003) and of female first authorship of low-ranking publications in Asia in 2020 (OR, 1.38; 95% CI: 0.98, 1.92; P = .06). Female first and last authorship of COVID-19-related articles was overrepresented for lowest-rank publications (P = .02 and P = .01, respectively). Conclusion One in three first authors and one in five last authors were women in 2018-2019 and 2020, respectively. Although the first 2020 lockdown did not diminish the quantity of women-authored publications, the impact on the quality was variable. ©RSNA, 2021 See also the editorial by Robbins and Khosa in this issue.


CT Lung Abnormalities after COVID-19 at 3 Months and 1 Year after Hospital Discharge.

  • Bavithra Vijayakumar‎ et al.
  • Radiology‎
  • 2022‎

Background Data on the long-term pulmonary sequelae in COVID-19 are lacking. Purpose To assess symptoms, functional impairment, and residual pulmonary abnormalities on serial chest CT scans in COVID-19 survivors discharged from hospital at up to 1-year follow-up. Materials and Methods Adult patients with COVID-19 discharged between March 2020 and June 2020 were prospectively evaluated at 3 months and 1 year through systematic assessment of symptoms, functional impairment, and thoracic CT scans as part of the PHENOTYPE study, an observational cohort study in COVID-19 survivors. Lung function testing was limited to participants with CT abnormalities and/or persistent breathlessness. Bonferroni correction was used. Results Eighty participants (mean age, 59 years ± 13 [SD]; 53 men) were assessed. At outpatient review, persistent breathlessness was reported in 37 of the 80 participants (46%) and cough was reported in 17 (21%). CT scans in 73 participants after discharge (median, 105 days; IQR, 95-141 days) revealed persistent abnormalities in 41 participants (56%), with ground-glass opacification (35 of 73 participants [48%]) and bands (27 of 73 participants [37%]) predominating. Unequivocal signs indicative of established fibrosis (ie, volume loss and/or traction bronchiectasis) were present in nine of 73 participants (12%). Higher admission serum C-reactive protein (in milligrams per liter), fibrinogen (in grams per deciliter), urea (millimoles per liter), and creatinine (micromoles per liter) levels; longer hospital stay (in days); older age (in years); and requirement for invasive ventilation were associated with CT abnormalities at 3-month follow-up. Thirty-two of 41 participants (78%) with abnormal findings at 3-month follow-up CT underwent repeat imaging at a median of 364 days (range, 360-366 days), with 26 (81%) showing further radiologic improvement (median, 18%; IQR, 10%-40%). Conclusion CT abnormalities were common at 3 months after COVID-19 but with signs of fibrosis in a minority. More severe acute disease was linked with CT abnormalities at 3 months. However, radiologic improvement was seen in the majority at 1-year follow-up. ClinicalTrials.gov identifier: NCT04459351. © RSNA, 2022 Online supplemental material is available for this article.


Solitary pulmonary nodules: determining the likelihood of malignancy with neural network analysis.

  • J W Gurney‎ et al.
  • Radiology‎
  • 1995‎

To test a neural network in differentiation of benign from malignant solitary pulmonary nodules.


Medullary sponge kidney disease.

  • A F Lalli‎
  • Radiology‎
  • 1969‎

No abstract available


Use of Caval Subtraction 2D Phase-Contrast MR Imaging to Measure Total Liver and Hepatic Arterial Blood Flow: Preclinical Validation and Initial Clinical Translation.

  • Manil D Chouhan‎ et al.
  • Radiology‎
  • 2016‎

Purpose To validate caval subtraction two-dimensional (2D) phase-contrast magnetic resonance (MR) imaging measurements of total liver blood flow (TLBF) and hepatic arterial fraction in an animal model and evaluate consistency and reproducibility in humans. Materials and Methods Approval from the institutional ethical committee for animal care and research ethics was obtained. Fifteen Sprague-Dawley rats underwent 2D phase-contrast MR imaging of the portal vein (PV) and infrahepatic and suprahepatic inferior vena cava (IVC). TLBF and hepatic arterial flow were estimated by subtracting infrahepatic from suprahepatic IVC flow and PV flow from estimated TLBF, respectively. Direct PV transit-time ultrasonography (US) and fluorescent microsphere measurements of hepatic arterial fraction were the standards of reference. Thereafter, consistency of caval subtraction phase-contrast MR imaging-derived TLBF and hepatic arterial flow was assessed in 13 volunteers (mean age, 28.3 years ± 1.4) against directly measured phase-contrast MR imaging PV and proper hepatic arterial inflow; reproducibility was measured after 7 days. Bland-Altman analysis of agreement and coefficient of variation comparisons were undertaken. Results There was good agreement between PV flow measured with phase-contrast MR imaging and that measured with transit-time US (mean difference, -3.5 mL/min/100 g; 95% limits of agreement [LOA], ±61.3 mL/min/100 g). Hepatic arterial fraction obtained with caval subtraction agreed well with those with fluorescent microspheres (mean difference, 4.2%; 95% LOA, ±20.5%). Good consistency was demonstrated between TLBF in humans measured with caval subtraction and direct inflow phase-contrast MR imaging (mean difference, -1.3 mL/min/100 g; 95% LOA, ±23.1 mL/min/100 g). TLBF reproducibility at 7 days was similar between the two methods (95% LOA, ±31.6 mL/min/100 g vs ±29.6 mL/min/100 g). Conclusion Caval subtraction phase-contrast MR imaging is a simple and clinically viable method for measuring TLBF and hepatic arterial flow. Online supplemental material is available for this article.


Illuminating radiogenomic characteristics of glioblastoma multiforme through integration of MR imaging, messenger RNA expression, and DNA copy number variation.

  • Neema Jamshidi‎ et al.
  • Radiology‎
  • 2014‎

To perform a multilevel radiogenomics study to elucidate the glioblastoma multiforme (GBM) magnetic resonance (MR) imaging radiogenomic signatures resulting from changes in messenger RNA (mRNA) expression and DNA copy number variation (CNV).


Association between morphologic CT imaging traits and prognostically relevant gene signatures in women with high-grade serous ovarian cancer: a hypothesis-generating study.

  • Hebert Alberto Vargas‎ et al.
  • Radiology‎
  • 2015‎

To investigate associations among imaging traits observed on computed tomographic (CT) images, Classification of Ovarian Cancer (CLOVAR) gene signatures, and survival in women with high-grade serous ovarian cancer (HGSOC).


Altered Nucleus Basalis Connectivity Predicts Treatment Response in Mild Cognitive Impairment.

  • Dewen Meng‎ et al.
  • Radiology‎
  • 2018‎

Purpose To determine whether functional connectivity (FC) mapping of nucleus basalis of Meynert (NBM) cholinergic network (hereafter, NBM FC) could provide a biomarker of central cholinergic deficits with predictive potential for response to cholinesterase inhibitor (ChEI) treatment. Materials and Methods The Alzheimer's Disease Neuroimaging Initiative (ADNI) was approved by the institutional review boards of all participating sites. All participants and their representatives gave written informed consent prior to data collection. NBM FC was examined in 33 healthy control participants, 102 patients with mild cognitive impairment (MCI), and 33 patients with AD by using resting-state functional MRI data from the ADNI database. NBM FC was compared between groups before and after 6 months of ChEI treatment in MCI. Associations between baseline NBM FC and baseline cognitive performance as well as cognitive outcomes after treatment were investigated. Results Compared with the healthy control group, NBM FC was decreased in patients with untreated MCI and increased in patients with AD treated with ChEI (corrected P ˂ .05). Global cognition (Alzheimer's Disease Assessment Scale-Cognitive subscale score) was associated with NBM FC (r = -0.349; P ˂ .001). NBM FC was higher 6 months after ChEI compared with before ChEI in treated MCI (corrected P ˂ .05), but did not change at 6 months in patients with untreated MCI (corrected P ˂ .05). Baseline NBM FC in MCI strongly predicted cognitive outcomes 6 months after ChEI (R2 = 0.458; P = .001). Conclusion Functional dissociation of the nucleus basalis of Meynert from a cortical network may explain the cognitive deficits in dementia and allow for the selection of individuals who are more likely to respond to cholinesterase inhibitors at early disease stages. © RSNA, 2018 Online supplemental material is available for this article.


Diagnostic Performance of Chest CT for SARS-CoV-2 Infection in Individuals with or without COVID-19 Symptoms.

  • Kristof De Smet‎ et al.
  • Radiology‎
  • 2021‎

Background The use of chest CT for coronavirus disease 2019 (COVID-19) diagnosis or triage in health care settings with limited severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR) capacity is controversial. COVID-19 Reporting and Data System (CO-RADS) categorization of the level of COVID-19 suspicion might improve diagnostic performance. Purpose To investigate the value of chest CT with CO-RADS classification to screen for asymptomatic SARS-CoV-2 infections and to determine its diagnostic performance in individuals with COVID-19 symptoms during the exponential phase of viral spread. Materials and Methods In this secondary analysis of a prospective trial, from March 2020 to April 2020, parallel SARS-CoV-2 PCR and CT with categorization of COVID-19 suspicion was performed with CO-RADS for individuals with COVID-19 symptoms and control participants without COVID-19 symptoms admitted to the hospital for medical emergencies unrelated to COVID-19. CT with CO-RADS was categorized on a five-point scale from 1 (very low suspicion) to 5 (very high suspicion). Area under the receiver operating curve (AUC) was calculated in symptomatic versus asymptomatic individuals to predict positive SARS-CoV-2 PCR, and likelihood ratios for each CO-RADS score were used for rational selection of diagnostic thresholds. Results A total of 859 individuals (median age, 70 years; interquartile range, 52-81 years; 443 men) with COVID-19 symptoms and 1138 control participants (median age, 68 years; interquartile range, 52-81 years; 588 men) were evaluated. CT with CO-RADS had good diagnostic performance (P < .001) in both symptomatic (AUC, 0.89) and asymptomatic (AUC, 0.70) individuals. In symptomatic individuals (42% PCR positive), CO-RADS 3 or greater detected positive PCR with high sensitivity (89%, 319 of 358) and specificity of 73%. In asymptomatic individuals (5% PCR positive), a CO-RADS score of 3 or greater detected SARS-CoV-2 infection with low sensitivity (45%, 27 of 60) but high specificity (89%). Conclusion CT with Coronavirus Disease 2019 Reporting and Data System (CO-RADS) had good diagnostic performance in symptomatic individuals, supporting its application for triage. Sensitivity in asymptomatic individuals was insufficient to justify its use as a first-line screening approach. Incidental detection of CO-RADS 3 or greater in asymptomatic individuals should trigger testing for respiratory pathogens. © RSNA, 2020 Online supplemental material is available for this article.


Hyperpolarized 129Xe MRI Abnormalities in Dyspneic Patients 3 Months after COVID-19 Pneumonia: Preliminary Results.

  • James T Grist‎ et al.
  • Radiology‎
  • 2021‎

Background SARS-CoV-2 targets angiotensin-converting enzyme 2-expressing cells in the respiratory tract. There are reports of breathlessness in patients many months after infection. Purpose To determine whether hyperpolarized xenon 129 MRI (XeMRI) imaging could be used to identify the possible cause of breathlessness in patients at 3 months after hospital discharge following COVID-19 infection. Materials and Methods This prospective study was undertaken between August and December of 2020, with patients and healthy control volunteers being enrolled. All patients underwent lung function tests; ventilation and dissolved-phase XeMRI, with the mean red blood cell (RBC) to tissue or plasma (TP) ratio being calculated; and a low-dose chest CT, with scans being scored for the degree of abnormalities after COVID-19. Healthy control volunteers underwent XeMRI. The intraclass correlation coefficient was calculated for volunteer and patient scans to assess repeatability. A Wilcoxon rank sum test and Cohen effect size calculation were performed to assess differences in the RBC/TP ratio between patients and control volunteers. Results Nine patients (mean age, 57 years ± 7 [standard deviation]; six male patients) and five volunteers (mean age, 29 years ± 3; five female volunteers) were enrolled. The mean time from hospital discharge for patients was 169 days (range, 116-254 days). There was a difference in the RBC/TP ratio between patients and control volunteers (0.3 ± 0.1 vs 0.5 ± 0.1, respectively; P = .001; effect size, 1.36). There was significant difference between the RBC and gas phase spectral full width at half maximum between volunteers and patients (median ± range, 567 ± 1 vs 507 ± 81 [P = .002] and 104 ± 2 vs 122 ± 17 [P = .004], respectively). Results were reproducible, with intraclass correlation coefficients of 0.82 and 0.88 being demonstrated for patients and volunteers, respectively. Participants had normal or nearly normal CT scans (mean, seven of 25; range, zero of 25 to 10 of 25). Conclusion Hyperpolarized xenon 129 MRI results showed alveolar capillary diffusion limitation in all nine patients after COVID-19 pneumonia, despite normal or nearly normal results at CT. © RSNA, 2021 See also the editorial by Dietrich in this issue.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: